THE DEGREE OF SOIL DEGRADATION AND AEROSOL FORMATION FROM EXPLOSION PRODUCTS RESULTING FROM HOSTILITIES IN UKRAINE
DOI:
https://doi.org/10.17721/1728-2713.108.05Keywords:
Russian-Ukrainian war, aerosol, dust, soil degradationAbstract
Background. On the territory of Ukraine, where large-scale hostilities are taking place, industrial production and developed transport infrastructure are concentrated, in particular, every tenth enterprise has an increased (1st or 2nd) hazard class. Arable fields suffered no less damage from shelling and mining, which negatively affects food security in the world. The degree of ecological hazard of the territory where hostilities took place is determined primarily by the level of surface concentrations of pollutants entering the natural environment. Concentrations, as well as the range and area of dispersion of pollutants depend on the parameters of the explosion, the height of the explosion product clouds, and meteorological conditions.
Methods. For war-affected areas, mechanisms for assessing the degree of mechanical damage to soils and dust from a gas-dust cloud into the environment were proposed based on methods used at mining enterprises to analyze environmental hazards.
Results. The studies were carried out in the field, where ca.1000 craters of various diameters were identified. The main parameters of the explosion were estimated based on the morphological shapes of the craters: the volume of displaced (or destroyed) soil, the mass of aerosol and dust that entered the atmosphere, the width and height of the pile - the scattering of soil from the centre of the explosion. The height of the gas-dust cloud from large explosions was calculated, which is extremely important for modelling the dynamics of solid particles in the cloud and solving problems of regional pollution transportation. A sequential algorithm was developed for assessing the destruction and damage to soils and the release of aerosol and dust into the atmosphere, which is formed during ground explosions.
Conclusions. An algorithm for calculating the degree of soil damage and dust ingress into the atmosphere from artillery weapons of various calibers has been proposed. Calculations of the height of the gas-dust cloud from large explosions and the scattering of earth from the crater have been obtained. The cumulative effect of soil damage and atmospheric pollution by substances from explosion products per day, month and year has been estimated. The results of comparing the damage caused to soils and emissions of harmful substances into the atmosphere as a result of the war are comparable in scale to the operation of an average quarry in Ukraine for a year. Given the scale of the battle lines environmental pollution would have catastrophic consequences.
References
Ambrosini, R. D., & Luccioni, B. M. (2006). Craters Produced by Explosions on the Soil Surface. Journal of Applied Mechanics, 73(6), 890. https://doi.org/10.1115/1.2173283
Balaganskyi, I. A., & Merzhnevskyi, L. A. (2004). Deistvie sredstv porazheniia i boepripasov [Action of means of destruction and ammunition] (Izd-vo NGTU). [Балаганский, И., & Мержиевский, Л. (2004). Действие средств поражения и боеприпасов. НГТУ].
Bilyi, T., Melnyk, G., Poliachenko, Ie., Hlavatskyi, D., & Cherkes, S. (2024). Bombturbation as a consequence of man-made load on the natural environment. International Conference of Young Professionals "GeoTerrace-2024", 2024, 1–5. https://doi.org/10.3997/2214-4609.2024510026
Bjelovuk, I., Jaramaz, S., Elek, P., Micković, D., & Kričak, L. (2015). Modelling of characteristics of a crater emerged from a surface explosion on the soil. Combustion, Explosion, and Shock Waves, 51(3), 395–400. https://doi.org/10.1134/s001050821503017x
Bonchkovskyi, O., Ostapenko, P., Bonchkovskyi, A., & Shvaiko, V. (2025). War-induced soil disturbances in north-eastern Ukraine (Kharkiv region): Physical disturbances, soil contamination and land use change. Science of The Total Environment, 964, 178594. https://doi.org/10.1016/j.scitotenv.2025.178594
Bonchkovskyi, O., Ostapenko, P., Shvaiko, V., & Bonchkovskyi, A. (2023). Remote sensing as a key tool for assessing war-induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474–487. https://doi.org/10.15421/112342
Bondar, K., Bakhmutov, V., Menshov, O., Poliachenko, I., & Hlavatskyi, D. (2023). Detecting war-related pollution of soils using magnetic and geochemical methods. First results from recaptured outskirts of Kyiv. 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 2023, 1–5. http://dx.doi.org/10.3997/2214-4609.2023520209
Bondar, K. M., Tsiupa, I. V., Sachko, A. V., & Nasiedkin, I. I. (2024). Pre-war situation with soil pollution in the city of Zaporizhzhia: metallurgical industry center in Ukraine—characterized by magnetic, geochemical and microscopy methods. Acta Geophysica, 72(2), 1355–1375. https://doi.org/10.1007/s11600-024-01297-4
Boychenko, S. G. (2024). Meteorological and climatic consequences of military actions in Ukraine: According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine, November 29, 2023. Visny Nacionalnoi Academii Nauk Ukrainy, 1, 83–93. https://doi.org/10.15407/visn2024.01.083 [Бойченко, С.Г. (2024). Метеорологічні та кліматичні наслідки воєнних дій в Україні: За матеріалами доповіді на засіданні Президії НАН України 29 листопада 2023 року. Вісник Національної академії наук України, 1, 83–93].
