ADSORPTION OF TRITIUM FROM AQUEOUS SOLUTIONS OF TREATED CLAY MINERALS
DOI:
https://doi.org/10.17721/1728-2713.71.07Keywords:
kaolinite, montmorillonite, saponite, palygorskite, tritiated water, heat treatment, storage of tritiumAbstract
Experimental research was performed to evaluate the effect of porous and adsorption water on the ability of the clay minerals to extract tritium from aqueous solutions. Two series of experiments were performed in a closed system "clay mineral – tritiated water". In each series representatives of the main structural types of clay minerals are used: kaolinite (structural type 1:1), montmorillonite and saponite (structural type 2:1), palygorskite and sepiolite (ribbon-channel structural type). In the first series of experiments, the clay samples were not thermally treated. In the second series of experiments, the clay samples were thermally treated at 110°С. The duration of the whole experiment was 6 months. The results show that thermal treatment improves the tritium adsorption of the clay minerals. The portion of tritium that is extracted from the tritium water (designated as Kn) was greater in thermally treated clay samples for all the structural types used. Determined are the most efficient extractors of tritium from an aqueous solution, with a value of Kn = 52% (montmorillonite) and 53% (sepiolite). These results clearly demonstrate the benefits of thermal treatment of the clay minerals for increasement of their tritium extraction efficiency as the tritium adsorbents in water solutions.
References
De Bur, I.H. (1962). Dinamicheskiij harakter adsorbzii. Moskow, Leningrad. [in Russian].
Pushkar'ov O.V., Lytovchenko A.S., Pushkar'ova R.O., Jakovljev E.O. (2000). Dynamika nakopychennja trytiju v mineral'nomu seredovyshhi. Kyiv, Mineralni resursy Ukrainy, 3, 42-45. [in Ukrainian].
Lazarenko E.K. (1971). Kurs mineralogii. Moskow: Vysshaja shkola, 608 p. [in Russian].
Popov V.G., Abdrahmanov R.F. (2013). Ionoobmennaja koncepcija v geneticheskoj gidrogeohimii. Ed. by V.G. Popov. Ufa: Gilem, 355 p. [in Russian].
Pospelov G.L. (1973). Paradoksy, geologo-phizicheskaja sushchnost i mehanizmy metasomatoza. Novosibirsk: Nauka, 355 p. [in Russian].
Pushkar'ov O.V., Pryjmachenko V. M. (2010a). Ocinka kinetyky izotopno-obminnyh reakcij v glynystyh mineralah. Kyiv, Zbirnyk naukovyh prac. Instytut geohimii navkolyshn'ogo seredovyshha, 18, 140-148. [in Ukrainian].
Pushkar'ov O.V., Pryjmachenko V. M. (2010b). Vzajemodija trytievoi vody z glynystymy mineralamy. Kyiv, Zbirnyk naukovyh prac, Instytut geohimii navkolyshn'ogo seredovyshha, 18, 149-156. [in Ukrainian].
Pushkar'ov O.V., Pryjmachenko V.M., Zolkin I.O. (2012). Vlastyvosti bentonito-ceolitovyh kompozytiv shhodo vyluchennja trytiju z trytijevoi vody. Kyiv, Zbirnyk naukovyh prac. Instytut geohimii navkolyshn'ogo seredovyshha, 20, 98-108. [in Ukrainian].
Pushkar'ov O.V., Rudenko I.M., Dolin V.V. Jr., Pryjmachenko V.M. (2014). Sepiolit-ceolitovi kompozyty jak potencijni vodopronykni reakcijni barjery. Kyiv, Zbirnyk naukovyh prac. Instytut geohimii navkolyshn'ogo seredovyshha, 23, 98-107. [in Ukrainian].
Tarasevich Ju.I. (1988). Strojenijе i himija poverhnosti sloistyh silikatov. Kyiv, Naukova Dumka, 248 p. [in Russian].
Tarasevich Ju.I., Ovcharenko F.D. (1975). Adsorbcija na glinistyh mineralah. Kyiv, Naukova Dumka, 348 p. [in Russian].
Lytovchenko A.S., Pushkarev A.V., Samodurov V.P., Baker J.H., Fenoll Hach-Ali P. et al. (2005). Assessment of the potential ability of phyllosilicates to accumulate and retain tritium in structural OH-groups. Mineralogical Journal, 2, 59-65.
Bailey S.W. (1979). Summary and recommendation of the AIPEA Nomenclature committee. Clay Science, 4, 209-220.
Bleam W.F. (1990). The nature of cation substitution sites in phyllosilicates. Applied Clay Minerals, 38, 527-536.
Deer W.А., Howie R.A., Zussman J. (1962). Rock-forming minerals. (Vol. 3, pp. 317). London: Longmans.
Goldansky V. I., Trahktenberg L. I., Flerov V. N. (1989). Tuneling phenomena in Chemical Physics. N.-Y., Gordon and Breach Science Publishers, 328 p.
Hammes-Shiffer S. (1998). Mixed quantum-classical dynamics of single proton, multiple proton, and proton-coupled electron transfer reaction in the condensed phase. Advances in Classical Trajectory Methods, 3, 73-119.
Fenoll Hach-Ali P., Samodurov V. P. et al. (2001). Tritium accumulation and preservation into phyllosilicates and mineral mixtures for environmental protection. (Annex 1, pp. 1-35). Project INTAS 2001-2166 (TRITAR). Final report.
Wersin P., Curti E., Apello C.A.J. (2004). Modelling bentonite – water interactions at high solid/liquid ratios: swelling and diffuse double layer effects. Applied Clay Science, 26, 250-251.
Zakn D. & Brickmann J. (1999). Quantum-classical simulation of proton migration in water. Jsr. J. Chem., 39, З-4, 463-482.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Visnyk of Taras Shevchenko National University of Kyiv. Geology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




