RESEARCH OF GEOLOGIC STRUCTURE OF TERRITORIES OF HYDROTECHNICAL SYSTEMS ALLOCATION BY MEANS OF GEOPHYSICAL METHODS (USING "SENZHE" HPP AS AN EXAMPLE, EQUATORIAL GUINEA)

Authors

  • S. Vyzhva Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • V. Onyshchuk Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • K. Ivanchenko Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • I. Onyshchuk Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • M. Reva Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • S. Deineko GP KIIZI "Energoprojekt" 4 Peremogy Avе., Kyiv, 01135, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.77.04

Keywords:

engineering-geophysical investigations, crystalline rocks, electrical resistivity, vertical electrical sounding

Abstract

The article is devoted to peculiarities of application of electrical exploration method for engineering-geophysical and geophysical investigations to ensure the construction of hydropower plants in tropical conditions on the territory of Equatorial Guinea. Also the article discusses informativeness of proactive geophysical studies, in result of which block structure of geological section of the area was found. Comprehensive analysis of the vertical section, resistivity maps and drilling data showed that increased resistance zones are controlled by monolithic rocks of dyke complex and low-resistance zones are associated with areas of varying degrees of fractured crystalline rocks. Maps of the apparent electrical resistance at different set spans allowed to unravel the three-dimensional structure of investigated area in an electric field and provided valuable information for drawing up its conditioning geological basis. The basis of the geological section consists of Precambrian crystalline rocks that vary considerably in resistivity – from 780 to 50,000 Ohm × m, and the values of the speed of propagation of refracted waves are from 2.7 km/s to 7.0 km/sec. A wide range of geophysical characteristics of crystalline basement rocks indicates a significant change of fracture intensity and rock decay that should be considered when drawing up the master plan of HPP facilities allocation. 

References

Anahov, P.V., Makarets, N.V (2016). Vozbuzhdenie zemletryaseniy pri napolnenii vodohranilisch. Superpozitsiya pryamyih i kosvennyih vozdeystviy na mestnuyu geologicheskuyu sredu. Geofizicheskiy Zhurnal, 38(1), 86–96. [in Russian]. 2. Vyzhva, S.A. (2004). Heofizychnyi monitorynh nebezpechnykh heolohichnykh protsesiv. Kyiv: "Obrii", 236 p. [in Ukrainian].3. Vyzhva, S.A., Onyshchuk, I.I., &Bezrodnyi, D.A. (2003). Ekoheofizychnyi monitorynh miskykh ahlomeratsii. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 25, 71–75. [in Ukrainian]. 4. Kachinskiy, A.B., Agarkova, N.V. (2015). Harakter svyazanosti elementov sistemyi obespecheniya bezopasnosti gidrotehnicheskih. Systemni doslidzhennia ta informatsiini tekhnolohii, 3, 72–83. [in Russian]. 5. Malik, L.K. (2005). Faktoryi riska povrezhdeniya gidrotehnicheskih sooruzheniy. Moskva: Nauka, 354 р. [in Russian]. 6. Nekrasov, Yu.F., Ozmidov, O.R., Agentov, V.V. (1991). Kontrol polozheniya depressionnoy poverhnosti tehnogennogo vodonosnogo gorizonta v ograzhdayuschih dambah nakopiteley promyishlennyih othodov metodami inzhenernoy geofiziki. Sb. "Geofizicheskie issledovaniya v gidrogeologii, inzhenernoy geologii", 84–91. [in Russian]. 7. Nosova, O.N., Aleksandrovskaya, E.K. (1999). K voprosu kontrolya za nadyozhnostyu i bezopasnostyu ekspluatiruemyih gidrotehnicheskih sooruzheniy. Meteorologiya i gidrologiya, 1, 21–26. [in Russian]. 8. Onyshchuk, I.I., Reva, M.V. (2002). Osoblyvosti ekoheofizychnykh doslidzhen pry vyvchenni zsuvonebezpechnykh terytorii. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 22–23, 85–88. [in Ukrainian]. 9. Onyshchuk, I.I., Reva, M.V. (2004). Pryntsypy heofizychnoho kartuvannia stanu zemel. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 29–30, 36–40. [in Ukrainian]. 10. Onyshchuk, I.I., Reva, M.V., Nikitash, O.P., & Onyshchuk, V.I. (2006). Doslidzhennia tekhnohennoho zabrudnennia dovkillia heofizychnymy metodamy. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 38–39, 93–96. [in Ukrainian]. 11. Savich, A.I., Kuyundzhich, B.D., Koptev, V.I. et al. (1990). Kompleksnyie inzhenerno-geofizicheskie issledovaniya pri stroitelstve gidrotehnicheskih sooruzheniy. Moskva: Nedra, 449 p. [in Russian]. 12. Usachenko, B.M., Musienko, S.P., Ilyashov, M.A., & Sergienko, V.N. (2008). K razrabotke geokompozitnyih ohrannyih sistem. Geotehnicheskaya mehanika: Mezhved. sb. nauchn. tr., 78, 6–72. [in Russian]. 13. Fedorov, N. N. (1995). Skladirovanie othodov rudoobogascheniya. Moskva: Nedra, 235 p. [in Russian]. 14. Shnyukov, E.F. (1990). Ekologicheskaya geologiya Ukrainyi. Kyiv: Naukova dumka, 403 p. [in Russian].

Published

2025-01-16

How to Cite

Vyzhva, S., Onyshchuk, V. ., Ivanchenko, K., Onyshchuk, I., Reva, M., & Deineko, S. (2025). RESEARCH OF GEOLOGIC STRUCTURE OF TERRITORIES OF HYDROTECHNICAL SYSTEMS ALLOCATION BY MEANS OF GEOPHYSICAL METHODS (USING "SENZHE" HPP AS AN EXAMPLE, EQUATORIAL GUINEA). Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(77), 36-42. https://doi.org/10.17721/1728-2713.77.04