

ВІСНИК

КІЇВСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ISSN 1728-2713 (Print), ISSN 2079-9063 (Online)

ГЕОЛОГІЯ

3(110)/2025

Засновано 1958 року

УДК 504+550+551+552+624

DOI: <http://doi.org/10.17721/1728-2713.110>

Наведено результати геологічних, стратиграфічних, палеонтологічних, гідрогеологічних, геофізичних і геоінформаційних досліджень.

Для викладачів, наукових співробітників, аспірантів і студентів.

ГОЛОВНИЙ РЕДАКТОР	Вижва Сергій, д-р геол. наук, проф., член-кор. НАН України (Україна)
РЕДАКЦІЙНА КОЛЕГІЯ	Албані Абдер Ель, д-р філософії, проф. (Франція); Бахмутов Володимир, д-р геол. наук, проф., член-кор. НАН України (Україна); Бондар Ксенія, д-р геол. наук (Польща); Веснавер Альдо, д-р філософії, проф. (Італія); Вижва Зоя, д-р фіз.-мат. наук, проф. (Україна); Діндароглу Тургай, д-р філософії, проф. (Туреччина); Де Донаціс Мауро, д-р філософії, доц. (Італія); Дубина Олександр, д-р геол. наук, доц. (Україна); Загітко Василь, д-р геол.-мінералог. наук, проф. (Україна); Зацерковний Віталій, д-р техн. наук, проф. (Україна); Іванік Олена, д-р геол. наук, проф. (Україна); Івахненко Олександр, д-р філософії, проф. (Казахстан); Карпенко Олексій, д-р геол. наук, проф. (Україна); Коронеос Антоніс, д-р філософії, проф. (Греція); Кошляков Олексій, д-р геол. наук, проф. (Україна); Курило Марія, д-р геол. наук, доц. (Україна); Лісний Георгій, д-р геол. наук, доц. (Україна); Ляшенко Дмитро, д-р. геогр. наук, доц. (Україна); Маслов Борис, д-р фіз.-мат. наук, проф. (Україна); Меньшов Олександр, д-р геол. наук, проф. (Україна); Митрохин Олександр, д-р геол. наук, проф. (Україна); Михайлів Володимир, д-р геол. наук, проф. (Україна); Мірончук Тетяна, канд. філол. наук, доц. (Україна); Несторовський Віктор, д-р геол. наук, проф. (Україна); Никитюк Олександр, д-р с.-г. наук, проф., чл.-кор. НАН України (Україна); Огар Віктор, д-р геол. наук, проф. (Україна); Олівія Марк, д-р філософії, проф. (Португалія); Орлюк Михайло, д-р геол. наук, проф., член-кор. НАН України (Україна); Пастушенко Тетяна, канд. філол. наук, доц. (Україна); Переїра Пауло, д-р філософії, проф. (Литва); Портнов Василь, д-р філософії, проф. (Казахстан); Ромашенко Михайло, д-р техн. наук, проф., акад. НАН України (Україна); Спассов Сімо, д-р філософії, проф. (Бельгія); Стародуб Юрій, д-р фіз.-мат. наук, проф. (Україна); Шабатура Олександр, д-р геол. наук, доц. (заст. голов. ред.) (Україна); Шевченко Олексій, д-р геол. наук, ст. наук. співроб. (Україна); Шмідт Волькмар, д-р філософії, проф. (Німеччина); Шнюков Сергій, д-р геол. наук, доц. (Україна)
Адреса редколегії	ННІ "Інститут геології" вул. Васильківська, 90, м. Київ, 03022 телефон (38044) 521 33 38 e-mail: geology.bulletin@knu.ua ; geolvisnyk@ukr.net web: https://geology.bulletin.knu.ua
Затверджено	вченю радою ННІ "Інститут геології" 30.06.25 (протокол № 17)
Зареєстровано	Національною радою України з питань телебачення і радіомовлення Рішення № 1089 від 28.03.24 Ідентифікатор друкованого медіа: R30-03800
Атестовано	Міністерством освіти і науки України (категорія А) Наказ № 1412 від 18.12.18
Індексування	Scopus (квартиль 3, SJR 0.238), Web of Science (квартиль 4, імпакт фактор 0.3), EBSCO, Academic Resource Index ResearchBib, Google Scholar
Засновник та видавець	Київський національний університет імені Тараса Шевченка Видавничо-поліграфічний центр "Київський університет" Свідоцтво про внесення до Державного реєстру ДК № 1103 від 31.10.02
Адреса видавця	ВПЦ "Київський університет" б-р Тараса Шевченка, 14, м. Київ, 01601 телефон (38044) 239 32 22, 239 31 58, 239 31 28 e-mail: vpc@knu.ua

