DISTRIBUTION OF YTTRIUM AND SOME OTHER TRACE ELEMENTS IN WIDE-SPREAD ACCESSORY MINERAL ASSEMBLEGES: TEMPERATURE DEPENDENCE AND ITS APPLICATION IN GEOCHEMICAL MODELING

Authors

  • S. Shnyukov Taras Schevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • I. Lazareva Taras Schevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.77.02

Keywords:

zircon, apatite, fluorite, monazite, xenotime, yttrium, trace elements, distribution coefficient, crystallization temperature, geochemical modeling

Abstract

Yttrium, REE and some other trace elements distribution in accessory mineral assemblages including apatite (Ap), zircon (Zrn), monazite (Mnz), xenotime (Xnt), fluorite (Fl) were investigated. As a result, the Ap Zrn Y 1T ln K vs. (oK) dependence ( Ap Zrn Ap Zm K C C Y Y = ; Ap Zm Y Y C , C – Y Y content in apatite and zircon respectively) was preliminarily calibrated on the basis of host rock thermometry. Obtained equation y (6,8009 0,3270)x (7,1104 0,3133) = ±- ± ( ApZrn Y ln K y = , x 1000T = ) was applied in the geochemical model of granitoids formation. According to this model, the temperature of the beginning of the melt crystallization (Tmodel) was taken as the temperature of the apatite and zircon saturation. Therefore, Y content in coexistent apatite and zircon grains at the first stage of melt crystallization were estimated for each sample by means of extrapolation of the experimental graphs Ap Y C , Zm Y C vs. H to H = 0 (H is the grain mass determined by milliprobe single-grain XRF, while Y content determination in each grain). Comparison of the corresponding temperatures obtained via the calibrated Ap Zrn Y ln K vs. 1T dependence with Tmodel values demonstrates their tolerable agreement. This fact confirms the geochemical model of the first stage of the granitoid formation. Similar results for the following magmatic and magmatic-hydrothermal ore-forming events may be obtained by means of other assemblages (Zrn-Mnz, Zrn-Xnt, Zrn-Fl etc.). 

References

Balashov, Yu. A. (1976). Geochemistry of rare earth elements. M.: Nauka, 267 р. [In Russian].

Borodin, L.S. (1987). Petrochemistry of magmatic series. M.: Nauka, 261 р. [In Russian].

Bragg, W.L., Claringbull G.F. (1967). Crystal structures of minerals. M.: Mir, 389 р. [In Russian].

Bogatikov, O.A. (1985). Magmatic rocks. V. 3. Basic rocks. M.: Nauka, 487 p. [In Russian].

Wood, B.J., Fraser, D.G. (1967). Elementary thermodynamics for geologists. M.: Mir, 184 р. [In Russian].

Vynar, O.N., Razumaeva, N.N. (1972). Suschano-Perzhanska Zone hydrothermal mineralization zone formation features. Mineralogic. Sb. Lvivsk. Un-ta, 2, 26, 197-206. [In Russian].

Kogarko, L.N., Lazutkina, L.N., Krigman, L.D. (1988). Zirconium concentration in magmatic melts conditions. M.: Nauka, 120 р. [In Russian].

Krasnobaev, A.A., Holodnov, V.V., Znamenskiy, N.D., Loginova, L.G. (1980). Petrologic informational content of yttrium in existing zircons and apatites from different granitoid types of Ural. Trace elements in minerals and rocks of Ural. Sverdlovsk: UNC AN USSR, 67-78. [In Russian].

Krasnobaev, A.A. (1986). Zircon as an indicator of geological processes. M.: Nauka, 147 р. [In Russian].

Lazareva I.I. (2015). Informational content of metasomatic zircons typing by several physical, morphologic and geochemical features. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 69, 24-29. [In Ukrainian].

Lazareva, I.I. (2015). Geochemistry and color of natural fluorites: efficiency and simplicity of practical application in mineralogic and geochemical research. Visnyk of Taras Shevchenko National University of Kyiv.Geology, 68, 32-39. [In Ukrainian].

