UTILIZING GIS, GPS, REMOTE SENSING, AND AI IN THE STUDY OF SOIL CHARACTERISTICS
DOI:
https://doi.org/10.17721/1728-2713.110.11Keywords:
geographic information systems (GIS), remote sensing (RS), global navigation satellite systems (GNSS/GPS), artificial intelligence (AI), precision agriculture (PA), geoinformation technologies (GIT), APSIM (Agricultural Production Systems Simulator), DSSAT (Decision Support System for Agrotechnology Transfer)Abstract
Background. Modern agriculture faces numerous challenges associated with climate change, economic factors, and increasing demands for production efficiency. The implementation of advanced technologies, particularly Geographic Information Systems (GIS), Remote Sensing (RS), Global Navigation Satellite Systems (GNSS/GPS), and Artificial Intelligence (AI), allows for the optimization of agrotechnical processes and improved productivity in precision farming.
Methods. This study examines the application methods of GIS, GPS, RS, and AI in precision agriculture. It employs the analysis of satellite and aerial imagery, spatial modelling techniques, geostatistics, and machine learning for yield prediction and optimization of management decisions. Additionally, the use of sensor systems for field data collection and their integration into digital agricultural platforms is analysed.
Results. The study implemented a comprehensive model for assessing soil characteristics by combining GIS, GPS, remote sensing, and artificial intelligence methods. The results confirmed the effectiveness of using digital maps and satellite images for spatial interpolation of soil parameters (such as potassium, moisture, and humus content), yield mapping, and real-time crop monitoring. GPS navigation ensured high accuracy in machinery positioning and soil sampling, while machine learning algorithms (particularly LAI-based models and Random Forest) demonstrated yield prediction accuracy above 80 %. A crop rotation model built using Python libraries enabled the development of an optimal five-year rotation plan, considering soil types, climatic conditions, and potential yield. Variability maps and zoning results served as the basis for scenario-based field management at the enterprise level.
Conclusions. The integration of GIS, GPS, RS, and AI into agricultural practices significantly enhances the accuracy of soil analysis and the efficiency of agroprocess management. The developed model enables the automation of decision-making processes based on large volumes of spatial and field data, contributing to cost reduction, increased productivity, and preservation of soil fertility. The implementation experience in the Kyiv region has demonstrated its practical applicability and potential for scaling within the framework of modern precision agriculture.
References
Ahmad, A., Khan, S., & Ali, M. (2022). Predicting spatial variability of soil organic carbon using machine learning and remote sensing data. Geoderma, 405. https://doi.org/10.1016/j.geoderma.2021.115174
Blue River Technology. (n.d.). Our Products. Retrieved April 21, 2025, from https://www.bluerivertechnology.com/our-products/
Brovarets, O. (2018). Probabilistic-statistical methods for determining the magnitude of variability zones of agrobiological parameters of agricultural lands to ensure proper quality of technological operations in crop production based on local operational monitoring data. Bulletin of Khmelnytskyi National University, 5, 272–283 [in Ukrainian]. [Броварець, О. (2018). Імовірнісно-статистичні методи визначення величини зон варіабельності агробіоло-гічних параметрів сільськогосподарських угідь для забезпечення належ-ної якості технологічних операцій у рослинництві на основі даних локального оперативного моніторингу. Вісник Хмельницького національ-ного університету, 5, 272–283].
Burliai, A. P., & Okhrymenko, B. O. (2021). Precision agriculture as a direction of modernization of agricultural production. Modern Economics, 29, 29–34 [in Ukrainian]. [Бурляй, А. П., & Охріменко, Б. О. (2021). Точне зем-леробство як напрям модернізації аграрного виробництва. Сучасна еко-номіка, 29, 29–34].
Colback, T. (2025). How AI is transforming modern agriculture in 2025. Precision Farming Dealer. Retrieved April 21, 2025, from https://www.precisionfarmingdealer.com/articles/6440-how-ai-is-transforming-modern-agriculture-in-2025
Confalonieri, R., Bechini, L., Bregaglio, S., Donatelli, M., & Acutis, M. (2010). A library of crop simulation models. Agronomy Journal, 102(3), 700–707. https://doi.org/10.2134/agronj2009.0300
Corrigan, V. (2020). Advanced imaging technologies in precision agriculture: Applications of RGB, multispectral, hyperspectral, thermal, radar, and LiDAR sensors. Journal of Agricultural Imaging, 15(3), 112–125.
