DETERMINATION OF THE PHYSICAL PROPERTIES OF COMPLEXLY CONSTRUCTED MEDIA USING NEAR-SURFACE CROSSWELL METHOD
DOI:
https://doi.org/10.17721/1728-2713.86.02Keywords:
near-surface cross well, pressure, shear wave, seismic velocity, elastic modulus, anisotropy, saturation, absorptionAbstract
In case when the upper part of the medium has complex geological structure and geodynamic processes occur in it, the necessity of these data increases in projecting of the object under construction. Purpose. Studying of acoustic, elastic and anisotropic properties of the upper part of section of complicatedly constructed geological media. Methodology. Seismic observations are conducted in shallow wells in the areas of construction objects located in various seismogeological conditions by NSCW (Near-Surface Cross Well testing) method. Field seismic records are processed. Kinematic and dynamic parameters of pressure and differently polarized shear waves are determined. Thin-layered one-dimensional models of physical properties of the medium are created and interpreted on the basis of nonlinear theory of elastodynamics. Results. It is determined that the medium with high porous, water saturated rocks and anomalous high reservoir pressure has anomalous low value of velocities and gradient of their increase with depth. When this medium was re-examined after deep piles were built there, the overestimated seismic velocities are obtained, which is explained by a decrease in the section of anomalously high reservoir pressure and, accordingly, the porosity of the rocks after piles were built. When the hollowness is increased in unsaturated pebble rocks, the negative value of Poisson's ratio is obtained on the standard method. Seismic anisotropy related with the direction of the grains packing of the rocks is revealed on velocities of shear waves. The change of property of rocks on depth is manifested clearer on frequencies of waves than on their amplitudes. Scientific novelty. The elasticity moduli of the 3rd order are determined which are more sensible to variability of nonlinear elastic properties of rocks of the medium than the moduli of the 2nd order. The values of Poisson's ratio are recalculated for one and the same rocks located in different conditions of rock pressure on the basis of nonclassical theory of deformation. Practical importance. The obtained results can be applied to study the media characterized by complex seismogeological hydrodynamic conditions with clay-sandy rocks of high porosity and water saturation.
References
Aghayev, KH.B., Amrahov, A.T., Mehralyev, F.E. (2012). Engineeringgeophysical reserches by translucence of cross-hole phase method.Geophysics news in Azerbaijan, 1–2,17–21.
Aleksandrov, K.S., Prodajvoda, G.T., Maslov, B.P. (2001). Metod opredeleniya nelinejnyh uprugih svojstv gornyh porod. Dokl. RAN, 380(1), 109–112.[in Russian]
Aleksandrov, K.S., Prodajvoda, T.G. (2000). Anizotropiya uprugih svojstv mineralov i gornyh porod. Novosibirsk: Izdatelstvo SO RAN. [in Russian]
Antipov, V.V., Ofrikhter, V.G. (2016). Modern nondestructive method of researching of geological-engineering section.PNRPU Bulletin Construction and architecture, 7, 2, 37–49. DOI: 10.15593/2224-9826/2016.2.04. [in Russian]
Bezrodna, I., Bezrodnyi, D., Holiaka, R. (2016). Mathematical modelling of influence of the mineral composition and porosity on elastic anisotropic parameters of complex sedimentary rocks of Volyn-Podolia area.Visnyk of Taras Shevchenko National University of Kyiv. Geology, 73, 27–32.[in Ukrainian]
Boganik, G.N., Gurvich, I.I. (Eds.) (2006). Sejsmorazvedka. Uchebnik dlya vuzov. Tver: Izdatelstvo AIS. [in Russian]
Burger, H. R., Sheehan, A. F., Jones, C. H. (2006). Introduction to Applied Geophysics: Exploring the shallow subsurface W.W. Norton & Co., New York.
Burger, H.R. (1992). Exploration geophysics of the shallow subsurface. United States. Prentice Hall.
Crice, D. (2011). Near-surface, downhole shear-wave surveys: A primer. The Leading Edge, 30(2), 164–171.
Dejneko, S., Vizhva, S., Nesterenko, G., Bernevek, A., Ivashenko, S. (2017). Sejsmoakustichnij monitoring stanu gruntiv Dnistrovskogo shilu (u zoni rozmishennya napirno-stacionarnogo vuzla). Visnyk of Taras Shevchenko National University of Kyiv. Geology, 78, 30–35. [in Ukrainian]
Dugarov, G.A., Obolenceva, I.R., Chichinina, T.I. (2011). Analiz anizotropii skorostej i poglosheniya sejsmicheskih voln v srede s odnoj sistemoj parallelnyh granic. Tehnologii sejsmorazvedki, 3, 29–41. [in Russian]
Garotta, R. (2000). Poperechnye volny: ot registracii do interpretacii. Kratkij kurs lekcij dlya vysshih uchebnyh zavedenij. [in Russian]
Gheslagni, F., Santamarina, J.C. (1998). Data pre-processing in cross-hole geotomography: Journal of Environmental and Engineering Geophysics, 3, 41–47.
Guliyev, H.H., Aghayev, Kh.B., Hasanova, G.H. (2016). Determining the Elastic Moduli of the Third Order for Sedimentary Rocks Based on WellLogging Data. Izvestiya, Physics of the Solid Earth, 52(6), 836–843.