Lazareva, I.I. (2015). Yttrium distribution in zircon-fluorite pair as an indicator of metasomatite formation thermal conditions: several capabilities of practical applications. Modern Science. Moderní věda. Praha. Česká republika. Nemoros, 5, 211–219. [In Russian].

Mineev, D.A. (1972). Lantanoid compositions for existing minerals as indicators of physical and chemical processes of mineral formation conditions. Rare metals deposits, their genesis and research methods. M.: Nedra, 190-197. [In Russian].

Mineev, D.A. (1974). Lantanoids in ores of rare earth elements and complex deposits. M.: Nauka, 250 р. [In Russian].

Povarenih, A.C. (1966). Crystal chemistry classification of mineral individuals. Kiev: Nauk. dumka, 547 р. [In Russian].

Semenov, E.I. (1963). Mineralogy of rare earths elements. M.: Izdvo AN USSR, 412 р. [In Russian].

Urusov, V.S. (1987). Theoretical crystal chemistry. M.: Izd-vo MGU, 275 р. [In Russian].

Fershtater, G.B., Borodina, N.S. (1975). Petrology of magmatic granitoids (at the example of Ural). M.: Nauka, 288 р. [In Russian].

Henderson, P. (1985). Inorganic geochemistry. M.: Mir, 339 р. [In Russian].

Homyakov, A.P. (1985). REE-bearing minerals as possible geothermometers. Dokl.AN USSR, 191, 2, 440–442. [In Russian].

Shnyukova, E.E. (1994). Evolution of Mountain Crimea and Crimean continental slope magmatism. Autoref. dis. … cand. geol.-min. sciences. Kiev, 20 р. [In Russian].

Shnyukov, E.F., Sherbakov, I.B., Shnyukova, E.E., (1994). Paleo island arc of northern Black Sea. Kiev: NAN of Ukraine, 287 р. [In Russian].

Shnyukov, S.E. (1988). Apatites, zircons and sphenes from carbonatite surrounding phenites and alkali metasomatites of regressive metamorphism zones of Ukrainian Shield as petrogenetic and geochemical indicators. Autoref. dis. … cand. geol.-min. sciences. Lviv, 25 р. [In Russian].

Shnyukov, S.E., Andreev, A.V., Cheburkin, A.K. (1988). Trace elements in coexisting ubiquitous accessory minerals as criteria of formation conditions for metasomatites (principles of interpretation of mineralogic and gecochemical data, method of analytical research). Prepr. AN USSR, In-t geol. Kiev, 50, 88-45. [In Russian].

Shnyukov, S.E., Andreev, A.V., Cheburkin, A.K. (1989). Geochemistry of coexisting ubiquitous accessory minerals and its role in endo- and exogenous geologic processes research. Geol. Journ. 49, 2, 107114. [In Russian].

Shnyukov, S.E., Gaitar, Y., Andreev, A.V. et al. (1993). Petrologic analysis of geochemistry of accessory zircons and apatites from Rohovetska intrusion (Slovakia) granitoids. Geol. Journ, 1, 30-41. [In Russian].

Shnyukov ,S.E. (2001). Yttrium distribution in apatire-zircon paragenesises: temperature dependence and its possible use in geochemical modeling of magmatioc processes. International conference materials "Crystal genesis and mineralogy" (Memory of prof. G.G. Lemmlein) (Sankt-Peterburg, Russia, 17-21 September 2001). Sankt-Peterburg, 352. [In Russian].

Shnyukov, S.E. (2001). Ubiquitous accessory minerals in geochemical modeling of magmatic processes. Zbirnuk naukovih materialiv UkrDGRI, 1-2, 41-53. [In Ukrainian].

Shnyukov, S.E., Lazareva, I.I. (2002). Geochemical modeling in research of genetic connection of magmatic complexes and spatially associated hydrothermal-metaspmatic ore deposits. Zbirnuk naukovih prac UkrDGRI, 1, 128-143. [In Ukrainian].