BULLETIN

TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV

ISSN 1728-2713 (Print), ISSN 2079-9063 (Online)

GEOLOGY

3(110)/2025

Established in 1958

UDC 504+550+551+552+624

DOI: <http://doi.org/10.17721/1728-2713.110>

Published are the results of geological, stratigraphic, paleontological, hydrogeological, geophysical and geoinformation research.

For scientists, professors, graduate and postgraduate students.

EDITOR-IN-CHIEF	Vyzhva Sergiy, DSc (Geol.), Prof., Corresponding Member of the NAS of Ukraine (Ukraine)
EDITORIAL BOARD	Albani Abderrazak El, PhD, Prof. (France); Bakhmutov Volodymyr, DSc (Geol.), Prof., Corresponding Member of the NAS of Ukraine (Ukraine); Bondar Kseniia, DSc (Geol.) (Poland); Dindaroğlu Turgay, PhD, Prof. (Turkey); De Donatis Mauro, PhD, Assoc. Prof. (Italy); Dubyna Oleksandr, DSc (Geol.), Assoc. Prof. (Ukraine); Ivakhnenko Oleksandr, PhD, Prof. (Kazakhstan); Ivanik Olena, DSc (Geol.), Prof. (Ukraine); Karpenko Oleksiy, DSc (Geol.), Prof. (Ukraine); Koroneos Antonis, PhD, Prof. (Greece); Koshliakov Oleksiy, DSc (Geol.), Prof. (Ukraine); Kurylo Mariia, DSc (Geol.), Assoc. Prof. (Ukraine); Liashenko Dmytro, DSc (Geog.), Assoc. Prof. (Ukraine); Lisny Georhii, DSc (Geol.), Assoc. Prof. (Ukraine); Maslov Borys, DSc (Phys. & Math.), Prof. (Ukraine); Menshov Oleksandr, DSc (Geol.), Senior Researcher (Executive Editor) (Ukraine); Mironchuk Tatyana, PhD (Philol.), Assoc. Prof. (Ukraine); Mykhailov Volodymyr, DSc (Geol.), Prof. (Ukraine); Mytrokhin Oleksandr, DSc (Geol.), Prof. (Ukraine); Nesterovs'kiy Viktor, DSc (Geol.), Prof. (Ukraine); Nykytiuk Oleksandr, DSc (Agricultural Sciences), Prof., Corresponding Member of the NAAS of Ukraine (Ukraine); Ogar Viktor, DSc (Geol.), Prof. (Ukraine); Olivia Marc, PhD, Prof. (Portugal); Orliuk Mykhailo, DSc (Geol.), Prof., Corresponding Member of the NAS of Ukraine (Ukraine); Pastushenko Tatyana, PhD (Philol.), Assoc. Prof. (Ukraine); Pereira Paulo, PhD, Prof. (Lithuania); Portnov Vasyl, PhD, Prof. (Kazakhstan); Romashchenko Myhailo, DSc (Engin.), Prof., Active Member of the NAAS of Ukraine (Ukraine); Schmidt Volkmar, PhD, Prof. (Germany); Shabatura Oleksandr, DSc (Geol.), Assoc. Prof. (Deputy Editor-in-Chief) (Ukraine); Shevchenko Oleksiy, DSc (Geol.), Senior Researcher (Ukraine); Shnyukov Sergiy, DSc (Geol.), Assoc. Prof. (Ukraine); Spassov Simo, PhD, Prof. (Belgium); Yurii Starodub, DSc (Phys. & Math.), Prof. (Ukraine); Vesnaver Aldo, PhD, Prof. (Italy); Vyzhva Zoya, DSc (Phys. & Math.), Prof. (Ukraine); Zacerkovniy Vitaliy, DSc (Tech.), Prof. (Ukraine); Zagnitko Vasyl, DSc (Geol. & Mineral.), Prof. (Ukraine)
Address	USI "Institute of Geology" 90, Vasylkivska Str., Kyiv, 03022 ☎ (38044) 521 33 38 e-mail: geology.bulletin@knu.ua, geolvisnyk@ukr.net web: https://geology.bulletin.knu.ua
Approved by	the Academic Council of the USI "Institute of Geology" 30.06.25 (protocol № 17)
Registered by	the National Council of Television and Radio Broadcasting of Ukraine Decision № 1089 of 28.03.24 Identifier of printed media: R30-03800
Certified by	the Ministry of Education and Science of Ukraine (category A) Order № 1412 dated 18.12.18
Indexing	Scopus (Quartile 3, SJR 0.238), Web of Science (Quartile 4, Impact Factor 0.3), EBSCO, Academic Resource Index ResearchBib, Google Scholar
Founded and published	Taras Shevchenko National University of Kyiv Publishing and Polygraphic Center "Kyiv University" Certificate of entry into the State Register ДК № 1103 dated 10.31.02
Address	PPC "Kyiv University" 14, Taras Shevchenko blvd., Kyiv, 01601 ☎ (38044) 239 32 22, 239 31 58, 239 31 28 e-mail: vpc@knu.ua

