The statistical simulation of dataset in 3D area with pentamodel type variogram to Rivne NPP geophysical monitoring
DOI:
https://doi.org/10.17721/1728-2713.111.12Keywords:
Statistical simulation, pentamodel variogram, spectral decomposition, conditional maps, Rivne Nuclear Power Plant (RNPP)Abstract
Background. This paper presents a statistical modeling approach for three-dimensional spatial data using a pentamodel type variogram, which provides an optimal mean-square approximation. The proposed method is applied to supplement geophysical survey data for karst-suffusion processes in monitoring the density of the chalk stratum in the Rivne Nuclear Power Plant (RNPP) area. A comprehensive set of geophysical investigations was conducted in the RNPP site area. Among these investigations, radioisotope measurements of soil density and moisture around the constructed facilities are of primary interest. However, the available observation dataset, derived from 29 wells using radioisotope methods, was insufficient for high-resolution density characterization. To address this limitation, a statistical modeling technique based on the pentamodel variogram was employed, enabling the reconstruction of the random field representing the studied parameter at any point within the 3D domain of interest.
Methods. A statistical model of the averaged density distribution of the chalk stratum within the study area was developed using the spectral decomposition of random fields in 3D space. The algorithm allows for generating realizations of random fields with predefined correlation structures, ensuring spatial discretization consistent with the required accuracy and resolution for geophysical monitoring applications.
Results. An algorithm for statistical modeling of random fields with pentamodel type correlation functions was formulated and implemented. Using the developed software, additional realizations of the random component of the chalk density field were generated on a regular observation grid with the desired level of detail. A comparison of a set of correlation functions for one data set in mean-square was performed. A statistical analysis of the simulated results was performed, including validation against the original observation data and an assessment of the adequacy and convergence of the modeled fields.
Conclusions. The proposed statistical modeling method, based on pentamodel type correlation functions, provides a robust framework for supplementing sparse geophysical datasets with high accuracy. This approach significantly improves the reliability of density distribution estimates and can be effectively applied to geophysical monitoring and the interpretation of spatially distributed geological parameters.
References
Chiles, J. P., Aug, C., Guillen, A., & Lees, T. (2005). Modelling the geometry of geological units and its uncertainty in 3D from structural data: The potential-field method. In R. Dimitrakopoulos (Ed.), Orebody Modelling and Strategic Mine Planning: Uncertainty Management Models (Spectrum Series 14, pp. 329–336). The Australasian Institute of Mining and Metallurgy.
Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). John Wiley & Sons.
Emery, X., & Lantuejoul, C. (2006). TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method. Computers & Geosciences, 32(10), 1615–1628. https://doi.org/10.1016/j.cageo.2006.03.001
Guyon, X. (1993). Champs aléatoires sur un réseau: Modélisations, statistique et applications. Masson.
Mantoglov, A., & Wilson, J. L. (1981). Simulation of random fields with turning bands method (Report No. 264). MIT Ralph M. Parsons Laboratory for Hydrology and Water Systems.
Menshov, O., Kuderavets, R., Vyzhva, S., Chobotok, I., & Pastushenko, T. (2015). Magnetic mapping and soil magnetometry of hydrocarbon prospective areas in western Ukraine. Studia Geophysica et Geodaetica, 59, 614–627. https://doi.org/10.1007/s11200-015-0814-2
Tolosana-Delgado, R., & Mueller, U. (2021). Geostatistics for compositional data with R (Chapter: Compositional Direct Sampling Simulation). In Geostatistics for Compositional Data with R (pp. 187–207). Springer. https://doi.org/10.1007/978-3-030-82568-3_10
Vyzhva, S. A., Deineko, S. I., Demidov, V. K., & Astashkina, O. A. (2010). Dynamic geologic-geophysical model of chalky layer and dispersible soils on territory of the RNPP site. In 9th International Conference on Geoinformatics: Theoretical and Applied Aspects. EAGE.
Vyzhva, Z. O. (2003). About approximation of 3D random fields and statistical simulation. Random Operators and Stochastic Equations, 4(3), 255–266. https://doi.org/10.1515/rose.1996.4.3.255
Vyzhva, Z. O. (2011). The statistical modeling of random processes and fields. Obrii [in Ukrainian]. [Вижва, З. О. (2011). Статистичне моделювання випадкових процесів та полів. Обрії].
Vyzhva, Z. O. (2021). The statistical modeling in geology. PPC "Kyiv University" [in Ukrainian]. [Вижва, З. О. (2021). Статистичне моделювання в геології. ВПЦ "Київський університет"]. https://mechmat.knu.ua/wp-content/uploads/2022/12/posibnyk_vyzhva_z.pdf
Vyzhva, Z. O., Demidov, V. K., & Vyzhva, A. S. (2013). About methods of 3D dataset statistical simulation on Rivne NPP example. In 12th International Conference on Geoinformatics: Theoretical and Applied Aspects. EAGE.
Vyzhva, Z. O., Demidov, V. K., & Vyzhva, A. S. (2014a). The investigation of chalk layer density on Rivne NPP industrial area territory by Monte Carlo method using 3D models. Geoinformatics, 3(51), 47–56 [in Ukrainian]. [Вижва, З. О., Демидов, В. К., & Вижва, А. С. (2014a). Дослідження густини крейдяної товщі методом Монте-Карло на проммайданчику Рівненської АЕС із застосуванням 3D-моделей. Геоінформатика, 3(51), 47–56].
Vyzhva, Z. O., Demidov, V. K., & Vyzhva, A. S. (2014b). Monte Carlo method and Cauchy model identifying chalk layer density on Rivne NPP. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(65), 62–67 [in Ukrainian]. [Вижва, З. О., Демидов, В. К., & Вижва, А. С. (2014b). Дослідження густини крейдяної товщі методом Монте-Карло на проммайданчику Рівненської АЕС із застосуванням моделі Коші. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 2(65), 62–67].
Vyzhva, Z. O., Demidov, V. K., & Vyzhva, A. S. (2018). About statistical simulation methods of random fields on the sphere by the aircraft magnetometry data. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(82), 107–113.
Vyzhva, Z. O., Demidov, V. K., & Vyzhva, A. S. (2019, May). About statistical simulation algorithm of dataset in 3D area with spherical correlation function on Rivne NPP example. In 18th International Conference on Geoinformatics – Theoretical and Applied Aspects. EAGE.
Vyzhva, Z., Demidov, V., & Vyzhva, A. (2020). The statistical simulation of dataset in 3D area with spherical correlation function on Rivne NPP example. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(91), 85–93. https://doi.org/10.17721/1728-2713.91.12
Vyzhva, Z. O., Demidov, V. K., Shovkoplias, T. V., & Vyzhva, A. S. (2023). The algorithm for statistical modelling in 3D by pentamodel of variogram using the example on Rivne NPP data. In XVIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment". EAGE.
Vyzhva, Z., Demidov, V., & Vyzhva, A. (2024). The statistical simulation of dataset in 3D area with "cubic" correlation function on example Rivne NPP geophysical monitoring. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(106), 90–98. https://doi.org/10.17721/1728-2713.106.12
Wackernagel, H. (2003). Multivariate geostatistics (3rd ed.). Springer-Verlag.
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. John Wiley & Sons.
Yadrenko, M. Y. (1983). Spectral theory of random fields. Optimization Software Inc.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Zoya VYZHVA, Vsevolod DEMIDOV, Andrii VYZHVA, Tetiana SHOVKOPLIAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




