MODELLING OF EXTREME FLOODS ON EXAMPLE OF MOUNTAIN REGIONS OF UKRAINE

Authors

  • E. Gopchenko Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • V. Ovcharuk Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • J. Shakirzanova Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • M. Goptsiy Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • A. Traskova Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • N. Shvec Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • Z. Serbova Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine
  • О. Todorova Odessa State Environmental University Hydrometeorological Institute 15 Lvivska Str., Odessa, 65016, Ukraine

DOI:

https://doi.org/10.17721/17282713.82.01

Keywords:

scientific-methodical base, maximal runoff, rain floods, mountain rivers

Abstract

In the conditions of modern changes of climate both in Ukraine and in the world on the whole, probability of the extreme hydrological phenomena rises substantially, in particular, catastrophic floods of different origin. The analysis of flood distribution on the territory of Ukraine shows that an overwhelming amount of destructive floods happened in Ukrainian Carpathians, where they are the characteristic feature of the hydrological mode of the rivers. Floods which are observed on the rivers of Crimean Mountains also, for individual years, had catastrophic character. For determination of water discharge calculations in the period of floods on the mountain rivers of Ukraine authors offer a scientific-methodical base which is based on modern scientific achievements in area of theoretical and applied hydrology. Fundamentally new in the proposed model is the separation of factors of forming and transformation of flood flow on slopes and in a river-bed network. The method of numeral solution of task was developed for nonmeasureable descriptions of floods and it found practical application. As a result, the numerical values of the main components of the slope inflow are obtained: the layers of runoff for the flood of 1% probability and the duration of the slope inflow, which are generalized over the territory, taking into account the influence of intrazonal and azonal factors (forestation, mean height of the catchments and karst) and coefficient of time nonuniformity of slope inflow, which are averaged within the studied regions. The process of transformation of slope inflow into channel runoff is described with the help of transformation functions that take into account the time of channel run-up and flood plain regulation. The accuracy of determining the maximum modules of the runoff of 1% probability of exceeding depends on the accuracy of the initial information, which makes it possible to recommend the proposed methodology for practical use in order to increase the level of hydraulic engineering projects and water resources management on the mountain territories of Crimea and Carpathians. 

References

Aizberh, М.М., Kaganer, М.S. (1966). Resursyi poverhnostnyih vod SSSR. T.6: Ukraina i Moldaviya. Vyip.4: Kryim. Leningrad: Gidrometeoizdat. [in Russian]

Alekseev, G.A. (1966). Skhema rascheta maksimalnikh dozhdevykh raskhodov vody po formule predelnoi intensivnosti stoka s pomoshchiu krivykh reduktcii osadkov i stoka. Trudy GGI, 134, 55-71. [in Russian]

Bao, W., Zhao, L., Wang, J., Wang, H., Qian, K. (2014) Linearized calibration of vertically-mixed runoff model parameters. J. Hydroelectr, 33, 8591. [In Chinese]

Befani, A.N. (1958). Osnovyi teorii livnevogo stoka. Trudyi OGMI, 14, 302. [in Russian]

Beldring, S., Engeland, K., Roald, L.A., Saelthun, N.R., Voks, A. (2003). Estimation of parameters in a distributed precipitation – runoff model for Norway. Hydrology and Earth System Sciences, 7(3), 304–316.

Bergstоrm, S. (1992) The HBV model – its structure and applications. SMHI Reports RH, No. 4, Norrkping, Sweden.

Bergstоrm, S. (1995) The HBV model. In Singh, V.P. (Eds.): Computer Models of Watershed Hydrology, Water Resources Publications. Colorado, United States, 443-476.

Blöschl, G. and et al. (2017). Changing climate shifts timing of European floods. Science, 357(Issue 6351), 588-590. doi: 10.1126/science.aan2506

Boiko, V.M., Petrenko, L.V. (2006). Stykhiini hidrolohichni yavyshcha na richkakh Ukrainy v ostanni 10-15 rokiv ta problemy yikhnoho operatyvnoho poperedzhennia. Nauk. pratsi UkrNDHMI, 355, 272-278. [in Ukrainian]

Centre for Research on the Epidemiology of Disasters http://www.preventionweb.net/countries/ukr/data/

Chow, V.T. (1964). Handbook of applied hydrology. New York: McGraw–Hill.