ЗМІСТ

ГЕОФІЗИКА

ВИЖВА Сергій, ОНИЩУК Віктор, ОНИЩУК Дмитро, ОНИЩУК Іван, ШАБАТУРА Олександр	
Фільтраційно-ємнісні властивості карбонатних порід Гнідинцівського нафтогазоконденсатного родовища	
Глинсько-Солохівського газоконденсатного району.....	5
КЕРІМОВА Кіфаст, ХАЛІЛОВА Лала	
Вивчення генезису осадових порід за даними каротажу свердловин та оцінка взаємозв'язку	
між генезисом осадів і колекторськими властивостями	14

ГЕОЛОГІЯ РОДОВИЩ КОРИСНИХ КОПАЛИН

ДЖАФАРОВ Султан Гейбет, ІМАМВЕРДІЄВ Назім Аждар	
Визначення стадій гідротермального змінення родовищ Агіохушської групи та Мерех (Малий Кавказ).....	23
МИХАЙЛОВ Володимир, РЕВА Максим	
Перспективи видобутку літію в Україні	30

ГЕОЛОГІЯ НАФТИ І ГАЗУ

ОСТАШ Олег, ОМЕЛЬЧЕНКО Валерій, КАЛИНІЙ Тетяна	
Літологічні особливості низькопроникних нафтогазонасичених порід-колекторів у розрізі неогенових відкладів	
на прикладі Буцівського газового родовища	37
ФЕЙЗУЛЛАЄВ Акбар, АХМАДОВ Тофіг, МАМЕДОВА Арзу	
Теоретичні та експериментальні передумови прямого прогнозування вуглеводнів	
на основі даних сейсморозвідки (на прикладі Південнокаспійського та інших басейнів).....	49
АБДУЛЛА-ЗАДА Мурад, ЗАГІДОВА Тамелла, ШАХБАЗОВ Руфат	
Комплексна переоцінка вуглеводневого потенціалу родовищ Апшерон-Банка та Дарвін Банка	
на Апшеронсько-Прибалханському структурному порозі.....	57
МАМЕДОВ Гусейнага, АБДУЛЛА-ЗАДА Мурад	
Гідровуглецеві парадигми часу та структури: Багатометодне дослідження нафтогазових систем	
Бакинського архіпелагу.....	69
МАММАДОВА Назіла	
Застосування нового класу нанокомпозитів в екологічному управлінні пластовими водами	
на нафтогазовому родовищі Бібі-Ейбат	78

МІНЕРАЛОГІЯ, ГЕОХІМІЯ ТА ПЕТРОГРАФІЯ

ВИЖВА Сергій, ГАФІЧ Іван, ГОЖИК Андрій, ШАБАТУРА Олександр, ШНЮКОВ Сергій	
Геохімічно-петрофізична оцінка літологічної та колекторської мінливості керну свердловин	
на прикладі Руновщинської нафтогазоносної площа Дніпровсько-Донецької западини (попередні результати).....	87

