Assessment of polycyclic aromatic hydrocarbon pollution in the sludge and soil of the Dnistrova canyon within the boundaries of the Horodenkiv territorial community
DOI:
https://doi.org/10.17721/1728-2713.111.07Keywords:
Dniester Canyon, soils, polyaromatic hydrocarbons, technogenic pollution, military actionsAbstract
Background. An assessment of the state of pollution by ecotoxicants of soils and river sediments in the territory of the Horodenkiv territorial community, adjacent to the Dniester Regional Landscape Park (RLP) and located on the right bank of the Dniester River, was carried out.
Methods. High-performance liquid chromatography (HPLC) was used to analyze samples of silt and soil for the content of 15 polycyclic aromatic hydrocarbons (PAHs): naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benz(b)fluoranthene, benz(k)fluoranthene, benz(a)pyrene, dibenz(a,h)anthracene, benz(g,h,i)perylene, indeno(1,2,3-cd)pyrene. Sampling was carried out in locations in Kolomyia district, Ivano-Frankivsk region, which are remote from pollution sources (background content of pollutants) and directly near pollution sources (highways, wastewater).
Results. Among all the selected samples of surface soil and river sediment, the sum of the concentration of 15 PAHs was the lowest in forest soil (103 μg/kg). In the sample of river sediment of the Dniester River, the total concentration was 449 μg/kg. In the samples of river sediment of the Lemyts and Derenovets rivers, in the direction from the settlements of the village of Strilche and the village of Serafyntsi to the Dniester, the total concentration of PAHs was significantly higher than in the Dniester River. It decreased in this direction from the maximum of 11471 μg/kg (samples taken to treatment facilities) to 2005 μg/kg. On the banks of the Lemyts River it was 583 μg/kg in the soil.
Conclusions. The high concentration of PAHs in individual samples of river sediment of the Lemyts River and the Derenovets River may be due to their proximity to roads and settlements, their active accumulation due to the slow biodegradation of these compounds in the river sediment. The highest concentration of the total PAHs (64.034 mg/kg) was found in the soil on the side of the regional road P24. In soil samples taken at a distance of 300 m from this road, a small content of all 15 PAHs (275 μg/kg) with a benzo(a)pyrene concentration of 9.29 μg/kg was found, which are lower values than the maximum permissible concentration (20 μg/kg). The dominance of 4–5-ring surfactants (fluoranthene, pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene) indicates the long-term impact of pollution sources and the accumulation of these substances in the soil.
References
Adamenko, O. M., Zorin, D. O., & Mosyuk, M. I. (2020). Environmental condition of the territory of the Dniester Regional Landscape Park. Bulletin of the V.N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology", 53, 227–238 [in Ukrainian]. [Адаменко, О. М., Зорін, Д. О., & Мосюк, М. І. (2020). Екологічний стан території Дністровського регіонального ландшафтного парку. Вісник Харківського національного університету імені В. Н. Каразіна, серія «Геологія. Географія. Екологія», 53, 227–238].
Berezovsky, O. V., Midyk, S. V., Kornienko, V. I., Khyzhnyak, S. V., Taran, T. V., & Poltavchenko, T. V. (2025). Chromatographic methods for the determination of polycyclic aromatic hydrocarbons in ecosystem components. Tavria Scientific Bulletin, 142(1), 282–290 [in Ukrainian]. https://doi.org/10.32782/2226-0099.2025.142.1.35
Cabinet of Ministers of Ukraine. (2025). On approval of the standards for maximum permissible concentrations of hazardous substances in soils, as well as the list of such substances (Resolution No. 1325) [in Ukrainian]. https://zakon.rada.gov.ua/laws/show/1325-2021-%D0%BF#Text
Choi, H., Harrison, R., Komulainen, H., & Delgado, S. J. M. (2010). Polycyclic aromatic hydrocarbons. In WHO guidelines for indoor air quality: Selected pollutants. World Health Organization.
Ciarkowska, K., de Carvalho, M., & Gambus, F. (2022). Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) Sources and Vertical Distribution in Soils of the Age-Diverse Brownfields of Southern Poland Using Positive Matrix Factorisation and Data Mining Model. Sustainability, 14(21), 13796. https://doi.org/10.3390/su142113796
Clement, N., Muresan, B., Hedde, M., & Francois, D. (2015). PAH dynamics in roadside environments: Influence on the consistency of diagnostic ratio values and ecosystem contamination assessments. Science of the Total Environment, 538, 997–1009.
Da Silva Junior, F. C., Felipe, M. B. M. C., Castro, D. E. F., Araújo, S. C. D. S., Sisenando, H. C. N., & Batistuzzo de Medeiros, S. R. (2021). A look beyond the priority: a systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environmental Pollution, 278, 116838. https://doi.org/10.1016/j.envpol.2021.116838
Degodyuk, S., Butenko, A., Davydyuk, G., Gavrilyuk, O., Klymenko, I., Litvinov, D., Litvinova, O., & Tonkha, O. (2024). Agroecological monitoring of aquatic ecosystems and soils in the small river basin under the influence of anthropogenic factors. Agriculture and Forestry, 70(4), 109–135 [in Ukrainian]. https://doi.org/10.17707/AgricultForest.70.4.09
Denisyk, G. I. (1996). The Land of Canyons – Middle Transnistria. Ukrainian Geographical Journal, 3, 60–63 [in Ukrainian]. [Денисик, Г. І. (1996). Країна каньйонів – Середнє Придністров'я. Український географічний журнал, 3, 60–63].
