War-induced soil contamination with heavy metals: results from a test site in Mykolaiv region
DOI:
https://doi.org/10.17721/1728-2713.111.06Keywords:
Russia-Ukraine war, soil, heavy metals, contamination, portable X-ray fluorescence system, atomic- absorption spectrometryAbstract
Background. The war in Ukraine is having a serious impact on the physical, chemical and biological properties of soils. Chemical contamination of soil in combat zones is the most discussed issue, as the detonation of various types of weapons releases a range of pollutants into the soil, among which heavy metals are one of the most toxic. Despite the fact that heavy metals are not the main pollutants, they are most often discussed in the literature. Based on a large number of publications, opposing opinions have been formed regarding the level of heavy metal contamination.
Methods. The content of heavy metals within a study site of 2000 m2 (Stepova Dolyna village) was measured by portable Xray fluorescence system. In order to identify the precision of XRF analysis, the heavy metals content (Cd, Zn, Pb, Cu, As) was determined using atomic-absorption spectrometry (ContrA 800 D).
Results. A study of the lateral variability of the content of various heavy metals at a test site in Mykolaiv region, which was heavily damaged by artillery shelling in 2022, found virtually no heavy metal contamination in the soil (except for cadmium in one sample). In most cases, the content of the heavy metals is not mostly related to the location of craters, except for lead, which showed increased concentrations near craters. The very good agreement between portable XRF analyser and atomic-absorption spectrometry was found for lead content. Due to low concentrations of copper, cadmium and arsenic in the soil, the XRF analyser could not measure them.
Conclusions. At the study site, the soil contamination with heavy metals due to explosion of artillery shells, MLRS and mortar is slight. There is no traceable enrichment with heavy metals near craters that can indicate drawbacks of taking incremental samples in case of high-resolution studies. The use of a portable XRF analyser allows for rapid screening of the war-damaged soils for heavy metals and the identification of heavy metal contamination sites. However, accurate data on heavy metals contamination require more precise laboratory methods.
References
Baliuk, S. A., Kucher, A. V., Solokha, M. O., & Solovei, V. B. (2024). Assessment of the impact of armed aggression of the RF on the soil cover of Ukraine. Ukrainian Geographical Journal, 1, 7–18 [in Ukrainian]. [Балюк, С. А., Кучер, А. В., Солоха, М. О., & Соловей, В. Б. (2024). Оцінювання впливу збройної агресії рф на ґрунтовий покрив України. Український географічний журнал, 1, 07–18].
Bausinger, T., Bonnaire, E., & Preuss, J. (2007). Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun. Science of the Total Environment, 382(1), 259–271. https://doi.org/10.1016/j.scitotenv.2007.04.029
Biyashev, B., Drobitko, A., Markova, N., Bondar, A., & Pismenniy, O. (2024). Chemical analysis of the state of Ukrainian soils in the combat zone. International Journal of Environmental Studies, 81(2), 199–207. https://doi.org/10.1080/00207233.2023.2271754
Bonchkovskyi, O. S., Ostapenko, P. O., Shvaiko, V. M., & Bonchkovskyi, A. S. (2023). Remote sensing as a key tool for assessing war-induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474–487. https://doi.org/10.15421/112342
Bonchkovskyi, O., Ostapenko, P., Bonchkovskyi, A., & Shvaiko, V. (2025). War-induced soil disturbances in north-eastern Ukraine (Kharkiv region): Physical disturbances, soil contamination and land use change. Science of the Total Environment, 964, 178594. https://doi.org/10.1016/j.scitotenv.2025.178594
Bondar, K. M., Bakhmutov, V., Poliachenko, I., Hlavatskyi, D., & Menshov, O. (2025). Magnetic and chemical signals of post-blast residue in soil: A case study from northern Ukraine. Science of The Total Environment, 977, 179342. https://doi.org/10.1016/j.scitotenv.2025.179342
Brewer, R., Peard, J., & Heskett, M. (2017). A critical review of discrete soil sample data reliability: Part 1 – field study results. Soil and Sediment Contamination, 26(1), 1–22. http://dx.doi.org/10.1080/15320383.2017.1244171
Broomandi, P., Guney, M., Kim, J. R., & Karaca, F. (2020). Soil contamination in areas impacted by military activities: A critical review. Sustainability, 12(21), 9002. https://doi.org/10.3390/su12219002
Bulba, I., Drobitko, A., Zadorozhnii, Y., & Pismennyi, O. (2024). Identification and monitoring of agricultural land contaminated by military operations. Scientific Horizons, 7(27), 107–117. https://doi.org/10.48077/scihor7.2024.107
Certini, G., Scalenghe, R., & Woods, W. I. (2013). The impact of warfare on the soil environment. Earth-Science Reviews, 127, 1–15. https://doi.org/10.1016/j.earscirev.2013.08.009
Datsko, O., Melnyk, O., Kovalenko, I., Butenko, A., Zakharchenko, E., Ilchenko, V., Onychko, V., & Solokha, M. (2025). Estimation of the content of trace metals in Ukrainian military-affected soils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14328. https://doi.org/10.15835/nbha53114328
