FIRST EXPERIENCE IN USING SATELLITE DATA FOR MONITORING THE HYDRO-FLUID REGIME OF LOKBATAN VOLCANO IN THE ASSESSMENT OF SEISMIC EVENT RISKS IN THE REGION

Authors

DOI:

https://doi.org/10.17721/1728-2713.110.12

Keywords:

Mud volcano, satellite images, fluids, NDWI, monitoring

Abstract

Background. Mud volcanoes are unique natural structures affecting the environment by continuous emissions of gas-liquid fluids, mud breccia and mudflows. Despite extensive research and a substantial dataset on mud volcanism, the understanding of the fluid dynamics and hydrogeological processes associated with these systems remains a subject of ongoing debate. Globally, there are more than 2,500 mud volcanoes distributed across 42 countries (Aliyev et al., 2015), highlighting their widespread occurrence. Azerbaijan represents a unique region for the study of contemporary mud volcanism, hosting more than 350 mud volcanoes within a relatively small territory. Among them, the Lokbatan mud volcano is the most active, with 28 recorded eruptions. In this context, a comprehensive approach to studying the activity of mud volcanoes, including satellite monitoring, is highly relevant.

Methods. The study employed remote sensing techniques to analyze the hydro-fluid regime of the Lokbatan mud volcano. Specifically, satellite imagery was used to calculate a moisture index for the volcano field. For the first time, this index was remotely measured, enabling assessment of surface moisture dynamics as a proxy for fluid migration and subsurface activity.

Results. The satellite-derived moisture index showed clear correlations with mud volcanic activity. Observations indicate that variations in the moisture index correspond to shifts in the fluid regime of the volcano, reflecting possible underground fluid migration or pressure changes prior to eruptions.

Conclusions. The study demonstrates the potential of satellite-based monitoring in assessing the hydro-fluid regime of active mud volcanoes. The approach provides an effective, low-cost alternative to field-based observations and can support early warning systems for seismic or eruptive events. These findings contribute to the development of preventive strategies for managing geological hazards in seismically active regions.

References

Aliyev, A., Guliev, I., Dadashov, F., & Rahmanov, R. (2015). Atlas of the world mud volcanoes. Nafta&Press, Sandro Teti Editori.

Aliyev, A., Guliyev, I., & Rahmanov, R. (2019). Catalogue of recorded mud volcano eruptions of Azerbaijan (2008–2018). Elm.

Aliyev, G. G., Guliyev, I. S., Yetirmishli, G. et al. (2013). The eruption of the Lokbatan mud volcano on September 20, 2012: New evidence for the replenishment of hydrocarbon resources. ANAS Transactions. Earth Sciences, 2, 18–25 [in Russian]. [Алиев, Г. Г., Гулиев, И. С., Йетирмишли, Г. и др. (2013). Извержение грязевого вулкана Локбатан 20 сентября 2012 г.: новые свидетельства восполняемости ресурсов углеводородов. Известия Национальной академии наук Азербайджана. Науки о Земле, 2, 18–25].

Alizade, A. A. (Ed.). (2007). Geology of Azerbaijan: (in 8 volumes). Stratigraphy (Vol. 1). Nafta-Press [in Russian]. [Ализаде, А. А. (Гл. ред.). (2007). Геология Азербайджана: (в 8 томах). Стратиграфия (Т. 1). Nafta-Press. c. 580].

Chowdary, V. M., Chandran, R. V., Neeti, N., Bothale, R. V., Srivastava, Y. K., Ingle, P., Ramakrishnan, D., Dutta, D., Jeyaram, A., Sharma, J. R. et al. (2008). Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agricultural Water Management, 95(7), 754–766.

Environmental Protection Agency (EPA). (2005). Wetland Mapping and Classification Methodology – Overall Framework – A Method to Provide Baseline Mapping and Classification for Wetlands in Queensland (Version 1.2). Queensland Government.

