GEOCHEMICAL MODEL OF PRECAMBRIAN GRANITOID MAGMATIC EVOLUTION IN THE KOROSTEN PLUTON (UKRAINIAN SHIELD): PETROGENETIC ASPECTS AND GENESIS OF COMPLEX ORE MINERALIZATION IN METASOMATIC ZONES

Authors

  • S. Shnyukov Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • I. Lazareva Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • O. Zinchenko Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • E. Khlon Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • L. Gavryliv Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • A. Aleksieienko Taras Schevchenko National University of Kyiv Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine

DOI:

https://doi.org/10.17721/17282713.81.02

Keywords:

granite, rapakivi, trace element, magmatic evolution, apatite, zircon, monazite, xenotime, solubility, water in melt, fluid extraction, altered rocks, ore mineralization

Abstract

Preliminary geochemical dataset for the granitoids (rapakivi, granite-porphyries, veined granites) of Korosten anorthosite-rapakivi granite pluton (Ukrainian Shield) was studied. The data set includes the results of all major and selected trace elements determinations (XRF, >300 samples), and is compared with melt crystallization and partial melting models of trace elements behavior. Only the Rayleigh model closely approximates the trace element data for granitoids. Typical incompatible behavior under approximately constant bulk distribution coefficient is determined for Rb (DRb = 0,5). Model f values (weight fraction of liquid in magma chamber) are calculated for each granitoid type (residual melt portion) from Rayleigh equation and Rb content in rocks (CRb) assuming minimum concentration in granitoids (169 ppm) as Rb content in parent magma (C0Rb). C vs. f curves for trace (including P, Ti, S, Cl, F, Ca) and major elements are approximated by means of equations of CC0?fD-1 form or polynomial ones respectively. This set of equations is an idealized model of element behavior that demonstrates the depletion of Ba, Sr, Ti, Zr, P, S and enrichment of Th and Ga in the residual liquid as well as the inversion behavior of LREE, Y, F, Cl, Nb, Zn and Pb during the melt fractional crystallization in magma chamber. Monotonous decrease of both Zr and P content indicates melt saturation in zircon and apatite. Therefore, model temperature (Tmodel) of the melt is estimated from equations of zircon and apatite solubility. The temperature evolution in magma chamber was presented as Tmodel vs. f polynomial equation (Tmodel range: 900-720oC). Inversion in LREE content (f = 0,185) indicates the apatite/monazite replacement in the crystallizing assemblage. Water content in melt for this f value and corresponding Tmodel was calculated from equation of monazite solubility which demonstrates its high H2Odependence. C0H2O=2,36 wt% was estimated on this basis (assuming DH2O = 0,1) for the liquidus of initial granite melt (Ptotal ~6,3 kbar). According to designed model water saturation limit was reached at f = 0,165 and H2O-fluid was extracted from the melt during its further evolution. Synchronous inversion of C/C0 vs. f curves shows the enrichment of fluid with F, Cl, Nb, Zn, Pb etc. Such characteristics of fluid are in agreement with geochemical data for ore-bearing altered rocks and might testify for their genetic unity. 

References

Velikoslavinsky, D.A., Birkis, A.P., Bogatikov, O.A., Bukharev, V.P., Velikoslavinsky, S.D., Gordienko, L.I., Kirs, Yu.E., Kononov, Yu.V., Zinchenko, O.V., Levitsky, Yu.F., Kivisilla, Ya.Ya., Niin, M.I., Puura, V.A., Khvorov, M.I., Shustova, L.E. (1978). The anorthosite-rapakivi granite formation of the East European platform. Leningrad: Nauka Press, 296. [in Russian].

Antipin, V.S., Kovalenko, V.I., Ryabchikov, I.D. (1984). Distribution coefficients of rare elements in magmatic rocks. Moscow: Nauka Press, 251. [in Russian].

Artemenko, G.V. (1997). Granitoidemagmatism evolution of greenstone belts of the Ukrainian Shield and adjacent Voronezh crystalline massife. Mineralogical Journal, 19, 4, 89-92. [in Russian].

Bogatikov, O.A., Bogdanova, S.V., Borsuk, A.M. et al. (1987). Magmatic rocks: Vol. 4. Acid and mediosilicic rocks. Moscow: Nauka Press, 374. [in Russian].

