EARTH'S SEISMICITY AND SECULAR CHANGES OF ITS MAGNETIC FIELD

Authors

  • M. Orlyuk National Academy of Sciences of Ukraine 32 Acad. Palladina Ave., Kyiv, 03680 Ukraine
  • A. Marchenko National Academy of Sciences of Ukraine 32 Acad. Palladina Ave., Kyiv, 03680 Ukraine
  • A. Romenets National Academy of Sciences of Ukraine 32 Acad. Palladina Ave., Kyiv, 03680 Ukraine

DOI:

https://doi.org/10.17721/1728-2713.75.08

Keywords:

Earth's magnetic field, seismicity, lithospheric plates, magnetization, fluids

Abstract

Analysis of temporal changes in Earth's magnetic field and its seismicity for the period from 1950 to 2000 was performed. For the analysis the main magnetic field of the Earth ВIGRF–10 with a spherical harmonic to degree and order 13 was used, which allows us to study the characteristics of magnetic anomalies with dimensions in the first thousand kilometers. Temporal changes in the geomagnetic field for the period from 1950 to 2000 were divided into conditional long–wave "nuclear" and short "mantle–lithosphere" components. The planet, on the whole, showed a lower seismicity of south–western hemisphere, which is characterized by a significant reduction in "nuclear" part of the field, as compared with the north–eastern hemisphere. For the first time the connection between areas with high seismic activity and areas of positive growth "mantlelithosphere" component of the geomagnetic field was traced, which correspond to the zones of tectonic joints of lithospheric plates. The following two communication mechanisms: (a) the "temperature–magnetic", due to immersion of the magnetic blocks of the oceanic crust in a subduction zone, followed by a change in magnetization due to their warm–up; (b) "fluid–gas–magnetic", based on the formation and transformation of ferrous minerals under the influence of transmantle gases and fluids were proposed. Trans–mantle gases and fluids can play structures-formative role in relation to the modern geological and tectonic processes in the areas of joints of lithospheric plates. 