ГЕОЛОГІЧНА ІНФОРМАТИКА

ЗАЦЕРКОВНИЙ Віталій, ВОРОХ Віктор, ГЛОБА Ольга, МІРОНЧУК Тетяна, ПЛІЧКО Людмила	
Особливості застосування ГІС, GPS, ДЗЗ та ШІ в дослідженні ґрунтovих характеристик.....	98
ГУСЕЙНОВ Аріф, НЕСТЕРОВСЬКИЙ Віктор, ГУСЕЙНОВА Айтен	
Перший досвід використання супутниковых даних для моніторингу водно-флюїдного режиму	
вулкана Локбатан при оцінці ризиків сейсмічних подій у регіоні.....	108
ГУДАК Василь, МАРГЕС Сергій, ЗАЦЕРКОВНИЙ Віталій, ДЕ ДОНАТИС Мауро	
Методологія автоматизованого виявлення аномальних геопросторових зон на супутниковых знімках	
із використанням статистичного аналізу та спеціалізованого плагіна для QGIS	117
ЗАЦЕРКОВНИЙ Віталій, ЦЮПА Ірина, ДЕ ДОНАТИС Мауро, НІКОЛЮК Ігор,	
КРАВЧЕНЯ Валентин, ЦВІК Олександр, МІРОНЧУК Тетяна	
Методи виявлення вибухонебезпечних ділянок для дослідження сільськогосподарських територій	127

CONTENTS

GEOPHYSICS

VYZHVA Serhii, ONYSHCHUK Viktor, ONYSHCHUK Dmytro, ONYSHCHUK Ivan, SHABATURA Oleksandr	
Reservoir properties of carbon rocks of the Hnidyntsivske oil and gas condensate deposit	
of the Glynsko-Solokhiv gas condensate field	5
KERİMOVA Kifayet, KHALİLOVA Lala	
Study of sediment genesis based on borehole logging data and evaluation	
of the relationship between sediment genesis and reservoir properties	14

MINERAL RESOURCES

JAFAROV Sultan Heybet, IMAMVERDIYEV Nazim Ajdar	
Determination of hydrothermal alteration stages of Aghyokhush group and Mereh deposits (Lesser Caucasus)	23
MYKHAYLOV Volodymyr, REVA Maksym	
Prospects of lithium extraction in Ukraine	30

PETROLEUM GEOLOGY

OSTASH Oleh, OMELCHENKO Valeriy, KALYNII Tetyana	
Lithologic features of low permeable oil and gas saturated reservoir rocks in the neogene sediments thickness	
in Butsivske gas field as an analog	37
FEYZULLAYEV Akbar, AHMADOV Tofiq, MAMMADOVA Arzu	
Theoretical and experimental prerequisites for direct forecast of hydrocarbons based on seismic exploration data	
(case study the South Caspian and other basins)	49
ABDULLA-ZADA Murad, ZAHIDOV Tamella, SHAHBAZOV Rufat	
Integrated reassessment of hydrocarbon potential in the Absheron-bank and Darwin bank fields,	
of the Absheron-Prebalkhan structural threshold	57
MAMMADOV Huseynaga, ABDULLA-ZADA Murad	
Hydrocarbon patterns across time and structure: a multi-method study of the Baku Archipelago petroleum systems	69
MAMMADOVA Nazila	
Application of a new class of nanocomposites in the ecological management of formation waters	
at the Bibiheybat oil and gas field	78

MINERALOGY, GEOCHEMISTRY AND PETROGRAPHY

VYZHVA Serhii, HAVYCH Ivan, GOZHYK Andrii, SHABATURA Oleksandr, SHNYUKOV Sergiy	
Geochemical and petrophysical assessment of lithological variability and reservoir properties of wells core:	
Runovshchyna oil and gas field of the Dnipro-Donetsk basin as an example (preliminary results)	87

