DEEP STRUCTURE MODELING OF GOLOVANIVSK SUTURE ZONE ON THE BASIS OF GEOELECTRIC DATA

Authors

  • T. Burakhovych Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • O. Ganiev Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine 32 Palladin Ave., Kyiv, 03680 Ukraine
  • B. Shyrkov Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.69.06.39-45

Keywords:

suture zone, fault zone, magnetotelluric sounding, magnetovariation profiling, conductive anomaly

Abstract

The article reviews the results of the preliminary three-dimensional modeling of Golovanivsk suture zone (GSZ) of the Ukrainian shield (USh) that was made on the basis of experimental magnetotelluric sounding (MTS) and magnetovariational profiling (MVP) data. According to various scientists, this part of USh is a regional structure with low conductivity of the crust. It is characterized by a pronounced anisotropy of the subsurface resistivity and its sharp variability both in lateral direction and in depth. Deep fault zones (Talnivska, Pervomayska, Vradiyivska, Gvozdavska) limiting GSZ and its structural-formational parts stand out as high conductivity zones, both at the subsurface and at depths of 15-30 km. The processing of modern magnetotelluric observations using digital equipment on the "Pervomajskiy" profile, using software system PRC_MTMV [3] made it possible to identify the anomalous conductive parts of GSZ localized in the zones of deep faults (Talnivska, Pervomayska, Yemylivska). These results were used to construct a three-dimensional geoelectric model. The method for construction of deep conductivity models is based on their multistage sequential calculation and comparison with experimental data. At the initial stage of modeling, MVP data are used while MTS data are used at the final stage. According to the simulation results, two sublatitudinally oriented superficial zones of high conductivity were revealed in the northern part of GSZ. Submeridional conductivity anomalies were found southward, which coincide with the parts of Yemylivska, Pervomayska and Zvenigorodsko-Bratska fault zones. Model calculations allowed to reveal several types of conductivity anomalies orientation: sublatitudinal and submeridional; such anomalies correspond with subsurface and deep conductivity anomalies that were used to build the three-dimensional model. At the depths of 100-2500 m, galvanically connected objects of submeridional strike were detected. Those objects manifested themselves in the junction zone of Pervomayska, Yemylivska, Zvenigorodsko-Bratska fault zones. These anomalies are in good agreement and spatially combined with the model of the Kirovograd ore region [7]. In the depth interval of 10-15 km to 20-30 km the obtained model contains several areas of high conductivity: in the axial part of GSZ and Pervomayska fault zone; in southern part of Pervomayska fault zone; in the south of GSZ, Talnivska fault zone; sublatitudinal zone in the Pre Black Sea depression.   

References

Белявский В.В., Бурахович Т.К., Кулик С.Н., Сухой В.В., (2001). Электромагнитные методы при изучении Украинского щита и Днепровско-Донецкой впадины. – К.: Знання. – 227 с. Belyavskiy V.V., Burakhovich T.K., Kulik S.N., Sukhoy V.V., (2001). Elektromagnitnye metody pri izuchenii Ukrainskogo shchita i DneprovskoDonetskoy vpadiny. – Kyiv, Znannya. – 227 p. (In Russian).

Бурахович Т.К., Кулик С.Н., (2009). Трехмерная геоэлектрическая модель земной коры и верхней мантии западной части Украинского щита и его склонов. – Геофиз. журн., 31, 1. – С. 88-99. Burakhovich T.K., Kulik S.N., (2009). Trekhmernaya geoelektricheskaya model' zemnoy kory i verkhney mantii zapadnoy chasti Ukrainskogo shchita i ego sklonov. – Geofiz. zh., 31, 1. – Р. 88-99. (In Russian).

Верем'єв П.С., Рябенко В.А., (1968). Морфологія і внутрішня будова Ємилово-Первомайського глибинного розлому Українського щита. – Доп. АН УРСР. Сер. Б, 10. – С. 867-871. Verem'yev P.S., Ryabenko V.A., (1968). Morfolohiya i vnutrishnya budova Yemilovo-Pervomayskoho hlybynnoho rozlomu Ukrayinskoho shchyta. – Dop. AN URSR. Ser. B, 10. – Р. 867-871. (In Ukrainian).

