SUSCEPTIBILITY MODELLING OF LANDSLIDES IN CENTRAL NEPAL
DOI:
https://doi.org/10.17721/1728-2713.107.01Keywords:
Nepal, landslide hazard, susceptibility, mappingAbstract
Background. Landslide processes in the Himalayas represent a major hazard threatening both humans lives and the socio-economic development of the region. The main goal of the present study is to examine the main factors influencing landslides in Central Nepal, to understand their relative importance and connections, and demonstrate the potential of the integrated technique for the assessment of landslide hazards at the regional scale.
Methods. The workflow used in this study consists of the following steps: (1) collection of the data for analysis (numerical topographies, remote sensing data, geological data, inventory of landslides); (2) identification of the main causes of landslides, determination of input parameters for modelling; (3) lineament extraction by using manual and automated approaches; and (4) susceptibility mapping and spatial modelling of landslides.
Results. Based on the overlay analysis of geological and geomorphological data, the susceptibility modelling of landslides in Central Nepal helps to identify the landslide-prone areas (high to low). The analysis confirms the essential role of lineaments in the landslide formation and their relation with tectonic and erosion processes. Therefore, in the regional classification of landslides in the Central Nepal it is necessary to add the landslides associated with weak zones of various nature and orientations.
Conclusions. The susceptibility modeling and landslide forecasting at the regional level are the main stage of the landslide risk evaluating and management. The results concern the general impact of geological-geomorphological and landscape factors on the formation of landslide phenomena in Central Nepal. Carrying out an analysis of landslides and studying their dynamics and regime is only possible with detailed studies and identifying the priority of the influence of each factor on the landslide formation. This study also aims to provide valuable insights for disaster preparedness, risk reduction, and sustainable land use practices in the region.
References
Adhikari, B. R., & Ojha, R. B. (2021). Geology and Physiography. In: Ojha, R. B., Panday, D. (Eds.) The Soils of Nepal. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978-3-030-80999-7_4.
Bhattarai, K. D. (1984). Computer analysis of the lineaments of Nepal. Advances in Space Research, 4(11), 105–113. https://doi.org/10.1016/0273-1177(84)90398-3.
Biswakarma, P., Barman, B. K., Joshi, V., & Rao, K. S. (2020). Landslide susceptibility mapping in east Sikkim region of Sikkim Himalaya using high resolution remote sensing data and GIS techniques. Appl. Ecol. Environ. Sci., 8(4),143–153. https://doi.org/10.12691/aees-8-4-1
Colchen, M., Le Fort, P., & Pécher A. (1986). Recherches géologique dans l'Himalaya du Népal. CNRS Editions. CAH Nepala 35/4.
Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., & Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural hazards, 65, 135–165.
Dhital, M. R. (2015). Geology of the Nepal Himalaya. Regional Perspective of the Classic Collided Orogen. https://doi.org/10.1007/978-3-319-02496-7
Dhungana, G., Ghimire, R., Poudel, R., & Kumal, S. (2023). Landslide susceptibility and risk analysis in Benighat Rural Municipality, Dhading, Nepal. Natural Hazards Research, 3 (2), 170–185. https://doi.org/10.1016/j.nhres.2023.03.006.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18, 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
Gautam, P., Kubota, T., Sapkota, L. M., & Shinohara, Y. (2021). Landslide susceptibility mapping with GIS in high mountain area of Nepal: a comparison of four methods. Environmental Earth Sciences, 80, 1–18.
Jones, J. N., Boulton, S. J., Stokes, M., Bennett, G. L., & Whitworth, M. R. Z. (2021). 30-year record of Himalaya mass-wasting reveals landscape perturbations by extreme events. Nat. Commun., 12, 6701. https://doi.org/10.1038/s41467-021-26964-8
Kassou, A., Essahlaoui, A., & Aissa, M. A. (2012). Extraction of Structural Lineaments from Satellite Images Landsat 7 ETM+ of Tighza Mining District (Central Morocco). Geology, 4(2), 44–48. https://doi.org/10.5829/idosi.rjes.2012.4.2.1110
Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.
Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of Central Nepal. J. Geophys. Res., 106 (B11), 26561–26591.
Marc, O., Behling, R., Andermann, Ch., Turowski, J. M., Illien, L., Roessner, S., & Hovius, N. (2019). Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn., 7, 107–128.
Morin, G. P., Lave, J., France-Lanord, C., Rigaudier, T., Gajurel, A.P., & Sinha, R. (2018). Annual sediment transport dynamics in the Narayani Basin, Central Nepal: assessing the impacts of erosion processes in the annual sediment budget. J. Geophys. Res. Earth Surf., 123, 2341–2376.
Ni, J., & Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. J. Geophys. Res. Solid Earth, 89 (B2), 1147–1163 (1978–2012).
Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lavé, J., & Massot, J. P. (1995). Interseismic strain accumulation on the Himalayan Crustal Ramp (Nepal). Geophys. Res. Lett., 22, 751–754.
Petley, D., Hearn, G., Hart, A., Rosser, N., Dunning, S., Oven, K., & Mitchell, W. (2007). Trends in landslide occurrence in Nepal. Natural Hazards, 43, 23–44. https://doi.org/10.1007/s11069-006-9100-3
Poliakovska, K., Ivanik, O., Annesley, I., Guest, N., & Otsuki, A. (2022). Identification and analysis of structural-tectonic features of geological terrains using lineament analysis: examples of geomodelling for Canadian and Ukrainian shields. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2 (97), 20–28. http://doi.org/10.17721/1728-2713.97.03
Putkonen, J. K. (2004). Continuous snow and rain data at 500 to 4400 m altitude. Arct. Antarct. Alp. Res., 36 (2), 244–248.
Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., & Akgun, A. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7, 725–742.
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., & Godt J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. https://doi.org/10.1016/j.geomorph.2017.01.030
Roy, J., & Saha, S. (2019). Landslide susceptibility mapping using knowledge driven statistical models in Darjeeling District, West Bengal, India. Geoenviron Disasters, 6, 11. https://doi.org/10.1186/s40677-019-0126-8
Sawalha, I. H. (2020). A contemporary perspective on the disaster management cycle. Foresight, 22(4), 469–482. https://doi.org/10.1108/FS-11-2019-0097
Shahabi, H., & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep., 5, 9899. https://doi.org/10.1038/srep09899
Sim, K. B., Lee, M. L. & Wong, S. Y. (2022). A review of landslide acceptable risk and tolerable risk. Geoenviron Disasters, 9, 3. https://doi.org/10.1186/s40677-022-00205-6
Thapa, P. B., Lamichhane, S., Joshi, K. P., Regmi, A. R., Bhattarai, D., & Adhikari, H. (2023). Landslide Susceptibility Assessment in Nepal's Chure Region: A Geospatial Analysis. Land, 12, 2186. https://doi.org/10.3390/land12122186
Tian, N., & Lan, H. (2023). The indispensable role of resilience in rational landslide risk management for social sustainability. Geography and Sustainability, 4(1), 70–83. https://doi.org/10.1016/j.geosus.2022.11.007
Van den Hurk, B. J. J. M., White, C. J., Ramos, A. M., Ward, Ph. J., Martius, O., Olbert, I., Roscoe, K., Goulart, H. M. D., & Zscheischler, J. (2023). Consideration of compound drivers and impacts in the disaster risk reduction cycle. Science, 26(3), 106030. https://doi.org/10.1016/j.isci.2023.106030
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Олена ІВАНІК, Жером ЛАВЕ, Катерина ГАДЯЦЬКА, Дмитро КРАВЧЕНКО, Едуард ПЕТРУШЕНКО

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