GEOINFORMATICS

ZATSERKOVNYI Vitaliy, VOROKH Victor, HLOBA Olga, MIRONCHUK Tetiana, PLICHKO Liudmyla	
Utilizing GIS, GPS, remote sensing, and AI in the study of soil characteristics	98
HUSEYNOV Arif, NESTEROVSKY Viktor, HUSEYNOVA Ayten	
First experience in using satellite data for monitoring the hydro-fluid regime of Lokbatan volcano i	
n the assessment of seismic event risks in the region	108
HUDAK Vasyl, MARHES Serhii, ZATSERKOVNYI Vitalii, DE DONATIS Mauro	
Methodology for the automated detection of anomalous geospatial zones	
in satellite imagery using statistical analysis and a custom QGIS plugin	117
ZATSERKOVNYI Vitalii, TSIUPA Irina, DE DONATIS Mauro, NIKOLIUK Igor,	
KRAVCHENIA Valentin, TSVYK Oleksandr, MIRONCHUK Tetiana	
Methods to detect explosive hazards in agricultural areas	127

ВИПУСК 3(110)

ГЕОФІЗИКА

УДК 550.8.056
DOI: <http://doi.org/10.17721/1728-2713.110.01>

Сергій ВИЖВА¹, член-кор. НАН України, д-р геол. наук, проф.
ORCID ID: 0000-0003-4091-6649
e-mail: s.vyzhva@knu.ua

Віктор ОНИЩУК¹, канд. геол. наук, доц.
ORCID ID: 0000-0002-2301-2202
e-mail: viktor.onyshchuk@knu.ua

Дмитро ОНИЩУК², канд. геол. наук
ORCID ID: 0009-0000-7592-2104
e-mail: boenerges@ukr.net

Іван ОНИЩУК¹, канд. геол. наук, ст. наук. співроб.
ORCID ID: 0009-0004-0186-7578
e-mail: ivan.onyshchuk@knu.ua

Олександр ШАБАТУРА¹, д-р геол. наук, доц.
ORCID ID: 0000-0003-0810-3701
e-mail: oshabatura@knu.ua

¹Київський національний університет імені Тараса Шевченка, Київ, Україна
²ТОВ "Алкон Україна", Київ, Україна

ФІЛЬТРАЦІЙНО-ЄМНІСНІ ВЛАСТИВОСТІ КАРБОНАТНИХ ПОРІД ГНІДИНЦІВСЬКОГО НАФТОГАЗОКОНДЕНСАТНОГО РОДОВИЩА ГЛІНСЬКО-СОЛОХІВСЬКОГО ГАЗОКОНДЕНСАТНОГО РАЙОНУ

(Представлено членом редакційної колегії д-ром геол. наук, проф., член-кор. НАНУ М.І. Орлюком)

Вступ. Висвітлено результати визначення фільтраційно-ємнісних параметрів карбонатних порід верхнього карбону Гнідинцівського нафтогазоконденсатного родовища Глинсько-Солохівського газоконденсатного району з метою комплексного аналізу їх фізичних властивостей.

Методи. Виконано короткий петрографічний опис вапняків. Визначено об'ємну густину сухих зразків (густина скелета) шляхом зважування та вимірювання їх геометричних розмірів. Для визначення насиченості гасом зразків застосовувався метод гідростатичного зважування. Коефіцієнт відкритої пористості визначався газоволюметричним способом та методом гідростатичного зважування згідно із стандартною методикою. Капілярометричні дослідження виконувалися шляхом центрифугування зразків.

Результати. Досліджено такі фільтраційно-ємнісні характеристики зразків порід, як коефіцієнт відкритої та ефективної пористості, коефіцієнт залишкового нафтонасичення та коефіцієнт проникності.

Наведено межі змін та середні значення фільтраційно-ємнісних параметрів досліджених порід. Виконано оцінку структури пустотного простору порід та їх аналіз на основі капілярометричних досліджень способом центрифугування.

Висновки. За допомогою кореляційного аналізу встановлено ряд кореляційних залежностей між фільтраційно-ємнісними параметрами досліджених порід – густиною, коефіцієнтом пористості, коефіцієнтом ефективної пористості та коефіцієнтом залишкового водонасичення, а також між коефіцієнтами пористості, визначеними в атмосферних та пластових умовах. Ці залежності можуть бути використані при інтерпретації даних геофізичних досліджень свердловин та моделюванні фільтраційно-ємнісних параметрів ущільнених порід-колекторів.

Ключові слова: вапняки, густина, коефіцієнти пористості, проникності та залишкового нафтонасичення, фільтраційно-ємнісні параметри, кореляційні залежності.

