Spatiotemporal analysis of thermal comfort in Azerbaijan

Authors

DOI:

https://doi.org/10.17721/1728-2713.111.14

Keywords:

UTCI, Azerbaijan, thermal comfort, tourism climatology, sustainable tourism

Abstract

Background. Understanding spatiotemporal patterns of thermal comfort is crucial for developing sustainable tourism strategies in geographically diverse regions. This comprehensive study investigates Azerbaijan's complex bioclimatic conditions using the Universal Thermal Climate Index (UTCI), with particular emphasis on how the country's remarkable topographic diversity – ranging from the Caspian coastline to mountain zones – creates distinct microclimates that influence visitor comfort and tourism potential. As climate change continues to alter thermal environments globally, this research provides critical baseline data for adaptive tourism planning in transitional climate zones.

Methods. The study employed ERA5-HEAT reanalysis data to calculate UTCI values, incorporating four key meteorological parameters: air temperature, relative humidity, wind speed, and mean radiant temperature. Advanced spatial analysis techniques were implemented using ArcGIS, including interpolation for creating continuous UTCI surfaces, zonal statistics for regional comparisons, and elevation-based corrections using SRTM 30 m DEM data.

Results. The analysis revealed extreme annual UTCI variations (–21.0 °C in January highlands to 28.4 °C in August lowlands), demonstrating Azerbaijan's exceptional bioclimatic diversity. Mountainous regions (Greater and Lesser Caucasus) showed prolonged cold stress (UTCI<0°C for 4–5 months), while lowland areas (Kura-Aras plain, Caspian coast) experienced significant summer heat stress (UTCI>26°C for 60–90 days). Optimal thermal comfort conditions (UTCI 9–26 °C) were most persistent in spring (April–May) and autumn (September–October), particularly at mid-elevations (500–1000 m).

Conclusions. This study demonstrates that Azerbaijan's thermal comfort patterns are fundamentally governed by topographic factors. The findings enable precise, climate-responsive tourism planning: cultural and beach tourism in lowlands during shoulder seasons (April–June, September–October), alpine tourism in mountain zones during summer, and winter sports in high-elevation areas. The UTCI-based framework developed here proves particularly valuable for managing thermal stress extremes in both hot and cold environments. These results have immediate practical applications for tourism infrastructure development, seasonal marketing strategies, and climate adaptation planning.

References

Ayyubov, A. J. (1987). Climate of resorts and recreation areas of the Azerbaijan SSR. Azerneshr [in Azerbaijani]. [Əyyubov, Ə.C. (1987). Azərbaycan SSR-in kurort və istirahət yerlərinin iqlimi. Azərnəşr].

Baaghideh, M., Mayvaneh, F., Shekari Badi, A., & Shojaee, T. (2016). Evaluation of human thermal comfort using UTCI index: Case study Khorasan Razavi, Iran. Natural Environment Change, 2(2), 165–175.

Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H., & Tinz, B. (2012). Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, 56(3), 515–535. https://doi.org/10.1007/s00484-011-0453-2

Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Fels, W., & Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56, 481–494. https://doi.org/10.1007/s00484-011-0454-1

Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis. Cambridge University Press.

Daneshvar, M. R. M., Bagherzadeh, A., & Tavousi, T. (2013). Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran. Central European Journal of Geosciences, 5(1), 53–60. https://doi.org/10.2478/s13533-012-0118-7

Di Napoli, C., Barnard, C., Prudhomme, C., Cloke, H. L., & Pappenberger, F. (2021). ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geoscience Data Journal, 8(1), 2–10. https://doi.org/10.1002/gdj3.102

Di Napoli, C., Pappenberger, F., & Cloke, H. L. (2018). Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 62(7), 1155–1165. https://doi.org/10.1007/s00484-018-1518-2

Jabrayilov, E. A. (2022). Monitoring of fragile ecosystems with spectral indices using Sentinel-2A MSI data in Shahdagh National Park. Geography, Environment, Sustainability, 15(1), 70–77. https://doi.org/10.15356/2071-9388_01_2022_07

Jendritzky, G., De Dear, R., & Havenith, G. (2012). UTCI–why another thermal index? International Journal of Biometeorology, 56, 421–428. https://doi.org/10.1007/s00484-011-0513-7

Kolotova, Ye. V. (1999). Recreational resource science. Tourist [in Russian]. [Колотова, Е.В. Рекреационное ресурсоведение. Турист].

Kotlyarova, O. V. (2020). Theory and methodology of recreational geography. Publishing Center of SUSU [in Russian]. [Котлярова, О.В. (2020). Теория и методология рекреационной географии. Издательский центр ЮУрГУ].

Kruzhalin, V. I., Mironenko, N. S., Siegern-Korn, N. V., & Shabalina, N. V. (2014). Geography of tourism. Federal Agency for Tourism [in Russian]. [Кружалин, В.И., Мироненко, Н.С., Зигерн-Корн, Н.В., Шабалина, Н.В. (2014). География туризма. Федеральное агентство по туризму].

Kuskov, A. S., Golubeva, V. L., & Odintsova, T. N. (2005). Recreational geography. MPSI, Flinta [in Russian]. [Кусков, А.С., Голубева, В.Л., Одинцова, Т.Н. (2005). Рекреационная география. МПСИ, Флинта].

Matzarakis, A. (2006). Weather- and climate-related information for tourism. Tourism and Hospitality Planning & Development, 3(2), 99–115. https://doi.org/10.1080/14790530600932282

National Academy of Sciences of Azerbaijan. (2014). National Atlas of the Republic of Azerbaijan. Baku Cartography Factory.

Nepomnyaschiy, V. V., & Makeeva, E. G. (2025). The role of climatic resources in the formation of the recreational potential of the Republic of Khakassia. Regional Geosystems, 49(2), 319–336 [in Russian]. [Непомнящий, В.В., Макеева, Е.Г. (2025). Роль климатических ресурсов в формировании рекреационного потенциала Республики Хакасия. Региональные геосистемы, 49(2), 319–336]. https://doi.org/10.52575/2712-7443-2025-49-2-319-336

Pantavou, K., Theoharatos, G., Santamouris, M., & Asimakopoulos, D. (2013). Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment, 66, 82–95. https://doi.org/10.1016/j.buildenv.2013.04.014

Pashkov, S., Mazhitova, G., Sedelnikov, I., Ospan, G., & Sagatbayev, Y. (2023). Assessment of tourism and climate potential of territories of Northern Kazakhstan. Geo Journal of Tourism and Geosites, 48(4), 725–732. https://doi.org/10.30892/gtg.48225-1070

Rutty, M., & Scott, D. (2014). Thermal range of coastal tourism resort microclimates. Tourism Geographies, 16(3), 346–363. https://doi.org/10.1080/14616688.2012.762541

Scott, D. (2006). Global environmental change and mountain tourism. In Tourism and global environmental change (pp. 54–75). Routledge.

Downloads

Published

2026-01-30

How to Cite

AGAKISHIYEVA, G., JABRAYILOV, E., & MAMMADOVA, J. (2026). Spatiotemporal analysis of thermal comfort in Azerbaijan. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(111), 122-130. https://doi.org/10.17721/1728-2713.111.14