IMPROVING THE VISUALIZATION OF THE GEOLOGICAL STRUCTURE OF THE HOVSAN AREA, AZERBAIJAN USING VSP
DOI:
https://doi.org/10.17721/1728-2713.108.08Keywords:
Vertical Seismic Profiling (VSP), inelastic absorption, quality factor, surface and borehole seismic exploration, time intervals, seismic time sectionsAbstract
Background. Increasing the resolution (both vertical and horizontal) of land and borehole seismic exploration is an urgent task facing geophysicists. There are various ways to increase the resolution of seismic studies, among which inelastic absorption takes a special place. This method has not been widely used compared to other methods (for example, distribution of the total charge of explosives over smaller ones, i.e., grouping of sources, inverse filtering - deconvolution, etc.) due to the limited amount of information about inelastic absorption and the difficulty of determining it or the quality factor of the environment. Important information for determining the quality factor of the medium and inelastic absorption is provided by borehole seismic exploration, in particular, VSP (vertical seismic profiling). The recent VSP at well N 1856 of the Govsan area made it possible to determine the inelastic absorption of the medium from well observations and thereby restore the weakened higher frequency components of the seismic wave field, which made it possible to quite significantly change the observed wave pattern on time sections, enriching it with high frequency components and thereby increasing the resolution of surface as well as borehole seismic data. This research aims to improve the vertical resolution of land and borehole seismic exploration using vertical seismic profiling data on inelastic absorption of the geological medium.
Methods. Based on the VSP data, the effective quality factor Q parameter was determined. For this purpose, the entire recorded VSP interval was divided into 4 parts.
Results. The entire recorded VSP interval was divided into four parts: the full interval (~324–4500 m measured depth) for determining the effective quality factor Q, and three sub-intervals – upper (~324–1887 m), middle (~1803–3799 m), and lower (~3814–4500 m) – for calculating interval values of the quality factor. After determining Q for each interval, the average effective quality factor Q=145 was obtained and applied to restore attenuated frequencies on seismic time sections and the vertical component Z of the VSP profile. A comparison of the original and processed seismic time sections after Q=145 filtering shows significant improvements in resolution. The restoration of high-frequency components in seismic records has notably enhanced the clarity of both surface seismic and VSP time sections. The results confirm that applying VSP-derived quality factor parameters can be highly effective in land seismic data processing.
Conclusions. The application of Q-filtering with an effective quality factor of Q=145 has significantly improved the resolution of both surface seismic and VSP time sections. The results demonstrate the effectiveness of utilizing certain VSP parameters in land seismic processing. Additionally, restoring attenuated high-frequency components enhances data clarity and interpretability. The use of the quality factor can be integrated at different processing stages, with its optimal application determined experimentally to achieve the best results.
References
Akhmedov, T. R. et al. (2012). Some results of ground and borehole seismic exploration of the Govsaninsky hydrocarbon deposit. Karotazhnik. Scientific and Technical Bulletin, 6(216) [in Russian]. [Ахмедов, Т. Р. и др. (2012). Некоторые результаты наземных и скважинных сейсморазведок на месторождении Говсанского углеводорода. Каротажник. Научно-технический бюллетень, 6(216)].
Alizade, A. A. et al. (1966). Geology of oil and gas fields of Azerbaijan (Nedra) [in Russian]. [Ализаде, А. А., и др. (1966). Геология нефтяных и газовых месторождений Азербайджана. Недра].
Andersen, Bartling, & Nelson Jr. (2014). Downhole seismic identifies reservoirs at the production point. Journal of Oil and Gas, 50–57.
Boganik, G. N., & Gurvich, I. I. (2006). Seismic exploration (AIS) [in Russian]. [Боганик, Г. Н., & Гурвич, И. И. (2006). Сейсморазведка. АИС].
Bourbié, T. (2006). L'atténuation intrinsèque des ondes sismiques. Revue de l'Institut Français du Pétrole [in French].