Вступ

Постановка проблеми. Поклади вуглеводнів в карбонатних колекторах посідають особливе місце серед джерел видобутку нафти та газу. Вони часто представлені слабкопроникними, низькопористими гірськими породами (Михайлів та ін., 2014а, б; 2018; Михайлів, Карпенко, & Огар, 2015). Наявність карбонатних покладів вуглеводнів встановлено в багатьох регіонах світу, в тому числі в Дніпровсько-Донецькій западині (ДДЗ) (Україна). Карбонатні породи в низці регіонів містять значну кількість органіки і можуть слугувати як материнськими породами, так і колекторами газу. Новітні технології видобутку газу на основі гідророзриву пласта змінили ставлення до цих відкладів. З багатих органікою карбонатних порід можна добувати газ у великих обсягах і з економічно прийнятною при нинішніх умовах собівартістю.

Карбонатні колектори за цілою низкою ознак відрізняються від теригенних порід традиційних родовищ нафти

та газу. Для карбонатних колекторів характерне регіональне поширення.

При вивченні карбонатних колекторів важливу роль відіграють геофізичні та петрофізичні дослідження, а також математичне моделювання, на основі яких визначаються фільтраційно-ємнісні параметри для підрахунку запасів вуглеводнів.

У статті висвітлено фільтраційно-ємнісні параметри карбонатних порід, представлених мікрото-спаритовими та доломітовими піщанистими вапняками верхнього карбону Гнідинцівського нафтогазоконденсатного родовища Глинсько-Солохівського газоконденсатного району (ГКР). Характеристика петрофізичних властивостей цих порід є одним із важливих засобів оцінки нафтогазового потенціалу перспективних товщ карбонатних колекторів, що зумовлює актуальність їх петрофізичного вивчення щодо перспективності розробки.

Аналіз публікацій за темою досліджень. Вивченю фізичних властивостей порід нафтогазоперспективних районів України присвячена низка публікацій (Вижва та ін., 2020, 2022 а, б, 2024; Vyzhva et al., 2025; Карпенко, О., Башкіров, & Карпенко, І., 2014; Карпенко, О., Михайлів, & Карпенко, І., 2015; Маслов, Онищук, & Шинкаренко, 2017; Михайлів та ін., 2014 а, б; 2018; Михайлів, Карпенко, & Огар, 2015; Нестеренко, 2010; Орлюк & Пашкевич, 2011, Орлюк, & Друкаренко, 2018; Пашкевич, Орлюк, & Лебедь, 2014; Orlyuk et al., 2018; Iuras et al., 2023; Рибалка, & Карпенко, 2016; Соболь, & Карпенко, 2021; Старостенко, & Русаков, 2015; Федоршин та ін., 2018) та багатьох інших авторів. Петрофізичні параметри порід мають важливе значення для оцінки їх колекторських властивостей за даними свердловинних електрометричних та акустичних досліджень, тому їх лабораторним дослідженням приділяється значна увага. Водночас петрофізичні параметри порід і кореляційні залежності між ними мають досить виражений індивідуальний характер стосовно кожної ділянки досліджень. Отже, лабораторне визначення цих властивостей та встановлення відповідних кореляційних зв'язків між ними для кожної перспективної площини потребують виконання як окремих досліджень, так і окремого публічного висвітлення їх результатів.

Виділення нероз'язаних раніше частин загальної проблеми. На сучасному етапі проблема пошукув та вивчення карбонатних джерел вуглеводнів на території України є надзвичайно актуальну, зважаючи на ситуацію з енергоносіями у світі. Тому вивчення петрофізичних властивостей гірських порід з метою оцінки перспективності геологічних структур та комплексів на вуглеводні має важливе значення. Як вже зазначалося, петрофізичні властивості порід необхідні для інтерпретації матеріалів геофізичних досліджень свердловин, а також при оцінці параметрів гідророзриву пласта.

Незважаючи на значну кількість відповідних публікацій, для карбонатних порід практично відсутні дані їх лабораторних фільтраційно-ємнісних досліджень та кореляційних залежностей між фільтраційно-ємнісними параметрами для конкретних площин і утворень. Слід відзначити, що петрофізичні дослідження були спрямовані переважно на вивчення теригенних порід-колекторів і на даному етапі петрофізичні параметри карбонатних порід слабко вивчені.

