ENVIRONMENTAL GEO-INFORMATIONAL MONITORING SYSTEM FOR THE CIVIL AND FIRE SAFETY SERVICES OF UKRAINE

Authors

  • Yuriy STARODUB L'viv State University of Life Safety, L'viv, Ukraine
  • Borys MYKHALICHKO L'viv State University of Life Safety, L'viv, Ukraine
  • Helen LAVRENYUK L'viv State University of Life Safety, L'viv, Ukraine
  • Olesia KOZIONOVA Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Henryk POŁCIK Foundry Research Institute, Kraków, Poland
  • Bohdan KUPLOVSKYI Subbotine Institute of Geophysics, L'viv, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.105.14

Keywords:

geo-information system, natural and man-made hazards, stress-deformed state of soils, fire protection technologies

Abstract

 Background.The purpose of the work is the development of a new ecological and geo-informational system for monitoring emergency situations, which allows quick predicting the consequences of various natural and man-made hazards at the stage of preventing their occurrence. This applies to possible cases of destruction on territories where there is a threat of flooding and, accordingly, the protection of coasts, structures, roads on mountain slopes, bridges, tunnels and dams built on soils with certain geological and geophysical characteristics, as well as the occurrence and spread of fires and pollution of air, water and soil with harmful substances associated with them.   

Methods. To implement the methods, available and purchased licensed software is used, creating convenient algorithms for solving practical tasks of civil protection. Information processing based on the used software packages that allow quickly processing large amounts of information, reducing the level of poor processing and data distortion. 

Results. An ecological and geo-informational monitoring system has been developed, designed to ensure the coordination of actions of civil and fire protection services in order to increase the efficiency of responding to emergency situations of natural and manmade origin. By conducting experiments, model results were obtained, which make possible to theoretically calculate and determine the critical permissible stress-deformed states of the soil massif in the area of engineering structures, bridge structures, to warn about the possible destruction of the massif due to excess stress and deformation under the action of loads. Proposed localization of fire-hazardous zones based on satellite data. As part of the developed system for space monitoring of forest fires, satellite information is used, in particular, the AVHRR radiometer of the Terra satellite. On its basis, a temperature map of the regions of Ukraine was formed. 

Conclusions. The geo-informational monitoring system was created to prevent the risks of emergency situations (including the destruction of slopes, fires, etc.) using software products, creating databases for mapping potentially dangerous objects. Its application will make it possible to assess the consequences of possible emergency situations of a natural and man-made nature and minimize their negative impact on the environment. The developed geo-information system can be used to coordinate the actions of civil and fire protection services, as well as increase the efficiency of emergency and rescue measures. 

References

Doltsinis, I. (2018). A note on the stiffness and flexibility natural approach to the training spring cell. Engineering Computations, 35(3), 1130–1139 https://sci.ldubgd.edu.ua/jspui/handle/123456789/11596

Kochubei, V., Mykhalichko, B., & Lavrenyuk, H. (2022). Elaboration, thermogravimetric analysis, and fire testing of a new type of wood-sawdust composite materials based on epoxy–amine polymers modified with copper(II) hexafluorosilicate. Fire and Materials, 46, 587–594. https://doi.org/10.1002/fam.3008

Lavrenyuk, H., Hamerton, I., & Mykhalichko, B. (2018). Tuning the Properties for the Self-extinguishing Epoxy-amine Composites Containing Coppercoordinated Curing Agent: Flame Tests and Physical-mechanical Measurements. Reactive and Functional Polymers, 129, http://dx.doi.org/10.1016/j.reactfunctpolym.2017.10.013

Lavrenyuk, H., Kochubei, V., Mykhalichko, O., & Mykhalichko, B. (2017). Metal-coordinated Epoxy Polymers with Suppressed Combustibility. Preparation Technology, Thermal Degradation, and Combustibility Test of New Epoxy-amine Polymers Containing the Curing Agent with Chelated Copper(II) Carbonate. Fire and Materials, 42(3), 266–267. https://doi.org/10.1002/fam.2489

Lavrenyuk, H., Mykhalichko, B., Garanyuk, P., & Mykhalichko, O. (2020). New copper(II)-coordinated epoxy-amine polymers with flame-self-extinguishment properties: Elaboration water combustibility testing, and flame propagation rate measuring. Fire and Materials, 44, 825–834. https://doi.org/10.1002/fam.2879

Lavrenyuk, H., Parhomenko, V.-P., & Mykhalichko, B. (2019a). The Effect of Preparation Technology and the Complexing on the Service Properties of Self-extinguishing Copper (II) Coordinated Epoxy-amine Composites for Pouring Polymer Floors. International Journal of Technology, 10(2), 290–299. https://doi.org/10.14716/ijtech.v10i2.66

Lavrenyuk, O., Mykhalichko, B., & Parhomenko, V.-P. (2019b). Fire retardant-hardener for epoxy resins and self-extinguishing epoxy-amine composite. Patent 118709 UA [in Ukrainian] [Лавренюк, О., Михалічко, Б., & Пархоменко, В.-П. (2019b). Вогнезахисний затверджувач для епоксидних смол і самозатухаючих епоксидно-амінних композитів. Патент 118709 UA].