Galperin, E. I. (1982). Vertical seismic profiling (Nedra) [in Russian]. [Галперин, Е. И. (1982). Вертикальное сейсмическое профилирование. Недра].
Galperin, E. I. (1994). Vertical seismic profiling: experience and results [in Russian] (Science). [Galperin, E. I. (1994). Вертикальное сейсмическое профилирование: опыт и результаты. Наука].
Hardage, B. A., De Angelo, M., Murray, P. E., & Sava, D. (2011). Multicomponent seismic technology. Society of Exploration Geophysicists.
Lensky, V. A., Adiev, A. Ya., Irkabaev, D. R., & Sharova, T. N. (2014). Borehole seismic exploration. Goals, tasks to be solved and geological efficiency. Seismic Exploration Technologies, 2, 117–124 [in Russian]. [Ленский, В. А., Адиев, А. Я., Иркабаев, Д. Р., & Шарова, Т. Н. (2014). Сейсморазведка скважин. Цели, решаемые задачи и геологическая эффективность. Сейсморазведочные технологии, 2, 117–124].
Lensky, V. A., Zhuzhel, A. S., Chanyshev, Sh. R., & Salikhova, F. Kh. (2020). Comparison of inelastic absorption estimates from land seismic and vertical seismic profiling data. Seismic Exploration Technologies, 12(348), 33–39 [in Russian]. [Ленский, В. А., Жужель, А. С., Чанышев, Ш. Р., & Салихова, Ф. Х. (2020). Сопоставление оценок неупругого поглощения по данным наземной сейсмики и вертикального сейсмического профилирования. Сейсморазведочные технологии, 12(348), 33–39].
Maultzsch, S., Nawab, R., Yuh, S. et al. (2009). An integrated multiazimuth VSP study for fracture characterization in the vicinity of a well. Geophysical Prospecting, 57, 263–274.
Shekhtman, G. A., & Bayuk, I. O. (2015). Models of real environments in vertical seismic profiling technologies. Seismic Exploration Technologies, 2, 59–68 [in Russian]. [Шехтман, Г. А., & Баюк, И. О. (2015). Модели реальных сред в технологиях вертикального сейсмического профилирования. Сейсмические технологии, 2, 59–68].
Sherif, R., & Geldart, L. (1987). Seismic exploration (Vol. 1) (Mir) [in Russian]. [Шериф, Р., & Гелдарт, Л. (1987). Сейсмическая разведка (Т. 1). Мир].
Shneerson, M. B., & Zhukov, A. P. (2013/2014). Vertical seismic profiling (VSP) on geophysical conventions. English Geophysics.
Tabakov, A. A., Baranov, K. V., Rykovskaya, N. V., & Kopchikov, A. V. (2006). Methodology and some results of processing MOG and 3D VSP data. Seismic Exploration Technologies, 2, 8–13 [in Russian]. [Табаков, А. А., Баранов, К. В., Рыковская, Н. В., & Копчиков, А. В. (2006). Методология и некоторые результаты обработки данных МОГ и 3D ВСП. Сейсмические технологии разведки, 2, 8–13].
Vyzhva, S., Lisny, G., & Kruhlyk, V. (2016). Use of graphic processors for construction of the geological media seismic images. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(75), 45–49 [in Ukrainian]. [Вижва, С., Лісний, Г., & Круглик, В. (2016). Застосування графічних процесорів для побудови сейсмічних зображень геологічного середовища. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 4(75), 45–49.].
Vyzhva, S., Solovyov, I., Kruhlyk, V., & Lisny, G. (2018). Prediction of high porosity zones in clay rocks at the Eastern Ukraine. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 1(80), 33–39 [in Ukrainian]. [Вижва, С., Соловйов, І., Круглик, В., & Лісний, Г. (2018). Прогнозування зон підвищеної пористості у глинистих породах Сходу України. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 1(80), 33–39].
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Тофік АХМАДОВ, Амікиші АСАДЛІ

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