Метою даних досліджень була оцінка петрофізичних параметрів карбонатних порід-колекторів верхнього карбону Гнідинцівського нафтогазоконденсатного родовища Глинсько-Солохівського ГКР як основи комплексного аналізу їх фізичних властивостей.

Встановлено, що кореляційні зв'язки між ємнісно-фільтраційними параметрами і даними свердловинних та польових геофізичних методів є досить складними і потребують ретельного вивчення. Комплекс лабораторних петрофізичних досліджень є основою для визначення цих зв'язків. Дані, отримані в результаті лабораторних досліджень про зміни густини порід, їх питомого електричного опору, швидкості поширення пружних хвиль у них та їх кореляційні зв'язки із фільтраційно-ємнісними параметрами використовуються для інтерпретації результатів електрометричних і акустичних методів досліджень свердловин, польової електророзвідки і сейсморозвідки.

Методи

Експериментальні петрофізичні дослідження.

У науково-дослідній лабораторії (НДЛ) теоретичної і прикладної геофізики ННІ "Інститут геології" КНУ імені Тараса Шевченка виконано комплекс петрофізичних

досліджень, що включав визначення: густини порід; відкритої та ефективної пористості, структури капілярного простору, проникності в атмосферних і пластових умовах. Усі лабораторні дослідження виконувались відповідно до чинних нормативних документів.

У статті наведено результати комплексних досліджень фільтраційно-ємнісних властивостей колекції із 44 зразків карбонатних порід верхнього карбону Гнідинцівського нафтогазоконденсатного родовища Глинсько-Солохівського ГКР. Досліджені породи представлені мікрито-спаритовими та доломітизованими піщанистими вапняками із свердловин 250, 278, 280 (інтервал глибин 1760–1900 м).

За матеріалами петрографічних досліджень встановлено, що вище інтервалу залягають тонкокристалічні (спаритові) та пелітоморфні (мікритові) слабодоломітизовані вапняки, які включають малопотужні прошарки піщанистих чи алевролітических вапняків, або несортованих пісковиків. Кількість та розмір теригенного матеріалу мінливі, окрім зерна досягають розміру грубого пісамітового, а пелітоморфний кварц є невід'ємною складовою мікритових відмін (у т. ч. і в спаритах), де він асоціює із глинистою (смектитовою) складовою. Головними ознаками вказаних відмін є забарвлення окремих шарів та прошарків, яке спричинене вмістом у них смектитової складової зеленуватого кольору. Виділяються сірі, іноді злегка буруваті спарити, зеленувато-сірі мікрито-спарити, зелені мікрити та їх світло-сірі, майже білі відміни. Шари та прошарки характеризуються непаралельними, хвилястими, хмароподібними та лінзоподібними обмеженнями.

Нижню частину дослідженого інтервалу складають доломітизовані піщанисті вапняки, в яких власне доломіт разом із теригеною фракцією складає зернисту масу, що цементується мікритовим карбонатом із глинистою речовиною, де ділянки із базальним типом цементації вміщують до 60 % кристалів доломіту. Іноді в породах трапляються плями нафти.

Породи, що описуються, характеризуються наявністю міжзернових пор розміром 0,01–0,03 мм, що часто не сполучаються між собою. Їх внутрішня поверхня і контури підпорядковані численним граням ромбоедрів, що не зрослися між собою. Досить слабка проникність різних відмін вапняку пов'язується з наявністю павутинної системи міжзернових тріщин, які дуже часто виповнюються аморфною глинистою колоїдальною речовиною, або тектонічних тріщин, які частково виповнені перевідкладеним мікротом, або кірочками кальциту.