Duan, Q., Sorooshian, S., Gupta, V. (1994). Optimal use of the SCEUA global optimization method for calibrating watershed models. J. Hydrol.,158, 265-284.

EM-DAT (2015, February). The OFDA/CRED (International Disaster Database). Message posted to http://www.emdat.be

G Kan, X He, L Ding, J Li, K Liang, Y Hong. (2017)/ Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China. Water, 9(10), 719. doi:10.3390/w 9100719

Gopchenko, E.D. Ovcharuk, V.A., Romanchuk, M.E. (2015). A method for calculating characteristics of maximal river runoff in the absence of observational data: Case study of Ukrainian rivers. Water Resources, 42(3), 285-291. DOI: 10.1134/S0097807815030057

Gopchenko, E.D., Dzhabur Khaldun (1999). Obosnovanie raschetnoy metodiki dlya opredeleniya sloya pavodochnogo stoka rek Karpat na baze shemyi rayonirovaniya territorii po usloviyam formirovaniya pavodkov. Meteorologiya, klimatologiya i gidrologiya, 39, 222-232. [in Russian]

Gopchenko, E.D., Goptsiy, M.V. (2015). Maksymalnyi stik doshchovykh pavodkiv u Peredkarpatti. Odesa: TES. [in Ukrainian]

Gopchenko, E.D., Gushlya, A.V. (1989). Gidrologiya s osnovami melioratsii. Leningrad: Gidrometeoizdat. [in Russian]

Gopchenko, E.D., Ovcharuk, V.A., Goptsiy, M.V. (2016). Normuvannia maksymalnoho stoku doshchovykh pavodkiv na richkakh Ukrainskykh Karpat. Visnyk Chernivetskoho natsionalnoho universytetu im. Iu. Fedkovycha, 775-776, 34-39. [in Ukrainian]

Goptsiy, M.V. (2016). Obgruntuvannia kharakterystyk skhylovoho pryplyvu doshchovykh pavodkiv na richkakh Karpat. Tezy dopovidei vseukrainskoi konferentsii molodykh vchenykh "Meteorolohiia, hidrolohiia, monitorynh dovkillia v konteksti ekolohichnykh vyklykiv sohodennia", 19-21. [in Ukrainian]

Goptsiy, M.V. (2016). Statystychnyi analiz chasovykh riadiv maksymalnykh vytrat vody ta shariv stoku richok Ukrainskykh Karpat. Materialy KhI Mizhnarodnoi naukovo-praktychnoi internet-konferentsii "Tendentsii ta perspektyvy rozvytku nauky i osvity v umovakh hlobalizatsii", 11, 17-19. [in Ukrainian]

Goptsiy, M.V. (2016). Uzahalnennia tryvalosti skhylovoho pryplyvu pavodkovoho stoku teploho periodu na richkakh Ukrainskykh Karpat. Hidrolohiia, hidrokhimiia, hidroekolohiia, 3(42), 26-33. [in Ukrainian]

Goptsiy, M.V. (2016). Vyznachennia rozrakhunkovykh shariv pavodkovoho stoku dlia richok Ukrainskykh Karpat ta uzahalnennia yikh po terytorii. Hidrolohiia, hidrokhimiia, hidroekolohiia, 1(40), 51-59. [in Ukrainian].

Goptsiy, M.V., Gopchenko, E.D. (2009). Pro nedoliky strukturnoi bazy normatyvnoho dokumentu SNyP 2.01.14-83. Visnyk ODEKU, 8, 209-213. [in Ukrainian]

Hughes, D.A., Metzler, W. (1995). Assessment of three monthly rainfall-runoff models for estimating the water resource yield of semiarid catchments in Namibia. Hydrololgoical Science Journal, 43(2), 283-297.

