ORGANIC MATTER MATURITY LEVEL OF THE DNIEPER-DONETS BASIN DEPOSITS: UNCONVENTIONAL GAS PROSPECTS

Authors

  • V. Mikhailov Institute of Geology, Taras Schevchenko National University of Kyiv 90 Vasylkivska Str., Kyiv, 03022 Ukraine
  • O. Yemets M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation National Academy of Sciences of Ukraine 34, Acad. Palladina Ave., Kyiv-142, 03680, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.64.09.48-53

Keywords:

vitrinite, organic matter, hydrocarbons, Dnieper-Donets Depression

Abstract

The paper provides new findings on vitrinite obtained from well-core samples of the Devonian and Carboniferous sedimentary strata of the oilgas prospective fields, both in the eastern and western sides of the Dnieper-Donets Depression (DDD), with a focus on unconventional hydrocarbon prospecting. The organic matter was identified microscopically and vitrinite reflectance was systematically measured. In the deposits studied, vitrinite represents different types of organic macerals; disseminated vitrodetrinite being still dominant. Measurements of vitrinite reflectance striking off different DDD surfaces reveal high average dispersion means ranging 0.5 to ~7.0%. This characterizes variable level of the organic matter maturity and its different property to generate hydrocarbons. However, in general, the vitrinite reflectance tends to gradually increase with depth, meaning gradual maturation of the organic matter from the younger beds to older ones, and a temperature rise conditioned by a temperature gradient. Organic matter immature to generate significant amount of gaseous hydrocarbons is deposited in the DDD at the depth of 3000 m. However, down the depth of 2100 – 2300 m, the average vitrinite reflectance increases up to the values sufficient to consider organic matter mature, and to generate wet and dry gas. Thus, it is inferred to be prospective to explore for new shale gas deposits below the hypsometric level. On the other hand, the irregular dispersion of organic matter maturation in the DDD necessitates further detailed research, namely, into mapping potentially prospective areas of gas generation. 

References

Lukin A.E., (2010). Slantsevyi gas i percpectivy ego dobythchy v Ukraine. Statja 1. Sovremennoe sostojanie problem slantsevogo gasa (v svete opyta osvoenija ego resursov v SHA). Geol. Zhurn., 3, 17–33 (In Russian).

Lukin A.E., (2010). Slantsevyi gas i percpectivy ego dobythchy v Ukraine. Statja 2. Chernoslantsevye komplexy Ukrainy I perspektivy ikh gasonosnosty v Volyno-Podolii I Severo-Zapadnom Prichernomor'e. Geol. Zhurn., 4, 7–24 (In Russian).

Lukin A.E., (2011). O pryrode I perspektivakh gasonosnosty nizkopronitsaemykh porod osadochnoy obolochky Zemly. Dopovidy NAN Ukrainy, 3, 114–123 (In Russian).

Lukin A.E., (2011). Perspektivy slantsevoy gasonosnosty DneprovskoDonetskogo avlakogena. Geol. Jurn., 1, 21–41 (In Russian).

Mykhailov V.A., Zagnitko V.M., Mykhailova L.S., (2011). Perspektivy gasonosnosty slantsevykh vidkladiv Boltys'koi zapadyny. Zb. Nauk. Pr. In-tu Tutkovs'kogo. K., 23–29 (In Ukrainian).

Mykhailov V.A., Chepil P.M., (2012). Perspektivy naftogasonosnosty impaknykh structur Ukrains'kogo sthyta. Geolog Ukrainy, 1–2, 72–82 (In Ukrainian).

Mykhailov V., Guly V., Gladun M. , (2013). Slantseva nafta I tekhnologii ii vydobutku. Geolog Ukrainy, 2, 71–81 (In Ukrainian).

Kabyshev B.P., Kabyshev Y.B., Krivosheev V.T. et al., (1999). Neftegasogeneratsionnye svoistva porod paleozoja DDV po dannym piroliza na ustanovke "Pock-Eval". Dopovidy NAN Ukrainy, 12, 112–117 (In Russian).

Mykhailov V.A., Gladun V.V., Zeikan O.Ju., Chepil P.M., (2012). Perspektivy vidkryttja v Ukraini netradytsiynykh rodovysch nafty, pov'jazanykh zi slantsevymy I flishevymy vidkladamy. Naftogasova promyslovist, 1, 55–59 (In Ukrainian).

Mykhailov V.A., Ogar V.V., Gladun V.V. et al., (2011). Perspektivy gasonosnosty slantsevykh vidkladiv Dniprovsko-Donetskoy zapadyny. Geolog Ukrainy, 2, 51–58 (In Ukrainian).

Gursky D.S., Mykhailov V.A., Chepil P.M., Gladun V.V., (2010). Slantsevyi gas i problem energoobespechenia Ukrainy. Mineralni resursy Ukrainy, 1, 3–8 (In Russian).

Baskin D.K. Atomik H.C., (1997). Ratio of Kerogen as an Estimate of Thermal Maturity and Organic Matter Conversion. Bulletin AAPG, 9, 1415–1437.

Bustin R.M., Barnes M.A., Barnes W.C., (1990). Determining Levels of Organic Diagenesis in Sediments and Fossil Fuel. Diagenesis. – Geoscience Canada Reprint Series, 4, 205–226.

Bustin R.M., Barnes M.A., Barnes W.C., (1990). Determining Levels of Organic Diagenesis in Sediments and Fossil Fuel. Diagenesis. – Geoscience Canada Reprint Series, 4, 205–226.

England T.D.J., Bustin R.M., (1986). Thermal maturation of the Western Canadian Sedimentary Basin south of the Red Deer River. Alberta Plains. – Bulletin of Canadian Petroleum Geology, 34, 71–90.

Jarvie D. M., Hill R.J., Pollastro R.M., (2005). Assessment of the gas potential and yields from shales: The Barnett Shale model. In: B. Cardott, ed., Oklahoma Geological Survey Circular 110, 2005: Unconventional Energy Resources in the Southern Midcontinent, 37–50.

ICCP., (1998). The new vitrinite classification (ICCP System 1994). Fuel, 77 (5), 349-358.

Published

2025-01-16

How to Cite

Mikhailov , V., & Yemets, O. (2025). ORGANIC MATTER MATURITY LEVEL OF THE DNIEPER-DONETS BASIN DEPOSITS: UNCONVENTIONAL GAS PROSPECTS. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 1(64), 48-53. https://doi.org/10.17721/1728-2713.64.09.48-53