METHODOLOGY FOR THE AUTOMATED DETECTION OF ANOMALOUS GEOSPATIAL ZONES IN SATELLITE IMAGERY USING STATISTICAL ANALYSIS AND A CUSTOM QGIS PLUGIN
DOI:
https://doi.org/10.17721/1728-2713.110.13Keywords:
automated detection, geospatial zones, QGIS plugin, satellite imagery, geodynamic anomalies, spatial analysisAbstract
Background. This article presents a methodology for the automated detection of anomalous geospatial zones, implemented as a plugin for the QGIS geographic information system. The developed tool enhances the efficiency of spatial analysis and enables the rapid identification of areas with potential changes for monitoring natural and anthropogenic processes.
Methods. The proposed approach is based on thresholding and statistical analysis of satellite imagery within the QGIS environment. The plugin provides interactive adjustment of image processing parameters and automatically detects geodynamic anomalies, which are then vectorized and delivered to the user for further analysis. The algorithm utilizes Python libraries (NumPy, SciPy, GDAL, PyQt, QGIS API) to handle various types of satellite data and applies standard deviation-based criteria to identify anomalous areas.
Results. The testing of the plugin developed by the authors confirmed its effectiveness in processing satellite imagery types such as InSAR, thermal infrared (TIR), and NDWI-based images. The plugin successfully identified areas of vertical displacement of the Earth's surface, detected thermal anomalies, and delineated regions with moisture deficits. This approach substantially improves the accuracy of geospatial analysis.
Conclusions. The developed plugin is an effective tool for the automated monitoring of changes in the Earth's surface and the assessment of hydrogeological conditions. Its integration within the QGIS environment enables the efficient adjustment of analysis parameters and the generation of results in vector data format. Plugin testing confirmed its practical value and revealed potential directions for further improvement, particularly regarding the separate processing of positive and negative displacement values to enhance the accuracy of anomaly interpretation.
References
Cleveland, W. S. (1993). Visualizing data. Hobart Press. https://www.hobartpress.com/visualizing-data
Filipovych, V., & Shevchuk, R. (2018). Satellite technology for determining the heat load on the city in summer and ways to overcome it through green planning. [Preprint]. https://doi.org/10.13140/RG.2.2.17113.08807
Folini, A., Lenzi, E., & Biraghi, C. A. (2022). Cluster analysis: A comprehensive and versatile QGIS plugin for pattern recognition in geospatial data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-4/W1-2022, 151–157. https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-151-2022
Gavade, A. B., & Rajpurohit, V. S. (2021). Systematic analysis of satellite image-based land cover classification techniques: literature review and challenges. International Journal of Computers and Applications, 43(6), 514–523. https://doi.org/10.1080/1206212X.2019.1573946
Hytla, P. C., Hardie, R. C., Eismann, M. T., & Meola, J. (2009). Anomaly detection in hyperspectral imagery: Comparison of methods using diurnal and seasonal data. Journal of Applied Remote Sensing, 3(1), 033546.
Ivanik, O., Menshov, O., Bondar, K., Vyzhva, S., Khomenko, R., Hadiatska, K., Kravchenko, D., & Tustanovska, L. (2022). Integrated approach to modelling and assessing the landslide hazards at the regional and local scale in Kyiv urbanized area, Ukraine. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01447-x
Jain, A., Duin, R., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4–37. https://doi.org/10.1109/34.824819
Janz, A., Jakimow, B., van der Linden, S., Thiel, F., & Dierkes, H. (2021). AVHYAS: A free and open-source QGIS plugin for advanced hyperspectral image analysis. In 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI). IEEE. https://doi.org/10.1109/ICETCI51973.2021.9574057
Kotsiubivska, K., & Tymoshenko, V. (2019). Mathematical methods of image processing. Digital Platform Information Technologies in Sociocultural Sphere, 2(1), 41–54. [in Ukrainian]. [Коцюбівська, К., & Тимошенко, В. (2019). Математичні методи обробки зображень. Цифрова платформа. Інформаційні технології в соціокультурній сфері, 2(1), 41–54]. https://doi.org/10.31866/2617-796x.2.1.2019.175653
Kril, T. (2017). Causes of some hazardous engineering geological processes on urban territories. In E3S Web of Conferences (Vol. 24). EDP Sciences. https://doi.org/10.1051/e3sconf/20172401009
Kruglov, O., Hudak, V., & Kruhlov, B. (2025, April). Exploring D-InSAR Technology for Monitoring Soil Erosion: Case Study in Kharkiv Region. Paper presented at the 18th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, European Association of Geoscientists & Engineers.