Broomandi, P., Guney, M., Kim, J. R., & Karaca, F. (2020). Soil contamination in areas impacted by military activities: a critical review. Sustainability, 12(21), 9002. https://doi.org/10.3390/su12219002
Bull, J. W., & Woodford, C. H. (1998). Camouflets and their effects on runway supports. Computers and Structures, 69(6), 695–706. https://doi.org/10.1016/S0045-7949(98)00135-7
Chernogor, L. F. (2003). Physical processes in the near-earth environment associated with March–April 2003 Iraq war. Space and Atmospheric Physics, 9(2/3), 13–33. https://doi.org/10.15407/knit2003.02.013
Datsko, O., Zakharchenko, E., Butenko, Y., Melnyk, O., Kovalenko, I., Onychko, V., Ilchenko, V., & Solokha, M. (2024). Ecological assessment of heavy metal content in ukrainian soils. Journal of Ecological Engineering, 25(11), 100–108. https://doi.org/10.12911/22998993/192669
Dytłow, S., & Górka-Kostrubiec, B. (2021). Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environmental Geochemistry and Health, 43(1), 521–535. https://doi.org/10.1007/s10653-020-00726-9
Gao, L., Chen, H., Chen, G., & Deng, J. (2023). Particle Size Distributions and Extinction Coefficients of Aerosol Particles in Land Battlefield Environments. Remote Sensing, 15, 5038. https://doi.org/10.3390/rs15205038
Glasstone, S., & Dolan, P. J. (1977). The Effects of Nuclear Weapons (3rd ed.). United States Department of Defense and the Energy Research and Development Administration. https://www.deepspace.ucsb.edu/wp-content/uploads/2013/01/Effects-of-Nuclear-Weapons-1977-3rd-edition-complete.pdf
Gould, K. F., & Tempo, K. (1983). High-explosive field test. Explosion Phenomena and Environmental Impacts (Defense Nuclear Agency). https://apps.dtic.mil/sti/citations/ADA135737
Hlavatskyi, D., Menshov, O., Poliachenko, Ie., Bakhmutov, V., & Bondar, K. (2024). Comparison of magnetic and geochemical parameters in soil for the estimation of heavy metals pollution caused by warfare. International Conference of Young Professionals "GeoTerrace-2024", 1–5. http://dx.doi.org/10.3997/2214-4609.2024510067
Hupy, J. P., & Koehler, T. (2012). Modern warfare as a significant form of zoogeomorphic disturbance upon the landscape. Geomorphology, 157–158, 169–182. https://doi.org/10.1016/j.geomorph.2011.05.024
Hupy, J. P., & Schaetzl, R. J. (2006). Introducing "bombturbation," a singular type of soil disturbance and mixing. Soil Science, 171(11), 823–836. https://doi.org/10.1097/01.ss.0000228053.08087.19
Hurin, A. O., Beresnevych, P. V., Nemchenko, A. A., & Oshmanskyi, I. B. (2007). Aerologiia hirnych pidpryiemstv [Aerology of mining enterprises] (Vydavnytstvo Kryvorizkoho tekhnichnoho universytetu). [Гурін А.О., Бересневич П.В., Немченко А.А., Ошманський І.Б. (2007). Аерологія гірничих підприємств. Видавництво Криворізького технічного університету].
Khotynenko, O. M. (2014). Ґruntoznavstvo z osnovamy heolohii. Konspekt lektsii [Soil science with the basics of geology. Lecture notes]. Mykolaivskyi natsionalnyi ahrarnyi universytet. [Хотиненко О.М. (2014). Ґрунтознавство з основами геології. Конспект лекцій. Миколаївський національний аграрний університет]. https://dspace.mnau.edu.ua/jspui/bitstream /123456789/2976/1/Hotinenko_O.GzOG_KL_2014.pdf
Kolesnik, V. Ye., Yurchenko, А. А., Litvinenko, А. А., & Pavlichenko, А. V. (2014). Sposoby i zasoby pidvyshchennia ekolohichnoi bezpeky masovykh vybukhiv v zalizorudnykh kar’ierakh za pylovym chynnykom [Ways and means to enhance the environmental safety of massive explosions in quarries for iron dust factor] (Litograf). [Колесник В.Е., Юрченко А.А., Литвиненко А.А., Павличенко А.В. Способи і засоби підвищення екологічної безпеки масових вибухів в залізорудних кар'єрах за пиловим чинником. Літограф].