Lu, P., Xu, Z., Chen, Y., & Zhou, Y. (2020). Prediction method of bridge static load test results based on Kriging model. Engineering Structures, 214, 110641.

Moravej, H., Chan, T. H., Nguyen, K. D., & Jesus, A. (2019). Vibration-based Bayesian model updating of civil engineering structures applying Gaussian process metamodel. Advances in Structural Engineering, 22(16), 3487–3502.

Starodub, Y. P., & Havrys, A. P. (2018). Conceptual model of portfolio management project for territories protection against flooding. MATEC Web of Conferences 247, 00019 (2018). https://doi.org/10.1051/matecconf/201824700019

Starodub, Y., Karabyn, V., Havrys, A., Shainoga, I., & Samberg, A. (2018). Flood risk assessment of Chervonograd mining-industrial district. Proc. SPIE 10783, Remote Sensing for Agriculture Ecosystems, and Hydrology XX, 107830P (10 October 2018). Event: SPIE Remote Sensing, 2018, Berlin, Germany. https://doi.org/10.1117/12.2501928. https://www.spiedigitallibrary.org/conferenceproceedings-of-spie

Starodub, Y., Karpenko, V., Karabyn, V., & Shuryhin, V. (2020). Mathematical Modeling of the Earth Heat Processes for the Purposes of Eco-technology and Civil Safety. 2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020, 146–149, 9322009.

Starodub, Yu., Havrys, A., & Kozionova, O. (2023a). Study of the stress-strain state of loaded bridge engineering soils buildings. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(102), 89–94 [in Ukrainian] [Стародуб, Ю., Гаврись, А., & Козіонова, O. (2023a). Вивчення напружено-деформованого стану ґрунтів навантажених мостоінженерних споруд. Вісник київського національного університету імені Тараса Шевченка. Геологія, 3(102), 89–94]. http://doi.org/10.17721/1728-2713.102.12

Starodub, Yu., Kuplovsky, B., Brych, T., Havrys, A., & Yemelyanenko, S. (2023b). Computer simulation of natural and technological hazards and environmental-geophysical situations. "Rastr-7".

Starodub, Yu., Mykhalichko, B., Havrys, A., Yemelynenko, S., Kozionova, O., & Lavrenyuk, H. (2023c). Geology monitoring information system for the protection service in Ukraine. Proceedings of the 17th International Scientific Conference: Monitoring of Geological Processes and Ecological Condition of the Environment, 7–10 November 2023, Kyiv, Ukraine, 1–5.

Starodub, Yu. P., Kuplovskyi, B. E., Shelyukh, Yu. E., & Havrys, A. P. (2013). Localization of fire-hazardous areas using satellite data for seismically active zones of Ukraine. Fire safety, 23, 151–158 [in Ukrainian] [Стародуб, Ю. П., Купльовський, Б. Є., Шелюх, Ю. Є., & Гаврись, А. П. (2013). Локалізація пожежонебезпечних ділянок з використанням супутникових даних для сейсмоактивних зон України. Пожежна безпека, 23, 151–158].

Vyzhva, S. A., Vynnychenko O. B., & Kendzera O. V. (2008). The influence of natural and man-made processes on potentially dangerous objects. PPC "Kyiv University" [in Ukrainian]. [Вижва, С. А., Винниченко, О. Б., & Кендзера, О. В. (2008). Вплив природних і техногенних процесів на потенційно небезпечні об'єкти. ВПЦ "Київський університет"].

Нavrys, A., Yakovchuk, R., Pekarska, O., & Tur, N. (2023). Visualization of Fire in Space and Time on the Basis of the Method of Spatial Location of FireDangerous Areas. Ecological Engineering & Environmental Technology, 24(2), 28–37. https://doi.org/10.12912/27197050/156971

Downloads

Published

2024-09-19

How to Cite

STARODUB, Y., MYKHALICHKO, B., LAVRENYUK, H., KOZIONOVA, O., POŁCIK, H., & KUPLOVSKYI, B. (2024). ENVIRONMENTAL GEO-INFORMATIONAL MONITORING SYSTEM FOR THE CIVIL AND FIRE SAFETY SERVICES OF UKRAINE. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(105), 104-110. https://doi.org/10.17721/1728-2713.105.14