Ivanenko, A.G., Melnichuk, O.N. (1969). Metod rascheta veroyatnyih maksimalnyih rashodov livnevyih i dozhdevyih vod dlya rek i vremennyih vodotokov v Ukrainskih Karpatah (s primeneniem nomogramm). Meteorologiya, klimatologiya i gidrologiya, 5, 154-164. [in Russian]

Kaganer, М.S. (1969). Resursyi poverhnostnyih vod SSSR. T.6: Ukraina i Moldaviya. Vyip.1: Zapadnaya Ukraina i Moldaviya. Leningrad: Gidrometeoizdat. [in Russian]

Linslei, R.K., Koler, M.A., Paulius, D.L. (1962). Prikladnaia gidrologiia. Leningrad: Gidrometeoizdat. [in Russian]

Ovcharuk V., Gopchenko E., Goptsіy M. (2016). Method of determining the maximum flood runoff for ungauged rivers of the Ukrainian Carpathians. ABSTRACT BOOK – 2nd PannEx workshop on the climate system of the Pannonian basin, 1-3 June 2016, Hungarian Meteorological Service, Budapest, Hungary, 61. DOI: 10.21404/PANNEX.2016

Ovcharuk, V., Todorova, O. (2016). Determination of characteristics maximal runoff Mountain Rivers in Crimea. J. Fundam. Appl. Sci, 8(2), 525-541.

Ovcharuk, V.A., Todorova, O.I. (2015). Rozrakhunkovi kharakterystyky hranychnykh moduliv skhylovoho pryplyvu pid chas pavodkiv teploho periodu roku na richkakh Hirskoho Krymu. Fizychna heohrafiia ta heomorfolohiia, 2 (78), 103-109. [in Ukrainian]

Raffa, U. (1969). Pavodochnye raskhody razlichnoi veroiatnosti v basseine r. Po. Mezhdunarodnyi simpozium po pavodkam i ikh raschetam,1, 353-361. [in Russian].

Sajikumar, N., Thandaveswara, B. (1999). A nonlinear rainfall runoff model using an arti.cial neural network. Journal of Hydrology, 216, 32-35.

Seibert, J., Vis, M. (2012). Teaching hydrological modeling with a userfriendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 16. 3315-3325.

Shmydt, T.S. (1984). Posobie po opredeleniyu raschetnyih gidrologicheskih harakteristik. Leningrad: Gidrometeoizdat. [in Russian]

Skorik, A.L. (1997). Pavodochnyiy stok v tepluyu chast goda na territorii Kryimskogo poluostrova i ego raschetnyie harakteristiki. Disertatsiya kandidata geograficheskih nauk. Biblioteka Odesskogo gosudarstvennogo ekologicheskogo universiteta, Odessa. [in Russian]

SNA (1995). Climate, Lakes and Rivers. The National Atlas of Sweden, Almqvist and Wiksell International, Stockholm.

Sokolov, А.А., Rantts, S.Е., Rosha, М. (1978). Raschety pavodochnogo stoka. Metody raschetov na osnove mirovogo opyta. Leningrad: Gidrometeoizdat. [in Russian]

Todorova, О., Ovcharuk, V. (2015). Study cyclicality maximum runoff rivers of Crimea in conditions of modern climate change. The 26th IUGG General Assembly, Prague, Czech Republic, Congress Center, 22 June – 2 July, 2015, Changes in Flood Risk and Perception in Catchments and Cities. Abstract, 119. http://www.iugg2015prague.com

Tokar A.S., Markus M. (2000). Precipitationrunoff modeling using artificial neural networks and conceptual models. J. Hydro. ASCE, 5 (2), 156-161.

UNISDR (2015). Making Development Sustainable. The Future Disaster Risk Management. Global Assessment Report on Disaster Risk Reduction. Geneva, Switzerland: United Nations Office for Disaster Risk Reduction (UNISDR).

Zhao, R. (1983). Watershed Hydrological Model-Xinanjiang Model and Northern Shaanxi Model. Water Resources and Electric Power Press: Beijing, China.

Zhao, R., Zhuang, Y., Fang, L., Liu, X., Zhang, Q. (1980) The Xinanjiang Model. In: Hydrological Forecasting (Proceedings Oxford Symposium); IAHS-AISH Press: Wallingford, UK, 129, 351-356.

Published

2025-01-16

How to Cite

Gopchenko, E. ., Ovcharuk, V. ., Shakirzanova, J. ., Goptsiy, M. ., Traskova, A. ., Shvec, N. ., Serbova, Z., & Todorova О. . (2025). MODELLING OF EXTREME FLOODS ON EXAMPLE OF MOUNTAIN REGIONS OF UKRAINE. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 3(82), 6-15. https://doi.org/10.17721/17282713.82.01