Lischenko, L., Pazynych, N., & Filipovych, V. (2017). Satellite monitoring of landslide development in the Pridnieprovska zone of Kyiv. Ukrainian Journal of Remote Sensing, 15, 111–120 [in Ukrainian]. [Ліщенко, Л., Пазинич, Н., & Філіпович, В. (2017). Супутниковий моніторинг розвитку зсувів у Придніпровській зоні м. Києва. Український журнал дистанційного зондування, 15, 111–120]. https://doi.org/10.36023/ujrs.2017.15.111
Marhes, S. (2024). Satellite geoecological analysis of the peat-swamp system of the Supii River. Ideas and Innovations in Earth Sciences, 24, 74–75. https://doi.org/10.30836/igs.iies.2024.34
Marhes, S. (2025). Autocountour QGIS Plugin (Version 1.0) [Computer software]. GitHub. https://github.com/rnrhs/autocountour_qgis_plugin
MASAI Project. (n.d.). MASAI: Pioneering damage assessment through AI and satellite technology. Retrieved July 8, 2025, from https://masai-project.eu/masai-pioneering-damage-assessment-through-ai-and-satellite-technology/
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
Meng, C., Wang, Y., Zhang, X., Mandal, A., Zhong, W., & Ma, P. (2017). Effective statistical methods for big data analytics. In Handbook of research on applied cybernetics and systems science (pp. 280–299). IGI Global.
Minh, D. H. T., Hanssen, R., & Rocca, F. (2020). Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sensing, 12(9), 1364. https://doi.org/10.3390/rs12091364
Planet Team. (2025). PlanetScope NDWI image 20241024_090954_85_ 250a_3B_AnalyticMS_SR_8b_harmonized_clip. Planet Labs PBC. https://www.planet.com/nextgenplanetscope/
QGIS Project. (2024). Fetching plugins. QGIS Documentation. https:// docs.qgis.org/3.40/en/docs/training_manual /qgis_plugins/fetching_plugins.html
Tempa, K., & Aryal, K. R. (2022). Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery. SN Applied Sciences, 4(1), 141. https://doi.org/10.1007/s42452-022-05028-6
Trofymenko, P., Tomchenko, O., Poralo, R., Zatserkovnyi, V., & Stakhiv, I. (2024). Remote identification of micro-depression relief forms and soil cover areas of agro-landscapes in the Polissya region of Ukraine with signs of hydromorphism. Bulletin of Taras Shevchenko National University of Kyiv. Geology, 1(104), 98–106. https://doi.org/10.17721/1728-2713.104.12
Vivaldi, V., Bordoni, M., Mineo, S., Crozi, M., Pappalardo, G., & Meisina, C. (2022). Airborne combined photogrammetry—infrared thermography applied to landslide remote monitoring. Landslides, 20(2), 547–560. https://doi.org/10.1007/s10346-022-01970-z
Zhukov, M. N. (2008). Mathematical statistics and processing of geological data. Vyshcha Shkola [in Ukrainian]. [Жуков, М. Н. (2008). Математична статистика та обробка геологічних даних. Вища школа].
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Василь ГУДАК, Сергій МАРГЕС, Віталій ЗАЦЕРКОВНИЙ, Мауро ДЕ ДОНАТІС

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