Bukharev, V.P. (1992). Evolution of precambrian magmatism of western part of Ukrainian Shield. K.: Nauk. dumka, 152. [in Russian].

Verchogliad, V.M. (1995). Age stages of magmatic processes of the Korosten pluton. Geochemistry and ore formation, 21, 34-47. [in Russian].

Voznyak, D. K., Pavlishin, V.I. (2008). Physical-chemical condition of formation and localization features of miarolitic (chamber) pegmatites of Volyn (Ukrainian Shield). Min. Journ., 1, 30, 5-20. [in Ukrainian].

Sherbak, N.P., Artemenko, G.V., Lesnaya, I.M. et al. (2008). Geochronology of early Precambrian Ukrainian Shield. Proterozoic. Kiev: Nauk. dumka, 240. [in Russian].

Esipchuk, K.E., Orsa, V.I., Scherbakov, I.B., Sheremet, E.M., Skobelev, V.M., Ryabokon, V.V., Galitsky, L.S., Panov, B.S., Yushin, A.A., Bochay, L.V., Golub, E.N., Sveshnikov, K.I., Demyanenko, V.V., Sukhorukov, Yu.T., Buchinskaya, K.M., Scherbak, D.N., Osadchy, V.K., Piya, Yu.K., Samchuk, A.I., Kushnir, A.S., Andreev, A.V., Cheburkin, A.K. (1993). Granitoids of the Ukrainian Shield: petrochemistry, geochemistry and ore deposites (reference book). Kiev: Naukova Dumka, 231. [in Russian].

Scherbakov, I.B., Esipchuk, K.E., Orsa, V.I., Usenko, I.S., Bartnitsky, E.N., Golub, E.N., Gorlitsky, B.A., Kirillov, S.P., Zabiyaka, L.I., Tsarovsky, I.D., Osadchy, V.K. (1984). Granitoids formations of the Ukrainian Shield. Kiev: Naukova Dumka, 191. [in Russian].

Dovbush, T.I., Skobelev, V.M., Stepaniuk, L.M. (2000). Results of SmNd investigation of the Precambrian rocks of western parts of the Ukrainian Shield. Mineralogical Journal, 22, 2/3, 132-142. [in Russian].

Esipchuk, K.E. (1988). Petrological and geochemical fundamentals of formational analysis of Precambrian granitoids. Kiev: Naukova Dumka, 263. [in Russian].

Zinchenko, O.V., Lazareva, I.I. (2000). New manifestation of topazzinnvaldite granites in the Korosten pluton. In: Geology and magmatism of Precambrian of the Ukrainian Shield. Kiev, 185-187. [in Ukrainian].

Ilchenko, T.V., Buharev, V.P. (2001). Velocity model of earth crust and upper mantle of Korosten Pluton (Ukrainian Shield) and its geological interpretation (along GSZ Shepetovka – Chernihiv profile). Geophysical Journal, 3, 23, 72-82. [in Russian].

Kovalenko, V.I., Tsareva, G.M., Naumov, V.B., Hervig, R., Newman, S. (1996). Magma of the Volyn pegmatites: composition and crystallization parameters obtained by mineralogical inclusions investigations. Petrologia, 4, 3, 295-309. [in Russian].

Kostenko, M.M., Tregubenko, V.I., Lonycka, S.G. (2011). Deep structure of northwestern part of Ukrainian Shield's earth crust along geotransect eurobridge-87 by results of complex interpretation of geologicalgeophysical data. Article 1. Analysis of existing models of earth crust structure. Mineral resources of Ukraine, 1, 20-29. [in Ukrainian]

Krivovichev, V.G. (1989). Geochemical model for rare-metal granite pegmatites formation. Zapisky Vserossiyskogo Mineralogicheskogo Obschestva, 4, 1-12. [in Russian].

Lichak, I.L. (1983). Petrology of the Korosten Pluton. Kiev: Naukova Dumka, 284. (in Russian).

Metalidi, S.V., Nechaev, S.V. (1983). Suschano-Perga area (geology, mineralogy and ore deposits). Kiev: Naukova Dumka, 135. [in Russian].

Mytrohyn, O.V. (2008). Anorthosite-rapakivi-granite association complexes petrographic composition. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 45, 62-66. [in Ukrainian].