Kozlova, T., & Velikodsky, Yu. (2024). Deep Learning-Based Detection of Damaged Buildings in Satellite Imagery. International Conference of Young Professionals "GeoTerrace-2024", 2024, 1–5. https://doi.org/10.3997/2214-4609.2024510013
Kravchenia, V., Malik, T., Trofymenko, P., Samko, M., & Tsvyk, O. (2024). Inventory and assessment of agricultural landscapes damaged as a result of hostilities using remote sensing methods. International Conference of Young Professionals "GeoTerrace-2024", 2024, 1–5. https://doi.org/10.3997/2214-4609.2024510087
Menshov, O., Bakhmutov, V., Hlavatskyi, D., Poliachenko, I., & Bondar, K. (2024b). Magnetic Imprint in the Soils as a Consequence of War Impact in Ukraine. 85th EAGE Annual Conference & Exhibition, 2024, 1–5. https://doi.org/10.3997/2214-4609.202410637
Menshov, O., Bondar, K., Bakhmutov, V., Hlavatskyi, D., & Poliachenko, Ie. (2024a). Magnetic mineralogical properties of Kyiv region soils, affected by war. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(106), 5–12. [Меньшов, О., Бондар, К., Бахмутов, В., Главацький, Д., Поляченко, Є. Магнітно-мінералогічні властивості ґрунтів Київщини, уражених військовими діями. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 3(106), 5–12]. http://doi.org/10.17721/1728-2713.106.01
Orlenko, L. P. (Ed.). (2002). Fizika vzryva [Physics of explosion] (Fizmatlit). [Орленко, Л. П. (Ред.). (2002). Физика взрыва. Физматлит].
Persson, P. A., Holmberg, R., & Lee, J. (1994). Rock blasting and explosives engineering. CRC Press, USA. https://api.pageplace.de/preview/DT0400.9781351418225_A37401424/preview-9781351418225_A37401424.pdf
Pittock, A. B., Ackerman, T. P., Crutzen, P. J., MacCracken, M. C., Shapiro, C. S., & Turco, R. P. (1990). Environmental consequences of nuclear war: physical and atmospheric effects (SCOPE Series) (Vol. 1).
Savosko, V. (2016). Tiazhelye metally v pochvakh Kryvbassa [Heavy metals in soils at Kryvbas] (Dionat). [Савосько, В. (2016). Тяжелые металлы в почвах Кривбасса. Діонат].
Solokha, M., Demyanyuk, O., Symochko, L., Mazur, S., Vynokurova, N., Sementsova, K., & Mariychuk, R. (2024). Soil degradation and contamination due to armed conflict in Ukraine. Land, 13(10), 1614. https://doi.org/10.3390/land13101614
Splodytel, A., Holubtsov, O., Chumachenko, S., & Sorokina, L. (2023). The impact of Russia's war against Ukraine on the state of the country's soil. Analysis results. Ecoaction – Centre for Environmental Initiatives. https://en.ecoaction.org.ua/wp-content/uploads/2023/05/impact-on-soilrussian-war.pdf
Tekhnicheskie pravila vedeniia vzryvnykh rabot na dnevnoi poverkhnosti [Technical rules for blasting operations on the daylight surface]. (1972). Nedra.
Turner, R. E., Eitner, P. G., Leonard, C. D., & Snyder, D. G. (1980). Battlefield environment obscuration handbook (Vol. I, ADA102822). Science Applications Inc. https://archive.org/details/DTIC_ADA1028225/DTIC_ADA1028225
Williams, O. H., & Rintoul-Hynes, N. L. J. (2022). Legacy of war: Pedogenesis divergence and heavy metal contamination on the WWI front line a century after battle. European Journal of Soil Science, 73(4). https://doi.org/10.1111/ejss.13297
Yang, S., Chen, H., Gao, L., Qi, B., Guo, P., & Deng, J. (2021). Study of spatial distribution characteristics for dust raised by vehicles in battlefield environments using CFD. IEEE Access, 9, 48023–48038. https://doi.org/10.1109/ACCESS.2021.3059068
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Тарас БІЛИЙ, Дмитро ГЛАВАЦЬКИЙ, Євген ПОЛЯЧЕНКО, Галина МЕЛЬНИК, Семен ЧЕРКЕС, Дмитро ЛІТВІНОВ

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




