VERTICAL DISPLACEMENT MONITORING OF ZAKARPATTYA REGION TERRITORY BASED ON RADAR INTERFEROMETRY DATA

Authors

  • E. Uglitskih Taras Shevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • S. Vyzva Taras Shevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine
  • Ivanik Ivanik Taras Shevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska Str., Kyiv, 03022, Ukraine

DOI:

https://doi.org/10.17721/1728-2713.91.13

Keywords:

remote sensing, interferometry, displacement of the earth's surface, dangerous geological processes

Abstract

The article presents result of deformation monitoring in Zakarpattya region, performed using the method of radar interferometry. The method of radar interferometry allows to monitor the displacements of the earth's surface in real time and quickly obtain up-to-date data. As a result of the research of the Carpathian model landfill, 26 pairs of interferograms for the period 2016–2018 were processed. As a result of these operations, a general map of vertical displacements of the earth's surface of the Carpathian model landfill was constructed. The territory is ranked into 3 zones according to the indicators of vertical displacements of the earth's surface. It is confirmed that the use of interferometry data is effective for detailed analysis of the regime and dynamics of dangerous geological processes. These surveys are of great value and with good resolution and appropriate processing algorithm give reasonable results and conclusions, which in combination with lithological-stratigraphic, geomorphological and structuraltectonic studies can be used to predict dangerous geological processes and minimize their negative impact on nature and man-made systems. 

References

Ashkenas, H.I. (1950). The design and construction of a Mach-Zehnder interferometer for use with the GALCIT Transonic Wind Tunnel. Engineer's thesis. California Institute of Technology, 121–122.

Bawden, G.W., Stein, R.S., Hudnut, K.W. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412, 812–815.

Bahrii, I.D., Blinov, P.V., Hozhyk, P.F., Kozhemiakin, V.P. (2004). Aktyvizatsiia nebezpechnykh heolohichnykh yavyshch u Zakarpatti yak naslidok ekstremalnykh pavodkiv. Kyiv: Instytut heolohichnykh nauk NAN Ukrainy. [In Ukrainian]

Breining, G. (2007). Super Volcano: The Ticking Time Bomb beneath Yellowstone National Park. St. Paul, Minnesota: Voyageur Press: ISBN 978- 0-7603-2925-2.

Chevalerias, R., Latron, Y., Veret, C. (1957). Methods of Interferometry Applied to the Visualization of Flows in Wind Tunnels. Journal of the Optical Society of America, 47 (8), 703. doi:10.1364/JOSA.47.000703.

Demchyshyn, M.H. (2004). Tekhnohenni vplyvy na heolohichne seredovyshche terytorii Ukrainy. Kyiv: Hnozis. [In Ukrainian]

Hanssen, R.F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Netherlands: Kluwer Academic Publishers: ISBN 9780792369455.

Hooper, A., Bekaert, D., Spaans, K., Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514–517, 1–13.

Ivanik, O., Shevchuk, V., Kravchenko, D., Yanchenko, V., Shpyrko, S., Gadiatska K. (2019). Geological and Geomorphological Factors of Natural Hazards in Ukrainian Carpathians. Journal of Ecological Engineering, 20(4), 177–186.

Ivaniuta, S.P., Yakovliev, Ye.O. (2014). Rehionalna otsinka rivnia tekhnohennoho navantazhennia v Ukraini. Visnyk Vinnytskoho politekhnichnoho instytutu, 6, 38–45. [In Ukrainian].

Klymchuk, L.M., Blinov, P.V., Velychko, V.F. et al. (2008). Suchasni inzhenerno-heolohichni umovy Ukrainy yak skladova bezpeky zhyttiediialnosti. Kyiv: VPTs "Ekspres". [In Ukrainian]

Kuzmenko, E.D., Bezsmertyi, A.F., Vdovyna O.P. et al. (2009). Doslidzhennia zsuvnykh protsesiv heofizychnymy metodamy. IvanoFrankivsk: IFNTUNH. [In Ukrainian]

Lu, Zh., Wright, T., Wicks, Ch. Jr. (2003). Deformation of the 2002 Denali fault earthquakes, mapped by RadarSat–1 interferometry. Eos, 41, 425–431.

Maksymchuk, V.Yu., Kuznietsova, V.H., Verbytskyi, T.Z. et al. (2005). Doslidzhennia suchasnoi heodynamiky Ukrainskykh Karpat. Kyiv: Naukova dumka. [In Ukrainian].

Massonnet, D., Feigl, K.L. (1998). Radar interferometry and its application to changes in the earth's surface. Reviews of Geophysics, 36 (4), 441–500.

Monnier, J.D. (2003). Optical interferometry in astronomy. Reports on Progress in Physics, 66 (5), 789–857.

Palyenko, V. P. (1992). Noveishaia heodynamyka y ee otrazhenye v relefe Ukrayni. Kyev: Naukova duma. [In Russian]

Paschotta, R. (2012). Optical Heterodyne Detection. RP Photonics Consulting GmbH, 40, 243–250.

Rucci, A., Ferretti, A., Guarnieri, A.M., Rocca, F. (2012). Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment, 120, 156–163.

Rudko, H.Y., Osyiuk, V.A. (2012). Ynzhenernaia heodynamyka Ukrayni y Moldovi (opolznevie heosystemi). Chernovtsi: Bukrek. [In Russian]

Uhlytskykh, Ye.K., Zatserkovnyii, V.I., Tishaiev, I.V. (2016). Monitorynh deformatsii vulkanichnykh struktur na osnovi dystantsiinykh zonduvan Zemli. Teoretychni ta prykladni aspekty heoinformatyky, 13, 4–8. [In Ukrainian]

Vialov, O.S., Andreeva-Hryhorovych, A.S., Havura, S.P. etal. (1989). Rehyonalnaia skhema stratyhrafyy melovikh otlozhenyi Ukraynskykh Karpat. Paleontolohycheskyi sbornyk, 26, 71–72. [In Russian]

Published

2025-01-10

How to Cite

Uglitskih, E., Vyzva, S., & Ivanik, I. (2025). VERTICAL DISPLACEMENT MONITORING OF ZAKARPATTYA REGION TERRITORY BASED ON RADAR INTERFEROMETRY DATA. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(91), 94-99. https://doi.org/10.17721/1728-2713.91.13