Mytrohyn, O.V., Bogdanova, S.V, Shumlyanskiy, L.V. (2008). Polybaric crystallization of Korosten pluton anorthosites (Ukrainian Shield). Mineralogical Journal, 30, 2 36-56. [in Russian].

Mytrohyn, O.V., Bogdanova, S.V., Bilan, E.V. (2009). Petrology of Malin rapakivi massive (Korosten.pluton). Mineralogical Journal, 31, 2, 66-81. [in Russian].

Mitrokhin, O. V. (2011). Anorthosite-rapakiva granite association of Ukrainian Shield: Autoref. Dis. … doc. of Geol. Sci.: spec. 04.00.01. Taras Schevchenko National University of Kyiv. K., 36. [in Ukrainian].

Nechaev, S.V. (1998). Early Precambrian and Riphean-Phanerozoic metallogeny of the Ukrainian Shield. Mineralogical Journal, 20, 88-99. [in Russian].

Voznyak, D.K., Belskyy, V.M., Vyshnevskyy, O.A., Ilchenko, K.O., Kurylo S.I. (2017) Oxyfluocerite of chamber pegmatites of Volyn (the Ukrainian Shiled). Mineralogical Journal, 3, 39, 3-16. [in Ukrainian]

Shnyukov, S.E., Hatar, J., Andreev, A.V., Gregush, J., Cheburkin, A.K., Savenok, S.P. (1993). Petrological analysis of accessory zircon and apatite geochemistry in granitoids of Rochovce intrusion (Slovakia). Geological Journal, 1, 30-41. [in Russian].

Esipchuk, K.E., Sheremet, E.M., Zinchenko, O.V., Bobrov, A.B., Borko, V.N., Bukharev, S.V., Vasilchenko, V.V., Verchogliad, V.M., Golub, E.N., Demyanenko, V.V., Zhebrovskaya, E.I., Orsa, V.I., Panov, B.S., Razdorozhny, V.F., Sveshnikov, K.I., Skobelev, V.M., Scherbak, D.N. (1990). Petrology, geochemistry and ore mineralization of intrusive granitoids of Ukrainian Shield. Kiev: Naukova Dumka, 236. [in Russian].

Ponomarenko, A.N., Stepanuyk, L.M., Shumlyanskiy, L.V. (2014). Geochronology and geodynamics of Paleoproterozoic Ukrainian Shield. Mineralogical journal, 36, 2, 48-60. [in Russian].

Ryabchikov, I.D. (1965). Thermodynamic analysis of trace elements behavior during the silicate meltcrystallisation. Moscow: Nauka, 120. [in Russian].

Ryabchikov, I.D. (1975). Thermodynamics of the fluid phase in granitoid magmas Moscow: Nauka, 232. [in Russian].

Sobolev, V.S. (1947). Petrology of eastern part of the complex Korosten pluton. Science Notes of Lviv University 6, 5, 1-139. [in Russian].

Stepaniuk, L.M., Grinchenko, O.V., Zagnitko, V.M., Bartnitsky, E.M. (1996). Isotopical investigation of vein granitoides of Middle Pobuzhie region, Ukrainian Shield. Papers of National Academy of Sciences of Ukraine, 11, 129-133 [in Ukrainian].

Bilan, O., Mitrokhin, O., Shumlyanskiy, L., Zagorodniy, V. (2016). U-Pb age of zircons from hybrid rocks of Korosten anorthosite-rapakive granite pluton. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 7, 74, 3, 6-10. [in Ukrainian].

Shnyukov, S.E., Cheburkin, A.K., Andreev, A.V. (1989). Geochemistry of wide-spread coexisting accessory minerals and their role in investigation of endogenetic and exogenetic processes. Geological Journal, 2, 107-114. [in Russian].

Shnyukov, S.E. (2002). Geochemical models of magmatic systems and earth's crust evolution: potential source of petrophysical and oregenetical information. Geophysical journal, 24, 6, 201-219. [in Russian].

Shnyukov, S.E., Lazareva, I.I. (2002). Geochemical modeling in research of genetic connection of magmatic complexes and spatially associated hydrothermal-metaspmatic ore deposits. Zbirnuk naukovih prats UkrDGRI, 1, 128-143. [In Ukrainian].

Shnyukov, S.E. (2001). Ubiquitous accessory minerals in geochemical modeling of magmatic processes. Zbirnik naukovih prats UkrDGRI, 1-2, 4153. [In Ukrainian].