Farber, E., Schmidt, M., & Feyzullayev, A. (2015). Geochemical Hydrocarbon Exploration – Insights from Stable Isotope Models. Oil Gas European Magazine, 41(2), 93–98.

Gamba, J. F. (1828). Earthquake and eruption of a new fire-breathing mountain near Baku. Sev. archive, 34(7), 161–162 [in Russian]. [Гамба, Ж. Ф. (1828). Землетрясение и извержение новой огнедышащей горы близ Баку. Сев. архив, 34(7), 161–162].

Gao, B.-C. (1996). NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

Guliyev, I., Kerimov, V., Osipov, A. et al. (2017). Generation and Accumulation of Hydrocarbons at Great Depths Under the Earth's Crust. SOCAR Proceedings, 1, 004–016 [in Russian]. [Гулиев, И. С., Керимов, В. Ю., Осипов, А. В. и др. (2017). Генерация и аккумуляция углеводородов в условиях больших глубин земной коры. SOCAR Proceedings, 1, 004–016]. https://doi.org/10.5510/OGP20170100302

Harbowo, D. G., & Sitinjak, E. S. (2025, February). Investigating the Land Cover Characteristics of the Kesongo Mud Volcano Complex, Java Island, Indonesia: Surface Analysis and Visual Interpretation through Harmonized Sentinel-2A MSI Imagery. Paper presented at the IOP Conference Series: Earth and Environmental Science, Indonesia.

Kadirov, F. A., & Mukhtarov, A. Sh. (2004). Geophysical Fields, Deep Structure, and Dynamics of the Lokbatan Mud Volcano. Izvestiya, Physics of the Solid Earth, 40(4), 67–73 [in Russian]. [Кадиров, Ф. А., & Мухтаров, А. Ш. (2004). Геофизические поля, глубинное строение и динамика грязевого вулкана Локбатан. Физика Земли, 40(4), 67–73].

Martynova, G. S., Maksakova, O. P., Nanadzhanova, N. I. et al. (2022). Lokbatan oil field. Oil and Gas Geology, 2, 45–52 [in Russian]. [Мартынова, Г. С., Максакова, О. П., Нанаджанова, Н. И. и др. (2022). Месторождение нефти Локбатан. Геология нефти и газа, 2, 45–52. https://doi.org/10.31087/0016-7894-2022-2-45-52].

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

Murray, N. J., Phinn, S. R., Clemens, R. S. et al. (2012). Continental scale mapping of tidal flats across East Asia using the Landsat archive. Remote Sensing, 4(11), 3417–3426.

Panigrahy, S., Murthy, T. V. R., Patel, J. G. et al. (2012). Wetlands of India: Inventory and assessment at 1:50,000 scale using geospatial techniques. Current Science, 102(6), 852–856.

Rashidov, T., Khasayeva, A., & Huseynov, A. (2016). On issue of the mud volcano Lokbatan inner structure. Geophysics News in Azerbaijan, 1–2, 41–44 [in Russian]. [Рашидов, Т. М., Хасаева, А. Б., & Гусейнов, А. Р. (2016). К вопросу о внутреннем строении грязевого вулкана Локбатан. Azərbaycanda Geofizika Yenilikləri, 1–2, 41–44].

Shnyukov, E. F. (2006). Mud volcanoes of the Kerch-Taman region. GlavMedia [in Russian]. [Шнюков, Е. Ф. (2006). Грязевые вулканы Керчен-ско-Таманского региона. ГлавМедиа].

Wicaksono, W., & Isa, S. M. (2022). Predicting the Extent of Sidoarjo Mud Flow Using Remote Sensing. Journal of ICT Research & Applications, 16(1).

Yakubov, A. A., Aliyev, A. A., & Rakhamanov, R. R. (1976b). Mud volcanoes of Azerbaijan (annotated bibliographic reference). Elm [in Russian]. [Якубов, А. А., Алиев, А. А., & Рахаманов, Р. Р. (1976b). Грязевые вулканы Азербайджана (аннотированный библиографический справочник). Элм].