References

Sobisevich A. L, Rogozhin E. A., Sobisevich L. E., Kanonidi K. Kh., Kendzera A. V., Marchenko A. V., Orlyuk M. I. (2014). Vozmushheniya geomagnitnogo polya pri Sychuanskom zemletrjasenii 20 aprelya 2013 g. (Ms=7.0). Geofizicheskij zhurnal, 4, 36, 37–49. iIn Russian]. 2. Sobisevich L. E., Kanonidi K. Kh., Sobisevich A. L., Miseyuk O. I. (2013). Geomagnitnye vozmushheniya v variaciyakh magnitnogo polya Zemli na etapakh podgotovki i razvitiya Tureckogo (08.03.2010 g.) i Severokavkazskogo (19.01.2011 g.) zemletryaseniy. Doklady AN (Geofizika), 1, 449, 93–96. [in Russian]. 3. Gokhberg M. B., Shalimov S. L. (2008). Vozdeystvie zemletryasenyj i vzryvov na іonosferu. Moskow: Nauka. [in Russian]. 4. Gulelmi A. V., Zotov O. D. (2012). O magnitnykh vozmushheniyakh pered silnymi zemletryaseniyami. Fizika Zemli, 2, 84–87. [in Russian]. 5. Gufel'd I. L., Gusev G. A., Matveeva M. I. (1988). Metastabil'nost' litosfery kak proyavlenie voskhodyashchey diffuzii legkikh gazov. DAN, 365, 5, 677–680. [in Russian] 6. Kuznyecova V. G., Maksymchuk V. Ju., Gorodyskyy Ju. M., Nikiforova N. M., Pronyshyn R. S. (2005). Doslidzhennya zvyazkiv seysmichnosti Karpat z fazamy 11–richnogo cyklu sonjachnoyi aktyvnosti i magnitnymy burjamy z raptovym pochatkom. Geofizychnyy zhurnal, 5, 27, 849–856. [in Ukrainian]. 7. Livshits L. D., Pecherskiy D. M., Trukhin V. I. (1969). Effekt rosta ostatochnoy namagnichennosti pri nagrevanii vyustita. In Magnetizm gornykh porod i paleomagnetizm. (pp. 13–15). Moskow, IFZ AN SSSR. [in Russian]. 8. Orliuk M. I. (1999). Magnitna model' zemnoi' kory pivdennogo zahodu Shidno-Evropejs'koi' platformy. Extended abstract of Doctor's thesis. Kyiv. [in Ukrainian]. 9. Orlyuk M. I., Pashkevich I. K (2012). Glubinnye istochniki regional'nykh magnitnykh anomaliy: tektonotipy i svyaz' s transkorovymi razlomami. Geofizicheskij zhurnal, 34, 4, 224–234. [in Russian]. 10. Orlyuk M. I., Pashkevich I. K. (1995). Magnitnaya model yugozapadnogo kraya Vostochno–Evropeyskoy platformy. Geofizicheskij zhurnal, 6, 17, 31–36. [in Russian]. 11. Orlyuk M. I. (2000). Prostranstvennye i prostranstvenno–vremennye magnitnye modeli raznorangovykh struktur litosfery kontinental'nogo tipa. Geofizicheskij zhurnal, 22, 6, 148–165. [in Russian]. 12. Orlyuk M. I., Romenets A. A. (2011). Struktura i dinamika glavnogo magnitnogo polya Zemli na ee poverkhnosti i v blizhnem kosmose. Odessa astronomical publications, 24, 124–129. [in Russian]. 13. Orlyuk M. I., Marchenko A. V., Romenets A. O. (2016). Seysmichnist Zemli ta vikovi zminy yiyi golovnogo magnitnogo polya. Geofizychni tehnologiyi prognozuvannya ta monitoryngu geologichnogo seredovyscha: Materialy VI Mizhnarodnoyi naukovoyi konferenciyi (20–23 veresnja 2016). (pp. 202–204). Lviv. [in Ukrainian]. 14. Pecherskiy, D.M. (Ed.). (1994). Petromagnitnaya model litosfery: monografiya. Kyiv: Naukova dumka. [in Russian]. 15. Sergeeva, N.G., Ogloblina, O.F., Chernyakov, C.M. (2009). Silnie zemletryaseniya i ikh vliyanie na polyarnuyu nizhnyuyu ionosferu. Vestnik MGTU, 2, 12, 328–337. [in Russian]. 16. Sobisevich L. E., Sobisevich A. L., Kanonidi K. Kh. (2012). Anomalnie geomagnitnie vozmuscheniya, navedennie katastroficheskimi cunamigennimi zemletryaseniyami v rajone Indonezii. Geofizicheskij zhurnal, 5, 34, 22–37. [in Russian]. 17. Sobisevich L. E., Kanonidi K. Kh., Sobisevich A. L. (2010). Nablyudeniya UNCh geomagnitnykh vozmushheniy, otrazhayuschikh processy podgotovki i razvitiya cunamigennykh zemletryaseniy. Doklady AN (Geofizika), 4, 435, 548–553. [in Russian]. 18. Sobisevich A. L., Starostenko V. I., Sobisevich L. E., Kendzera A. V., Shuman V. N., Volfman Ju. M. et al. (2013). Chernomorskie zemletryaseniya konca dekabrya 2012 g. i ikh proyavlenie v geomagnitnom pole. Geofizicheskij zhurnal, 6, 35, 54–71. [in Russian]. 19. Shcherbina S. V. (2013). Korrelyacionnyy analiz svyazi dinamiki solnechnoj plazmy i processa generacii zemletryaseniy. Geodinamіka, 2, 15, 370–372 [in Russian].

Catalog Global http://www.globalcmt.org. CMT. www.globalcmt.org. Retrieved from 21. Dunlop D., Ozdemi, O., Costanzo–Alvarez V. (2010). Magnetic properties of rocks of the Kapuskasing uplift (Ontario, Canada) and origin of long–wavelength magnetic anomalies. Geophysical Journal International, 183, 645–658. 22. Mandea M., Korte M. (Eds.). (2011). Geomagnetic Observations and Models. DOI: 10.1007/978–90–481–9858–0_13. 23. Kletetschka G., Wasilewski P., Taylor P. (2002). The role of hematite–ilmenite solid solution in the production of magnetic anomalies in ground– and satellite–based data. Tectonophysics, 347, 167–177. 24. Niu F., Levander A., Ham S., Obayashi M. (2005). Mapping the subducting Pacific slab beneath southwest Japan with Hi–net receiver functions. Earth and Planetary Science Letters, 239, 9–17

Mavrodiev S., Pekevski L., Kikuashvili G., Botev E., Getsov P., Mardirossian G. et al. (2015). On the Imminent Regional Seismic Activity Forecasting Using INTERMAGNET and Sun–Moon Tide Code Data. Open Journal of Earthquake Research, 4, 102–113. 26. Pashkevich I. K., Orlyuk M. I. (1997). Magnetic model of the lithosphere and some problems of Geomagnetic Reference Field. 8th Scientific Assembly of IAGA. Abstracts. (p. 485). Uppsala. 27. Wasilewski P. J., Warner R. D. (1988). Magnetic petrology of deep crustal rocks – Ivrea Zone, Italy. Earth and Planetary Science Letters, 87, 347–361.

Published

2025-01-10

How to Cite

Orlyuk, M., Marchenko, A., & Romenets, A. (2025). EARTH’S SEISMICITY AND SECULAR CHANGES OF ITS MAGNETIC FIELD. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(75), 50-54. https://doi.org/10.17721/1728-2713.75.08