Datsko, O., Zakharchenko, E., Butenko, Y., Melnyk, O., Kovalenko, I., Onychko, V., Ilchenko, V., & Solokha, M. (2024). Ecological assessment of heavy metal content in Ukrainian soils. Journal of Ecological Engineering, 25(11), 100–108. https://doi.org/10.12911/22998993/192669
Dent, D., Boincean, B., Dmytruk, Y., & Bai, Z. (2022). A candle in the wind. International Journal of Environmental Studies, 79(4), 587–596. https://doi.org/10.1080/00207233.2022.2085454
Dmytrenko, O., Demyanyuk, O., Pohorila, L., Svydyniuk, N., Rozha, V., Kyryliuk, P., & Romanenko, V. (2023). Ecotoxicological assessment of soddy-podzolic soil under the influence of hostilities. Agroecological Journal, 4, 89–96 [in Ukrainian]. [Дмитренко, О., Дем'янюк, О., Погоріла, Л., Свидинюк, Н., Рожа, В., Кирилюк, П., & Романенко, В. (2023). Екотоксикологічна оцінка дерново-підзолистого ґрунту за впливу бойових дій. Агроекологічний журнал, 4, 89–96]. https://doi.org/10.33730/2077-4893.4.2023.293758
Korsun, S., Bolokhovska, V., Bolokhovskyi, V., Khomenko, T., Borko, Yu., Demyanyuk, O., & Kostyna, T. (2024). Agroecological substantiation of meliorative factors for restoration of soils disturbed by military actions. Agroecological Journal, 2, 100–112 [in Ukrainian]. [Корсун. С., Болоховська, В., Болоховський, В., Хоменко, Т., Борко, Ю., Дем'янюк, О., & Костина, Т. (2024). Агроекологічні обґрунтування меліоративних чинників для відновлення ґрунтів, порушених бойовими діями. Агроекологічний журнал, 2, 100–112]. https://doi.org/10.33730/2077-4893.2.2024.305663
Meaza, H., Ghebreyohannes, T., Nyssen, J., Tesfamariam, Z., Demissie, B., Poesen, J., Gebrehiwot, M., Weldemichel, T. G., Deckers, S., Gidey, D. G., & Vanmaercke, M. (2024). Managing the environmental impacts of war: What can be learned from conflict-vulnerable communities? Science of The Total Environment, 927, 171974. https://doi.org/10.1016/j.scitotenv.2024.171974
Meerschman, E., Cockx, L., Islam, M. M., Meeuws, F., & Van Meirvenne, M. (2011). Geostatistical assessment of the impact of World War I on the spatial occurrence of soil heavy metals. Ambio, 40(4), 417–424. https://doi.org/10.1007/s13280-010-0104-6
Menshov, O., Bondar, K., Bakhmutov, V., Hlavatskyi, D., & Poliachenko, I. (2024). Magnetic mineralogical properties of Kyiv region soils, affected by war. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(106), 5–12 [in Ukrainian]. [Меньшов, О., Бондар, К., Бахмутов, В., Главацький, Д., & Поляченко, Є. (2024). Магнітно-мінералогічні властивості ґрунтів Київщини, уражених військовими діями. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 3(106), 5–12]. https://doi.org/10.17721/1728-2713.106.01
Neikov, O. D., Naboychenko, S. S., & Yefimov, N. A. (2022). Handbook of Non-Ferrous Metal Powders (2nd ed.). Elsevier. https://doi.org/10.1016/C2014-0-03938-X
Osadchyi, V., Skrynyk, O., Palamarchuk, L., Skrynyk, O., Osypov, V., Oshurok, D., & Sidenko, V. (2022). Dataset of gridded time series of monthly air temperature (min, max, mean) and atmospheric precipitation for Ukraine covering the period of 1946–2020. Data Brief, 44, 108553. https://doi.org/10.1016/j.dib.2022.108553
Pereira, P., Bašić, F., Bogunovic, I., & Barcelo, D. (2022). Russian-Ukrainian war impacts the total environment. Science of The Total Environment, 837, 155865. https://doi.org/10.1016/j.scitotenv.2022.155865
Shebanina, O., Kormyshkin, I., Bondar, A., Bulba, I., & Ualkhanov, B. (2024). Ukrainian soil pollution before and after the Russian invasion. International Journal of Environmental Studies, 81(2), 208–215. https://doi.org/10.1080/00207233.2023.2245288
Smirnova, K., Baliuk, S., Kucher, A., Vorotyntseva, L., & Honcharova, A. (2024). Ecological and toxicological condition of militarily degraded chernozems: A case study of the Chkalovsk territorial community. Scientific Horizons, 11(27), 90–104. https://doi.org/10.48077/scihor11.2024.90
Solokha, M., Demyanyuk, O., Symochko, L., Mazur, S., Vynokurova, N., Sementsova, K., & Mariychuk, R. (2024). Soil degradation and contamination due to armed conflict in Ukraine. Land, 13(10), 1614. https://doi.org/10.3390/land13101614
Solokha, M., Pereira, P., Symochko, L., Vynokurova, N., Demyanyuk, O., Sementsova, K., Inacio, M., & Barcelo, D. (2023). Russian-Ukrainian war impacts on the environment: Evidence from the field on soil properties and remote sensing. Science of The Total Environment, 902, 166122. https://doi.org/10.1016/j.scitotenv.2023.166122
Solokha, M. O., Smirnova, K. B., Vynokurova, N. V., & Sementsova, K. O. (2022). Variability of the geochemical and granulometric composition of the soils of the forest steppe of Ukraine under the influence of combat actions. Agrarian Innovations, 14, 109–116 [in Ukrainian]. [Солоха, М. О., Смірнова, К. Б., Винокурова, Н. В., & Семенцова, К. О. (2022). Варіабельність геохімічного та гранулометричного складу ґрунтів лісостепу України під впливом бойових дій. Аграрні інновації, 14, 109–116]. https://doi.org/10.32848/agrar.innov.2022.14.16
Splodytel, A. (2023). The impact of hostilities on the soil cover of Mykolaiv region. In Post-war development of the nature reserve fund of Mykolaiv region (pp. 7–31). Druk-Art [in Ukrainian]. [Сплодитель, А. (2023). Вплив бойових дій на ґрунтовий покрив Миколаївської області. В Поствоєнний розвиток природно-заповідного фонду Миколаївщини (с. 7–31). Друк-Арт].