Геолого-геофизическая модель Голованевской шовной зоны Украинского щита / А.В. Анциферов, Е.М. Шеремет, Е.Б. Глевасский и др., (2008). – Донецк: Вебер. – 305 с. Antsiferov A.V., Sheremet E.M., Glevasskiy E.B. et al., (2008). Geologogeofizicheskaya model Golovanevskoy shovnoy zony Ukrainskogo shchita. – Donetsk: Veber. – 305 p. (In Russian).

Гинтов О.Б., (2005). Полевая тектонофизика и ее применение при изучении деформацій земной коры Украины. – К.: Феникс. – 572 с. Gintov O.B., (2005). Polevaya tektonofizika i ee primenenie pri izuchenii deformatsіy zemnoy kory Ukrainy. – Kyiv, Feniks. – 572 p. (In Russian).

Ингеров А.И., (1988). Карта магнитных параметров МТЗ и МВП ЮВ части УЩ. М-б 1:1000000. – Укргеолфонд, № 50034. Ingerov A.I., (1988). Karta magnitnykh parametrov MTZ i MVP Yu-V chasti UShch. M-b 1:1000000. – Ukrgeolfond, № 50034. (In Russian).

Ингеров А.И., Рокитянский И.И., (1993). Украинский щит. Литосфера Центральной и Восточной Европы: Обобщение результатов исследований / Отв. редактор А.В. Чекунов. – К.: Наук. думка. – 257 с. Ingerov A.I., Rokityanskiy I.I., (1993). Ukrainskiy shchit. Litosfera Tsentralnoy i Vostochnoy Evropy: Obobshchenie rezultatov issledovaniy. Ed. A.V. Chekunov. – Kyiv, Naukova dumka. – 257 p. (In Russian).

Кулик С.Н., Бурахович Т.К., (2007). Трехмерная геоэлектрическая модель земной коры Украинского щита. – Физика Земли, 4. – С. 21–27. Kulik S.N., Burakhovich T.K., (2007). Trekhmernaya geoelektricheskaya model' zemnoy kory Ukrainskogo shchita. – Fizika Zemli, 4. – Р. 21–27. (In Russian).

Николаев И.Ю, Бурахович Т.К, Шеремет Е.М., (2013). Объемная геоэлектрическая модель Кировоградского рудного района центальной части Украинского щита. – Геофизический журнал, 35, 4. – С. 127-139. N

ikolaev I.Yu, Burakhovich T.K, Sheremet E.M., (2013). Obyemnaya geoelektricheskaya model Kirovogradskogo rudnogo rayona tsentalnoy chasti Ukrainskogo shchita. – Geofizicheskiy zhurnal, 35, 4. – Р. 127-139. (In Russian).

Шевчук В.В., (2012). Соотношение протерозойского автохтонного гранитообразования и деформационных процессов в пределах Тальновской зоны разломов (Украинский щит). – Вісник Київського університету. Геологія, 56. – С. 5-7.

Shevchuk V.V., (2012). Sootnoshenie proterozoyskogo avtokhtonnogo granitoobrazovaniya i deformatsionnykh protsessov v predelakh Talnovskoy zony razlomov (Ukrainskiy shchit). – Vіsnik Kyivskogo unіversytetu. Geologіya, 56. – Р. 5-7. (In Russian).

Mackie R.L., Smith J.T., Madden T.R., (1994). Three dimensional electromagnetic modeling using finite difference equations: the magnetotelluric example. Radio Science, 29, 923-935.

Published

2025-01-16

How to Cite

Burakhovych, T., Ganiev, O., & Shyrkov, B. (2025). DEEP STRUCTURE MODELING OF GOLOVANIVSK SUTURE ZONE ON THE BASIS OF GEOELECTRIC DATA. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(69), 39-45. https://doi.org/10.17721/1728-2713.69.06.39-45