THE FEATURES OF THE PROPAGATION OF ELASTIC WAVES IN ISOTROPIC MEDIA AT HIGH AND ULTRA-HIGH PRESSURES
DOI:
https://doi.org/10.17721/17282713.79.04Keywords:
Nonlinear elastodynamics, elastic waves, initial deformation, velocities of pressure and shear wavesAbstract
Studies of problems of the propagation of elastic waves in the geological medium constitute the scientific basis of the processing and interpretation of dataset of seismic exploration and seismological works. Objective. Creation of a more grounded theoretical basis of the geomechanical interpretation of various groups of geophysical observational and experimental data. Methodology. Nonclassical-linearized approach of non-linear elastodynamics. Linear and nonlinear small and large initial deformations are taken into account. The strain processes are described applying various elastic potentials. Results. Analytical dependences of the parameters of pressure and velocities of propagation of elastic waves on deformations without additional linearization are obtained within the framework of various versions of the theory of small and initial deformations using the quadratic and elastic potentials of the Murnaghan type. Scientific novelty. It is established that there are critical values of deformation while reaching them elastic pressure and shear waves with true velocity cannot propagate in uniformly deformed elastic isotropic media. The quantitative values of the critical values of deformations for pressure and shear waves differ, and essentially depend on the applied elastic potentials. Practical significance. The obtained analytical dependences allow synthesizing the true values of the elastic parameters of the deformed media from seismic exploration and seismological dataset. The establishment of critical deformations for velocities of pressure and shear waves will make it possible to suggest differential criteria of the distribution of elastic parameters in theoretical models of the Earth in its various structural elements as a whole and separately.
References
Aleksandrov, K.S., Prodayvoda, G.T., Maslov B.P. (2001). Method for determining nonlinear elastic properties of rocks. Doklady akademii nauk, 380, 1, 109–112. [Іn Russian].
Bullen, K.E. (1978). The Earth's Density. M.: Mir, 422 р. [Іn Russian].
Vyzhva, S.A., Maslov, B.P., Prodayvoda, G.T. (2005). Effective elastic properties of nonlinear milti-component geological media. Geophysical Journal, 27, 6, 1012–1022. [Іn Russian].
Guz,A.N. (1986). Elastic waves in bodies with initial stresses, (2nd Volume). K.: Naukova dumka, 916 р. [Іn Russian].
Guz, A.N. (2004). Elastic waves in bodies with initial (residual) stress. K.: A.C.K., 672 р. [Іn Russian].
Kuliev, G.G., Jabbarov, M.J. (2000). Amplitude characteristics of elastic waves in stressed medium. Doclady Russian Academy of Sciences, 370, 4, 672–674. [Іn Russian].
Maslov, B.P., Prodayvoda, G.T. (1998). Dispersion and scattering of elastic waves in a fractured geological medium. Geophysical Journal, 20, 2, 47–55. [Іn Russian].
Prodaivoda, G.T., Vyzhva, S.A., Vershilo, I.V. (2012). Mathematical modeling of effective geophysical parameters. K.: Vidavnicho-poligrafichniy tsentr "Kiïvskiy universitet, 287 р. [Іn Ukrainian].
Prodayvoda, G.T., Omelchenko, V.D., Maslov, B.P. (2004). Seismomineralogical model of the Earth's crust of the Ukrainian Shield. Geophysical Journal, 26, 4, 100–107. [Іn Russian].
Truesdell, K. (1975). A first course in rational continuum mechanics. Moscow: Mir, 592 р. [Іn Russian].
Akbarov,S.D. (2015). Dynamics of Pre-Strained Bi-Material Elastic Systems: Linearized Three-Dimensional Approach. Switzerland: Springer, 1004 р.
Anderson, D.L. (2007). New Theory of the Earth. New York: Cambridge University Press, 400 р.
Anderson, O.L. (1995). Equations of State of Solids for Geophysics and Ceramic Science. New York : Oxford University Press, 432 р.
Antonangeli, D., Ohtani, E. (2015). Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models. Progress in Earth Planetary Science, 2, 3, 1–11.
Badro, J., Côté, A.S., Brodholt, J.P. (2014). A seismologically consistent compositional model of Earth's core. Proceedings of the National Academy of Sciences of USA, 111,21, 7542–7545.
