FOCAL MECHANISM OF THE LITHUANIAN EARTHQUAKE OF BASED ON WAVEFORM INVERSION
DOI:
https://doi.org/10.17721/1728-2713.94.05Keywords:
matrix method, method of waveform inversion, the focal mechanism, seismic moment tensor, direct P- and S-wavesAbstract
The aim: Determination of focal mechanism of Lithuanian earthquake of 12.06.15 (t0 = 08:18:26.4; 55.52° N, 21.40° E; hs = 0.9 км.; ML = 2.6) by waveform inversion using direct waves and a limited number of stations. Method: Matrix method is used for modelling of seismic wave propagation in the medium modelled as horizontally layered heterogeneous elastic structure. There were obtained the relations of displacement waves on the free surface that were used for seismic tensor determination using only direct P- and S- waves. Determination of seismic tensor and the focal mechanism on the base of developed method for a point source is described. Thus, based on forward modeling, numerical techniques are developed for the inversion of observed waveforms for the components of moment tensor. Results: In the paper, a method is presented for the focal mechanism determination of Lithuanian earthquake of 12.06.15 (ML = 2.6) by waveform inversion using limited number of stations. The focal mechanism is determined using the data from two stations: PABE, SLIТ and from three stations: PABE, MTSE, SLIТ. These seismic stations are the part of BAVSEN (BalticVirtualSeismicNetwork).Scientific novelty: 1. In the paper, a method is presented for moment tensor inversion for the focal mechanism determination of events with a low seismicity. The East Baltic region (EBR) is the region with low seismicity. 2. The focal mechanism is determined using the data from a limited number of stations. Practical significance: The results of focal mechanism determination can be used to study seismicity for regions with a low seismicity using a limited number of stations.
References
Aki, K., Richards, P.G. (1980). Quantitative seismology – Theory and method. San Francisco : Freeman and Co.
Alekseev, A.S., Mikhailenko, B.G. (1980). Thesolution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite-difference method. J. Geophys., 48, 161–172.
Ben-Menahem, A., Singh, S.J. (1981). Seismic Waves and Sources. New York : Springer.
Bouchon, M. (1981). A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am., 71, 959–971.
Chapman, C.H. (1987). A new method for computing synthetic seismograms. Geophys. J.R. Astron.Soc., 54, 481–518.
Cormier, V.P., Richards, P.G. (1977). Full wave theory applied to a discontinuous velocity increase: The inner core boundary. J. Geophys., 43, 3–31.
Dziewonski, A.M, Chou, T.A., Woodhouse, J.H. (1981). Determination of earthquake source parameters from waveform data for studies of regional and global seismicity. J. geophys. Res., 86, 2825–2852.
FENCAT (2014). Catalog of earthquakes in Northern Europe, 1375 – 2014. Retrieved fromhttps://www.seismo.helsinki.fi/bulletin/list/catalog/ Scandia_updated.html
Fuchs, K., Muller, G. (1971). Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J.R. Astron. Soc., 23, 417–433.
Godano, M., Bardainne, T., Regnier, M., Deschamps, A. (2011). Moment tensor determination by nonlinear inversion of amplitudes. Bull. seism. Soc. Am., 101, 366–378.
Gregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B.A., Guterch, B., Mäntyniemi, P., Nikulin, V.G., Pacesa, A., Puura, V., Aronov, A.G., Aronova, T.I., Grünthal, G., Husebye, E.S., Sliaupa, S. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164, 1–2, 63–74.
Hardebeck, J.L., Shearer, P.M. (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. seism. Soc. Am., 93, 2432–2444.
Kennett, B.L.N. (1972).Seismic waves in laterally inhomogeneous media. Geophys. J. R.Astron. Soc., 27, 301–325.
Kennett, B.L.N. (2002). The Seismic Wavefield. V. 1, 2. UK : Cambridge University Press.
Kepezinskas, K., Rasteniene, V., Suveizdis, P. (1996). The West Lithuanian Geothermal Anomaly. Vilnius: Institute of Geology.
Kikuchi, M., Kanamori, H. (1991). Inversion of complex body waves-III. Bull.seism. Soc. Am., 81, 2335–2350.
Malytskyy D. (2010). Analytic-numerical approaches to the calculation of seismic moment tensor as a function of time, Geoinformatika, 1, 79–85. [in Ukrainian]
Malytskyy, D. (2016). Mathematical modeling in the problems of seismology. Kyiv: Naukova Dumka. [in Ukrainian]
Malytskyy, D., Kozlovskyy, E. (2014). Seismic waves in layered media. J. of Earth Science and Engineering, 4, 311–325.
Miller, A.D., Julian, B.R., Foulger, G.R. (1998). Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland. Geophys. J. Int., 133, 309–325.
Molotkov, L.A. (1984). The Matrix Method in the Theory of Wave Propagation in Layered Elastic and Liquid Media. Moscow: Nauka.
Nikulins, V. (2020). Sovremennyje sjesmologicheskije issledovania v Latvii s 2008 po 2019 i perspektivy ikh razvitija. Rossiyskiy seismologicheskiy jurnal, 2, 1, 27–39. DOI: https://doi.org/10.35540/2686- 7907.2020.1.03 [in Russian]
Nikulins, V. (2020). Seismological monitoring in Latvia. Summary of the Bulletin of the International Seismological Centre, 54 (I), 50–66. https://doi.org/10.31905/BKETRT2R
Nikulins, V., Assinovskaya, B. (2018). Seismicity of the East Baltic region after the Kaliningrad earthquakes on 21 September 2004. Baltica, 31, 1, 35–48.
Ostrovsky, A.A., Flueh, E.R., Luosto, U. (1994). Deep seismic structure of the Earth's crust along the Baltic Sea profile. Tectonophysics, 233, 279–292.
Pacesa, A. (2015). Seismological investigations in 2014. Lietuvos geologijas tarnyba. Technical Report, 40–43. Retrieved from http://www.researchgate.net/publication/285588658
Sileny, J., Panza, G.F., Campus, P. (1992). Waveform inversion for point source moment tensor retrieval with variable hypocentral depth and structural model. Geophys. J. Int., 109, 259–274.
Sipkin, S.A. (1986). Estimation of earthquake source parameters by the inversion of waveform data: Global seismicity, 1981–1983. Bull. seism. Soc. Am., 76, 1515–1541.
Sliaupa, S., Zinevicius, F., Mazintas, A., Petrauskas, S., Dagilis, V. (2019). Geothermal Energy Use, Country Update for Lithuania. European Geothermal Congress.
Vavrychuk, V., Kuhn, D. (2012). Moment tensor inversion of waveforms: a two- step time frequency approach. Geophys. J. Int., 190, 1761–1776.
Wiggins, R.A., Helmberger, D.V. (1974). Synthetic seismogram computation by expansion in generalized rays. Geophys. J., 37, 73–90.
Zinevicius F., Sliaupa S. (2010). Lithuania – Geothermal Energy Country Update. Proceeding World Geothermal Congress.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Visnyk of Taras Shevchenko National University of Kyiv. Geology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