Guliyev, H.H., Aghayev, Kh.B., Shirinov, N.M. (2010). The research of the influence of the pressure to the values of elastic parameters of geological medium on the basis of seismic and well data. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 50, 10–16.
Karpov, I.A., S.B. Gorshkalyov, S.B., Vishnevskij, D.M. (2014). Dva mehanizma obrazovaniya vzaimno ortogonalno polyarizovannyh poperechnyh voln po dannym VSP. Materialy Vserossijskoj konferencii, posvyashennoj 100-letiyu so dnya rozhdeniya akademika N.N. Puzyryova, 813 dekabrya, Novosibirsk, 49–54. [in Russian]
Kuliev, G.G. (2000). Opredelenie koefficienta Puassona v napryazhennyh sredah. Dokl. RAN, 370(4), 534–537. [in Russian]
Li G., Stewart, R. R. (1996). Data processing methods for crosswell seismic imaging.Seismic Exploration, 5, 213–228.
Manufacturer of seismic borehole equipmentfor tomography, crosshole and downhole applications (n. d.). Retrieved from www.crosswellinstruments.de
Maslov, B.P., Prodajvoda, G.T., Vyzhva, S.A. (2000). Matimatichne modelirovaniya vplivu tisku i u trishinuvatih girskih porodah. Geophys. journal, 22, 113–118. [in Ukrainian]
Moret, G.J.M., Knoll, M.D., Barrash, W. Clement W. P. (2006). Investigating the Stratigraphy of an Alluvial Aquifer Using Crosswell Seismic Traveltime Tomography. FIGS.10.1190/1.2195487
Oshkin, A.N. Ermakov, R.Yu. Ragozin, N.A. Ignatev, V.I. (2016). Mezhskvazhinnoe sejsmicheskoe prosvechivanie – opyt, metodologiya, apparatura. Pribory i sistemy razvedochnoj geofiziki, 3, 37–47. [in Russian]
Park, C. B., Miller, R.D. Xia, J., Ivanov, J. (2007). Multichannel analysis of surface waves (MASW) – active and passive methods. Kansas Geological Survey, Lawrence, USA, THELEADINGEDGEJANUARY, 60-64.
Park, C.S., Lim, J.Y., Choi, C.L., Kong, B.C., Mok, Y.J. (2008). Recent development of borehole seismic tests.World Conference on Earthquake Engineering, October 12–17, Beijing, China.
Pratt, R.G., Sirgue L., Hornby B., Wolfe J. (2008). Crosswell waveform tomography in fine-layered sediments.Meeting the challenges of anisotropy 70th EAGE Conference & Exhibition, 9–12 June, Rome, Italy,1–5.
Puzyrev, N.N., Trigubov, A.V., Brodov L.Yu. et al. (1985). Sejsmicheskaya razvedka metodom poperechnyh i obmennyh voln. M.: Nedra. [in Russian]
Suroso, T., Laksono, H., Triyoso, W., Priyono, A. (2017). Estimating anisotropy parameter by shear wave splitting of crosswell seismic data: a case study on inter-bedded sand-shale layers. IOP Conf. Series: Earth and Environmental Science. Sci. 62/ 012019, 1–7.DOI: 10.1088/17551315/62/1/012019.
Taeseo, K., Paul, W. (2013). Evaluating the In Situ Lateral_Stress Coefficient (Kₒ) of Soils via Paired Shear Wave Velocity Modes. Journal of geotechnical and geoenvironmental 10.1061/(ASCE)GT. 1943-5606.0000756.
Thomsen, L. (2002). Understanding Seismic Anisotropy in Exploration and Exploitation. Distingwished İnstructor Short Course. Distingwished İnstructor Series, 5,238.
Tokeshi, K., Harutoonian, P., Leo, C.J., Liyanapathirana S. (2013). Use of surface waves for geotechnical engineering applications in Western Sydney Adv. Geosci., 35, 37–44. DOI: 10.5194/adgeo-35-37-2013
Vyzhva, S.A., Maslov, B.P., Prodajvoda, G.T. (2005). Effektivnye uprugie svojstva nelinejnyh mnogokomponentnyh geologicheskih sred. Geophys. Journal, 27(6), 1012–1022. [in Russian]
Wadhwa, R.S., Ghosh, N., Chaudhari, M.S., Ch.Subba Rao and Raja Mukhopadhyay (2005). Pre and post-excavation cross-hole seismic and geotomographic studies for a Nuclear Power Project. J. Ind. Geophys. Union, 9(2), 137–146.
Yasnickij, A.A., Kolodij, A.A., Shabarin, V.N. (2012). Sravnenie effektivnosti primeneniya metoda MASW c tradicionnymi metodami sejsmorazvedki dlya celej inzhenernyh izyskanij. 8-ya mezhdunarodnaya konferenciya i vystavka – Inzhenernaya geofizika, 23–27 aprelya, Gelendzhik, Rossiya, 1–5. [in Russian]
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Visnyk of Taras Shevchenko National University of Kyiv. Geology

This work is licensed under a Creative Commons Attribution 4.0 International License.
Read the policy here: https://geology.bulletin.knu.ua/licensing