Shnyukov, S.E., Andreev, A.V., Belousova, E.A., Savenok, S.P. (2002). XRF analysis of matter microquantities in accessory minerals geochemistry: correlation with local analytical methods. Miner. Journ., 24, 1, 80-95. [In Russian].

Aleksieienko, А., Shnyukov, S., Lazareva, І., Мorozenko, V. (2016). Geochemistry of Galindez and Uruguay islands (West Antarctica) analysi basait-rhyolite volcanic series: Preliminary data analysis. XV-th International Conference on Geoinformatocs – Theoretical and Applied Aspects (May 1013, 2016, Kiev, Ukraine), Access mode: ///C:/Users/Irina/Downloads/Programme_Geoinformatics_2016%20(1).pdf.

Belousova, E.A. (2000). Trace elements in zircons and apatites: application to petrogenesis and mineral exploration: PhD thesis. Department of Earth and Planetary Sciences. Macquarie University, 310 р.

Belousova, E.A., Walters, S., Griffin, W.L., O'Reilly, S.Y. (2001). Trace element signatures of apatites from granitoids of Mount Isa Inlier, north-west Queensland, Australia. Australian Journal of Earth Sciences, 48, 603-619.

Ferry, J.M., Watson, E.B. (2007). New thermodynamical models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-437.

Gavryliv, L., Shnyukov, S., Lazareva, І. (2016). Geochemical behavior of major and trace elements during magma evolution process in Bodie Hills Volcanic Field, Nevada. XV-th International Conference on Geoinformatocs – Theoretical and Applied Aspects (May 10-13, 2016, Kiev, Ukraine). Access mode: http://www.earthdoc.org/publication/ publicationdetails/?publication=84616

Guo, J.F., O'Reilly, S.Y., Griffin, W.L. (1996). Zircon inclusions in corundum megacrysts I: Trace element geochemistry and clues to the origin of corundum megacrysts in basalts. Geochim. et Cosmochim. Acta, 60, 2347–2363.

Harrison, T.M., Watson, E.B. (1984). The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim. et Cosmochim. Acta, 48, 7, 146-147.

Montel, J.M. (1993). A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110, 127-145.

Nielsen, R.L., Dungan, M.A. (1983). Low pressure mineral-melt equilibria in natural anhydrous mafic systems. Contr. Mineral. Petrol, 84, 310-326.

Kohn, M.J., Rakovan, J. & Hughes, J.M. (Eds.) (2002). Phosphates. Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy & Geochemistry, 48, 748 р.

Shnyukov, S.E., Andreev, A.V., Zinchenko, O.V., Khlon, E.A., Lazareva, I.I., Zagorodny, V.V., Grinchenko, A.V. (2000). Geochemical modelling of Pre-Cambrian granitoid evolution in Ukrainian Shield: petrogenetic aspects and genesis of complex rare metal, polymetalic and gold mineralization in neighbouring metasomatic zones (Korosten anorthosite-rapakivigranite pluton as an example). Weihed P., Martinsson O. (Eds.) Abstract volume & Field trip guidebook, 2nd annual GEODE-Fennoscandian Shield workshop on Palaeoproterozoic and Archaean greenstone belts and VMS districts in the Fennoscandian Shield (28 August – 1 September, 2000, Gallivare-Kiruna, Sweden). Lulea University of Technology, Research Report 2000, 6, 37-40.

Watson, E.B., Harrison, T.M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planet. Sci. Lett, 64, 2, 295-304.

Hanchar, M., Hoskin, P.W.O. (Eds.) (2003). Zircon. JReviews in Mineralogy & Geochemistry, 53, 500 р.

Published

2025-01-16

How to Cite

Shnyukov, S., & Lazareva, I. (2025). DISTRIBUTION OF YTTRIUM AND SOME OTHER TRACE ELEMENTS IN WIDE-SPREAD ACCESSORY MINERAL ASSEMBLEGES: TEMPERATURE DEPENDENCE AND ITS APPLICATION IN GEOCHEMICAL MODELING. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(77), 13-27. https://doi.org/10.17721/1728-2713.77.02