Biot, M.A. (1965). Mechanics of Incremental Deformation. New York: Willey, 504 р.
Dziewonski, A.M., Anderson, D.L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 4, 297–356.
Eringen, A.C., Suhubi, E.S. Elastodynamics. Vol I: Finite motion (1974). Vol II: Linear theory (1975). New York: Academic Press, 1018 р.
Guliyev, H.H. (2016). Analysis of the physical parameters of the Earth's inner core within the mechanics of the deformable body. Transactions of NAS of Azerbaijan, Issue Mechanics, Series of Physical-Technical and Mathematical Sciences, 36, 7, 19–30.
Guliyev, H.H. (2017). Analysis of results of interpretation of elastic parameters of solid core of the Earth from the standpoint of current geomechanics. Geophysical Journal, 39, 1, 79–96.
Guz, A.N. (1999). Fundamentals of the three-dimensional theory of stability of deformable bodies. Berlin : Springer, 557 р.
Helffrich, G., Kaneshima, S. (2010). Outer-core compositional stratification from observed core wave speed profiles. Nature, 468, 7325, 807–810.
Access mode: https://ds.iris.edu/spud/earthmodel
Kennett, B.L.N., Engdahl, E.R., Buland, R. (1995).Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122, 1, 108–124.
Kono, Y., Irifune, T., Ohfuji, H., Higo, Y., Funakoshi, K.-I. (2012). Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophysical Research Letters, 39, L24306.
Kuliev, G.G., Jabbarov, M.J. (1998). To elastic waves propagation in strained nonlinear anisotropic media.Proceedings of the ANAS, Earth Sciences, 2, 103–112.
Li, X., Tao, M. (2015). The influence of initial stress on wave propagation and dynamic elastic coefficients. Geomechanics and Engineering An International Journal, 8, 3, 377–390.
Liu, J., Lin, J.-F. (2014). Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high pressures. Geophysical Research Letter, 41, 8832–8839.
Mao, Z., Lin, J.-F., Jacobsen, S.D., Duffy, T.S., Chang, Y.-Y., Smyth, J.R., Frost, D.J., Hauri, E.H., Prakapenka, V.B. (2012). Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth and Planetary Science Letters, 331–332, 112–119.
Mao, Z., Lin, J.-F., Liu, J., Alatas, A., Gao, L., Zhao, J., Mao, H.-K. (2012). Sound velocities of Fe and Fe-Si alloy in the Earth's core. Proceedings of the National Academy of Sciences of USA, 109, 26, 10239–10244.
Nimmo, F. (2015). Energetics of the Core", (8th Volume), In: Treatise on Geophysics, (2nd Edition), (Edited by Schubert G.). Oxford: Elsevier, 27–55.
Ohtani, E., Shibazaki, Y., Sakai, T., Mibe, K., Fukui, H., Kamada, S., Sakamaki, T., Seto, Y., Tsutsui, S., Baron, A.Q. (2013). Sound velocity of hexagonal close-packed iron up to core pressures. Geophysical Research Letter, 40, 19, 5089–5094.
Prescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., VcCammon, C., Mookherjee, M., Nakajima, Y., Miyajima, N. (2015). High Poisson's ratio of Earth's inner core explained by carbon alloying. Nature Geoscience, 8, 3, 220–223.
Sumita, I., Bergman, M.I. (2007). Inner-Core Dynamics", (8th Volume), In: Treatise on Geophysics, (Eited by Schubert, G.). Oxford: Elsevier, 297–316.
Tao, M., Chen, Z., Li, X., Zhao, H., Yin, T. (2016). Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations. Geomechanics and Engineering An International Journal, 10, 3, 285–296.
Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y. (2010). The Structure of Iron in Earth's Inner Core. Science, 330, 359–361.
Thurston, R., Brugger, K. (1964). Third-order elastic constants and velocity of small amplitude elastic waves in homogeneously stressed media. PhysicalReview, 133, 6A, 1604–1610.
Access mode: www.sciencedirect.com/science/referenceworks/ 9780444538031.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Visnyk of Taras Shevchenko National University of Kyiv. Geology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