Allegre, C.J., Minster, J.F. (1978). Quantitative models of trace element behaviour in magmatic processes. Earth and Planetary Science Letters, 38, 1-25.

Dovbush, T.I., Skobelev, V.M. (2000). Some remarks on the originof the Korosten anorthosite–rapakivi granite complex as basedon isotope data. Geophysical Journal, 22, 84–85.

Eklund, O., Shebanov, A.D. (1999). The origin of rapakivi texture by sub-isothermal decompression. Precambrian Research, 95, 129-146.

Gast, P.W. (1968). Trace element fractionation and the origin of tholeitic and alkaline magma types. Geochim. et Cosmochim. Acta, 32, 10571086.

Gavryliv, L. Shnyukov, S., Lazareva, І. (2016). Geochemical behavior of major and trace elements during magma evolution process in Bodie Hills Volcanic Field, Nevada. XV-th International Conference of Geoinformatocs "Theoretical and Applied Aspects" (May 10-13, 2016, Kiev, Ukraine). URL: http://www.earthdoc.org/publication/publicationdetails/?publication=84616

Amelin, Yu.V., Heaman, L.M., Verchogliad, V.M., Skobelev, V.M. (1994). Geochronological constraints on the emplacement history of an anorthosite-rapakivi granite suite: U-Pb zircon and baddeleyite study of the Korosten complex, Ukraine. Contrib. Mineral. Petrol., 116, 411-419.

Greenland, L.P. (1970). An equation for trace element distribution during magmatic crystallization. Am. Miner., 55, 455-465.

Harrison, T.M., Watson, E.B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim. et Cosmochim., Acta, 48, 1467-1477.

Hertogen, J., Gijbels, R. (1976). Calculations of trace element fractionation during partial melting. Geochim. et Cosmochim., Acta, 40, 313-322.

Holtz, F. Johannes, W., Tamic, N., Behrens, H. (2001). Maximum and minimum water contents of granitic melts generated in the crust: a revaluation and implications. Lithos, 56, 1–14.

McMillan, P.F., Holloway, J.R. (1987). Water solubility in aluminosilicate melts. Contrib. Mineral. Petrol., 97, 320-332.

Montel, J.M. (1993). A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology, 110, 127-145.

Neumann, H., Mead, J., Vitaliano, C.J. (1954). Trace element variation during fractional crystallisation as calculated from the distribution law. GCA, 6, 90-99.

Longhi, J. Fram, M.S., Vander Auwera, J., Montieth, J.N. (1993). Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am. Mineral, 78, 1016-1030.

Shaw, D.M. (1970). Trace element fractionation during anatexis. Geochim. et Cosmochim. Acta, 34, 237-243.

Soesoo, A. (2000). Fractional crystallization of mantle‐derived melts as a mechanism for some I‐type granite petrogenesis: an example from Lachlan Fold Belt, Australia. J. Geol. Soc. London. 157, 135–149.

Bogdanova, S.V., Pashkevich, I.K., Buryanov, V.B. et al. (2004). The 1.80-1.74-Ga gabbro-anorthosite-rapakivi Korosten Pluton in the Ukrainian Shield: a 3-D geophysical reconstruction of the deep structure. Tectonophysics, 381, 5-27.

Lazareva, I., Shnyukov, S., Hlon, E., Aleksieienko, A., Morozenko, V., Gavryliv, L. (2017). Volcanoes of Antarctica as object of geological and ecological research at an example of Deception Island. Materials of XI Unternational Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Enviroment" (October 11-14, 2017, Kyiv, Ukraine).

Watson, E.B., Harrison, T.M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295-304.

Downloads

Published

2025-01-16

How to Cite

Shnyukov, S., Lazareva, I., Zinchenko, O., Khlon, E., Gavryliv, L., & Aleksieienko, A. (2025). GEOCHEMICAL MODEL OF PRECAMBRIAN GRANITOID MAGMATIC EVOLUTION IN THE KOROSTEN PLUTON (UKRAINIAN SHIELD): PETROGENETIC ASPECTS AND GENESIS OF COMPLEX ORE MINERALIZATION IN METASOMATIC ZONES. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 2(81), 12-22. https://doi.org/10.17721/17282713.81.02