CropX. (n.d.). Agronomic Farm Management System. Retrieved April 21, 2025, from https://cropx.com/
EOS Data Analytics. (n.d.-a). Crop yield prediction using remote sensing. Retrieved April 21, 2025, from https://eos.com/products/crop-monitoring/custom-solutions/yield-prediction/
EOS Data Analytics. (n.d.-b). Crop yield assessment: Satellite-based forecasting. Retrieved April 21, 2025, from https://eos.com/uk/products/crop-monitoring/custom-solutions/yield-prediction/
Esri. (n.d.). An overview of the interpolation toolset. ArcGIS Pro Documentation. Retrieved April 21, 2025, from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-interpolation-tools.htm
Filippov, M. (2024, May 13). How artificial intelligence and robots are transforming the agricultural sector. Ekonomichna Pravda [in Ukrainian]. [Філіппов, М. (2024, 13 травня). Як штучний інтелект і роботи змінюють аграрний сектор. Економічна правда]. Retrieved March 7, 2025, from https://www.epravda.com.ua/columns/2024/05/13/713533/
Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & McKee, M. (2021). Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sensing, 7(3), 2627–2646. https://doi.org/10.3390/rs70302627
Morales, M. M., Zhang, Y., & Wang, L. (2023). Digital soil mapping of soil organic matter with deep learning and remote sensing data. ISPRS International Journal of Geo-Information, 11(5), 299. https://doi.org/10.3390/ijgi11050299
OneSoil. (n.d.). Free farming app for precision agriculture. Retrieved April 3, 2025, from https://onesoil.ai/ua
Shrestha, N., & Pradhanang, S. M. (2022). Assessment of climate change effects of drought conditions using the soil and water assessment tool. Agriculture, 14(2), 233. https://doi.org/10.3390/agriculture14020233
Singh, R., Sharma, A., & Kumar, V. (2021). Evaluation of different machine learning models for predicting soil erosion. International Journal of Environmental Research and Public Health, 18(3). https://doi.org/10.1155/2021/6665485
Stout Industrial Technology. (n.d.). Smart Cultivator. Retrieved April 21, 2025, from https://www.stout.ai/smart-cultivator/
Traktorist.ua. (n.d.-a). In China, the first autonomous combine harvester with 300 hp was developed. Traktorist.ua. Retrieved April 21, 2025, from https://traktorist.ua/news/v-kitayi-rozrobili-pershiy-v-sviti-avtonomniy-kombayn-potuzhnistyu-300-ks
Traktorist.ua. (n.d.-b). The world's first 300 HP unmanned harvester presented in China. Traktorist.ua. Retrieved from https://traktorist.ua/news/v-kitayi-rozrobili-pershiy-v-sviti-avtonomniy-kombayn-potuzhnistyu-300-ks
Travelite AGRO. (n.d.). Precision agriculture and Agro IT solutions: An overview of modern agro platforms in Ukraine. Retrieved April 21, 2025, from https://traveliteagro.com/tochne-zemlerobstvo-ta-agro-it-rishennia/
Tsyganenko, V. M. (2015). Global Positioning System (GPS) and its application in geoinformation technologies. Bulletin of the National University of Water and Environmental Engineering. Series: Geodesy, Land Management and Cadastre, 1, 45–50 [in Ukrainian]. [Циганенко, В. М. (2015). Глобальна система позиціонування (GPS) та її застосування в геоінформаційних технологіях. Вісник НУВГП. Серія: Геодезія, землеус-трій і кадастр, 1, 45–50].
Wang, J., Zhang, H., Li, L., & Hu, J. (2023). AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. Bioresources and Bioprocessing, 10, Article 90. https://doi.org/10.1186/s40643-023-00710-y
Where to do soil analysis: List of agro laboratories. (2024, November 5). SuperAgronom. Retrieved November 15, 2024, from https://superagronom.com/blog/1073-de-zrobiti-analiz-gruntu-spisok-agrolaboratoriy
Zatserkovnyi, V. I. (2018). The practical aspects of remote land sensing: Study of the causes of water penetration on ground hydraulic structures. Hydraulic Engineering and Land Reclamation, 4, 45–50 [in Ukrainian]. [Заце-рковний, В. І. (2018). Практичні аспекти дистанційного зондування зе-мель: дослідження причин проникнення води на наземні гідротехнічні споруди. Гідротехніка та меліорація, 4, 45–50].
Zatserkovnyi, V. I., & Vorokh, V. V. (2024). Differential Technologies of Precision Agriculture. Technical Sciences and Technologies, 1(35), 292–301 [in Ukrainian]. [Зацерковний, В. І., & Ворох, В. В. (2024). Диференційні технології прецизій-ного землеробства. Технічні науки та технології, 1(35), 292–301].
Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. https://doi.org/10.1007/s11119-012-9274-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Віталій ЗАЦЕРКОВНИЙ, Віктор ВОРОХ, Ольга ГЛОБА, Тетяна МІРОНЧУК, Людмила ПЛІЧКО

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