Yakubov, A. A., Kastryulin, N. S., & Javadov, A. A. (1976a). Mud volcanism and oil and gas potential of Lokbatan. Elm [in Russian]. [Якубов, А. А., Каст-рюлин, Н. С., & Джавадов, А. А. (1976а). Грязевой вулканизм и нефтега-зоносность Локбатана. Элм].

Zhemerev, V. S. (1958). Changes in the nature of waters during the exploitation of oil horizons in Lokbatan. Geology of Oil, 11, 45–50 [in Russian]. [Жемерев, В. С. (1958). Изменение характера вод в процессе эксплуата-ции нефтяных горизонтов в Локбатане. Геология нефти, 11, 45–50].

US Geological Survey (USGS) and US Department of the Interior. (2013, May 3). Normalized Difference Water Index (NDWI). Retrieved July 8, 2025, from http://deltas.usgs.gov/fm/data/data_ndwi.aspx

The history of the famous oil well "No. 45" and the mud volcano in Lokbatan – UNKNOWN FACTS – PHOTO. (2022, November 29). Day.Az. [in Russian]. [Ис-тория знаменитой нефтяной скважины "№ 45" и грязевого вулкана в Локбатане – НЕИЗВЕСТНЫЕ ФАКТЫ – ФОТО (2022). Day.Az]. https://news.day.az/society/1469420.html

US Geological Survey. (n.d.). Earthquakes map (2020). Retrieved July 8, 2025, from https:// earthquake.usgs.gov/earthquakes/map/?extent=38.526 68,46. 79077&extent=41.56614,53.82202& range=search&search=%7B%22 name%22:%22Search%20Results%22,% 22params%22:%7B% 22starttime%22:%222020-01-01% 2000:00:00%22,%22 endtime%22:%222020-12-31% 2023:59:59%22,%22latitude% 22:40.3,%22longitude%22:49.7,% 22maxradiuskm%22:100,%22minmagnitude %22:2.5,%22eventtype%22:%22earthquake%22,% 22orderby %22:%22time%22%7D%7D

US Geological Survey. (n.d.). Earthquakes map (2021). Retrieved July 8, 2025, from https: //earthquake.usgs.gov/earthquakes/map/?extent=38.6640 7,407. 01599&extent=41.69753,414.04724&range=search&search=%7B%2 2name%22:%22Search%20Results %22,%22params%22:%7B%22starttime%22:%222021-01-01%2000:00:00%22,%22endtime%22:%222021-12-31% 2023:59:59%22,%22latitude%22:40.3,% 22longitude%22:49.7,%22maxradiuskm% 22:100,%22minmagnitude% 22:2.5,%22eventtype%22:%22earthquake%22,% 22orderby%22:%22time%22%7D%7D

US Geological Survey. (n.d.). Earthquakes map (2023). Retrieved July 8, 2025, from https:// earthquake.usgs.gov/earthquakes/map/?extent=36.61 553,41.4624&extent=48.28319,69.5874 &range=search&search=%7B%22 name%22:%22Search%20Results%22, %22params%22:%7B%22starttime%22:%222023-02-21%2000:00:00%22,%22endtime%22:%222023-12-28%2023 :59:59%22,%22latitude%22:40.3,%22longitude %22:49.7,%22maxradiuskm%22:100,%22minmagnitude %22:2.5,%22eventtype%22:%22 earthquake% 22,%22orderby%22:%22time%22%7D%7D

Downloads

Published

2025-10-02

How to Cite

HUSEYNOV, A., NESTEROVSKYI, V., & HUSEYNOVA, A. (2025). FIRST EXPERIENCE IN USING SATELLITE DATA FOR MONITORING THE HYDRO-FLUID REGIME OF LOKBATAN VOLCANO IN THE ASSESSMENT OF SEISMIC EVENT RISKS IN THE REGION. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(110), 108-116. https://doi.org/10.17721/1728-2713.110.12