Splodytel, A., Holubtsov, O., Chumacheko, S., & Sorokina, L. (2023). The Impact of Russia's War against Ukraine on the State of Ukrainian Soil. Ecodia Centre for Environmental Initiatives [in Ukrainian]. [Сплодитель, А., Голубцов, О., Чумаченко, С., & Сорокіна. Л. (2023). Вплив війни росії проти України на стан українських ґрунтів. Центр екологічних ініціатив "Екодія"].
Tešan Tomić, N., Smiljanić, S., Jović, M., Gligorić, M., Povrenović, D., & Došić, A. (2018). Examining the effects of the destroying ammunition, mines and explosive devices on the presence of heavy metals in soil of open detonation pit; Part 2: Determination of heavy metal fractions. Water, Air & Soil Pollution, 229(9), 303. https://doi.org/10.1007/s11270-018-3950-7
Tonkha, O., Menshov, O., Litvinov, D., Bondar, K., Glazunova, O., Litvinova, O., Pikovska, O., & Zabaluev, V. (2025). Assessment of soil pollution levels in Southern Ukraine damaged by military actions. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 1(108), 30–38 [in Ukrainian]. [Тонха, О., Меньшов, О., Літвінов, Д., Бондар, К., Глазунова, О., Літвінова, О., Піковська, О., & Забалуєв, В. (2025). Оцінка рівнів забруднення ґрунтів півдня України, пошкоджених воєнними діями. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 1(108), 30–38]. https://doi.org/10.17721/1728-2713.108.04
Vanhoof, C., Corthouts, V., & Tirez, K. (2004). Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils. Journal of Environmental Monitoring, 6(4), 344–350. https://doi.org/10.1039/B312781H
Vanhoof, C., Holschbach-Bussian, K. A., Bussian, B. M., Cleven, R., & Furtmann, K. (2013). Applicability of portable XRF systems for screening waste loads on hazardous substances as incoming inspection at waste handling plants. X-Ray Spectrometry, 42(4), 224–231. https://doi.org/10.1002/xrs.2485
Vidosavljević, D., Puntarić, D., Gvozdić, V., Jergović, M., Miškulin, M., Puntarić, I., Puntarić, E., & Šijanović, S. (2013). Soil contamination as a possible long-term consequence of war in Croatia. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 63(4), 322–329. https://doi.org/10.1080/09064710.2013.777093
Williams, O. H., & Rintoul-Hynes, N. L. J. (2022). Legacy of war: Pedogenesis divergence and heavy metal contamination on the WWI front line a century after battle. European Journal of Soil Science, 73(2), e13297. https://doi.org/10.1111/ejss.13297
Zaitsev, Yu., Hryshchenko, O., Romanova, S., & Zaitseva, I. (2022). Influence of combat actions on the content of gross forms of heavy metals in the soils of Sumy and Okhtyrka districts of Sumy region. Agroecological Journal, 3, 136–149 [in Ukrainian]. [Зайцев, О., Грищенко, О., Романова, С., & Зайцева, І. (2022). Вплив бойових дій на вміст валових форм важких металів у ґрунтах Сумського та Охтирського районів Сумської області. Агроекологічний журнал, 3, 136–149]. https://doi.org/10.33730/2077-4893.3.2022.266419
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Oleksandr BONCHKOVSKYI, Pavlo OSTAPENKO, Yaroslava ZHUKOVA, Іllia KRAVCHUK, Serhii PETRYSHCHENKO, Adelina LAZARETS, Oleksandr HALAHAN, Nazar STEPANENKO

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