Dierkes, C., & Geiger, W. F. (1999). Pollution Retention Capabilities of Roadside Soils. Water Science and Technology, 39(2), 201–208.
Froger, C., Saby, N. P. A., Jolivet, C. C., Boulonne, L., Caria, G., Freulon, X., de Fouquet, C., Roussel, H., Marot, F., & Bispo, A. (2021). Spatial variations, origins, and risk assessments of polycyclic aromatic hydrocarbons in French soils. Soil, 7, 161–178. https://doi.org/10.5194/soil-7-161-2021
Kim, L., Jeon, H.-J., Kim, Y.-C., Yang, S.-H., Choi, H., Kim, T.-O., & Lee, S.-E. (2019). Monitoring Polycyclic Aromatic Hydrocarbon Concentrations and Distributions in Rice Paddy Soils from Gyeonggi-Do, Ulsan, and Pohang. Applied Biological Chemistry, 62, 18.
Mallah, M. A., Changxing, L., Mallah, M. A., Noreen, S., Liu, Y., & Saeed, M. (2022). Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere, 296, Article 133948. https://doi.org/10.1016/j.chemosphere.133948
Menshov, A. I., Kruglov, A. V., & Sukhorada, A. V. (2012). Informational content of the soil magnetism indicators for solving agrogeophysics and soil science tasks. Scientific Bulletin of National Mining University, 3, 7–12.
Menshov, O., Kruglov, O., Vyzhva, S., Horoshkova, L., Pereira, P., Pastushenko, T., & Dindaroglu, T. (2021). Landscape position effects on magnetic properties of soils in the agricultural land Pechenigy, Ukraine. Earth Systems and Environment, 5(3), 739–750.
Menshov, O., Sukhorada, A., Homenko, R., & Kruglov, O. (2012). Ultradetailed environmental magnetic investigations in Ukraine. In Near Surface Geoscience 2012–18th European Meeting of Environmental and Engineering Geophysics (pp. cp-306). EAGE.
Sun, K., Song, Y., He, F., Jing, M., Tang, J., & Liu, R. (2021). A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Science of the Total Environment, 773, 145403. https://doi.org/10.1016/j.scitotenv.2021.145403
U.S. Environmental Protection Agency. (1979). Priority pollutant list. Federal Register, 44, 69514–69517.
United States Geological Survey. (2011). Coal-Tar Based Pavement Sealcoat, Polycyclic Aromatic Hydrocarbons (PAHs), and Environmental Health (Fact Sheet 2011-3010). https://pubs.usgs.gov/fs/2011/3010/pdf/fs2011-3010.pdf
Veremeenko, S., Furmanets, O., Semenko, L., Bykina, N., & Bobkov, V. (2021). Influence of climate changes on hydrothermal regime of dark gray podzolized soil of Western Forest Steppe. Scientific Horizons, 24(12), 46–54. https://doi.org/10.48077/scihor.24(12).2021.46-54
Voytsitsky, V. M., Khizhnyak, S. V., Midyk, S. V., Berezovsky, O. V., Yakubchak, O. M., & Poltavchenko, T. V. (2022). Paths of migration of polycyclic aromatic hydrocarbons through terrestrial and aquatic ecosystems. Ecological Sciences, 3(42), 14–20 [in Ukrainian]. [Войціцький, В. М., Хижняк, С. В., Мідик, С. В., Березовський, О. В., Якубчак, О. М., & Полтавченко, Т. В. (2022). Шляхи міграції поліциклічних ароматичних вуглеводнів через наземні та водні екосистеми. Екологічні науки, 3(42), 14–20].
Wang, J., Zhao, Y., Sun, J., Zhang, Y., & Liu, C. (2019). The distribution and sources of polycyclic aromatic hydrocarbons in shallow ground water from an alluvial-diluvial fan of the Hutuo River in North China. Frontiers of Earth Science, 13, 33–42.
Watts, A. W., Ballestero, T. P., Roseen, R. M., & Houle, J. P. (2010). Polycyclic Aromatic Hydrocarbons in Stormwater Runoff from Sealcoated Pavements. Environmental Science & Technology, 44(23), 8849–8854.
Zhang, Y., & Zhang, F. (2023). Skin toxicity mechanism of polycyclic aromatic hydrocarbons. Chinese Journal of Industrial Medicine, 36(3), 231–234 [in Chinese].
Zhao, Z. Y., Chu, Y. L., & Gu, J. D. (2012). Distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Mai Po Inner Deep Bay Ramsar Site in Hong Kong. Ecotoxicology, 21(6), 1743–1752.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Oleksii BEREZOVSKIY, Svitlana MIDYK, Valentina KORNIYENKO, Oksana SAMKOVA, Oksana TONKHA, Yurii VISHOVAN, Larysa SEMENKO, Maksym SMYRNYY

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