Відклади формувалися, наймовірніше, в середньоглибинній частині шельфу, де осідав планктон, про що свідчать біоморфні рештки, які складають основу перекристалізованих спаритових та мікрит-спаритових відмін. В області формування тонкозернистих біоморфних карбонатних осадків періодично потрапляє теригенний несортований матеріал (можливо шторміти), або перенесений придонними течіями, які привносили в більш глибоководні ділянки разом із теригенним матеріалом фрагменти слабо консолідованих (можливо водоростями) смектитових кірочок. Осадки носять трансгресивний характер: знизу угору по розрізу спостерігається зменшення потужності та кількості теригенних прошарків. Відмічені текстури опливання осадків формувалися в середині пласта за рахунок неоднорідного літостатичного тиску на діагенетичній стадії після формування кристалів та мікроконкреміцій сульфідів. Доломітизація мала вибірковий характер. Вона більш інтенсивно проходила по біоморфних рештах, мінімально – по кальцитовому мікриту. Наймовірніше, доломітизація

вапняків відбувалася на епігенетичній стадії після (або під час) формування кліважної тріщинуватості. Проте додаткової пористості в цій ділянці розрізу не виникло, у зв'язку із можливим заликовуванням пор та тріщин смектитом та пелітоморфним карбонатом.

За класифікацією Дахнова ці породи належать до III класу колекторів (Дахнов, 1975).

Об'ємна густина досліджених порід у сухому стані визначалась шляхом зважування та вимірювання геометричних розмірів спеціальних лабораторних зразків циліндричної форми, а в насиченому стані (насичувалися моделлю нафти – гасом) – застосовувався метод гідростатичного зважування за стандартною методикою попередньо насичених зразків (Дортман, 1992 а, б; Tiab, & Donaldson, 2015). Для визначення ваги зразків використовувалися цифрові аналітичні ваги WPS 360/c/2 (точність $\pm 0,001$ г).

Коефіцієнт відкритої пористості визначався газоволюметричним способом за допомогою спеціально розробленої установки та методом гідростатичного зважування згідно із стандартною методикою. Середня відносна похибка визначень коефіцієнта пористості становила 1,1 %.

Капілярометричні дослідження виконувалися шляхом центрифугування зразків порід за допомогою центрифуги ОС-6М (Рудько, 2005). Обертова швидкість

ротора центрифуги змінювалась від 1000 до 6000 об/хв із кроком 1000 об/хв, при цьому тиск витіснення змінювався від 0,03 до 1 МПа.

Результати

Аналіз даних лабораторних досліджень. У статті висвітлено результати виконаних комплексних лабораторних досліджень, визначено фільтраційно-ємнісні параметри карбонатних порід верхнього карбону Гнідинцівського нафтогазоконденсатного родовища Глинсько-Солохівського ГКР. Відомості про межі змін та середні значення петрофізичних параметрів порід, залежно від їх літології, наведено у відповідних таблицях.

Густина. За результатами лабораторних визначень густини встановлено, що цей параметр для сухих вапняків змінюється від 2212 кг/м³ до 2600 кг/м³ за середнього значення 2414 кг/м³. Густина порід, насичених гасом (моделлю нафти), варіє в межах від 2400 кг/м³ до 2654 кг/м³ за середнього значення 2543 кг/м³. Уявна мінералогічна густина досліджених вапняків змінюється від 2747 до 2828 кг/м³ за середнього значення 2800 кг/м³. Широкі межі змін густини свідчать про мінливість як текстури та структури досліджених порід, так і власне їх пористості (табл. 1).

Таблиця 1

Межі змін і середні значення густинних параметрів порід				
Порода	Значення параметра	Густина (сухі), кг/м ³	Густина (насич. гасом), кг/м ³	Уявна густина мінералогічна, кг/м ³
Мікрито-спаритові та доломітовані піщанисті вапняки	мін.	2212	2400	2747
	макс.	2600	2654	2828
	сер.	2414	2543	2800

Пористість. Пористість – властивість породи вміщувати флюїди (нафту, газ і воду). Це важливий параметр породи, що визначає ємність колектора. Виділяють загальну, відкриту та ефективну пористість (Дортман, 1992 а, б; Tiab, & Donaldson, 2015). Коефіцієнт пористості – один із головних петрофізичних параметрів, що характеризує пустотний простір породи. Ця властивість породи визначає об'єм кожного типу флюїду, що вміщається у породі. Окрім того, важливими властивостями порід-колекторів є структура їх пустотного простору та вміст залишкової води (залежно від капілярного тиску), а також звивистість порових каналів. Лабораторні визначення цих параметрів дають змогу отримати інформацію про катагенетичні і діагенетичні процеси та про механізми, які діяли під час транспортування й відкладення осадового матеріалу, ущільнення й деформації осадків (Tiab, & Donaldson, 2015). За структурою породи візуально на якісному рівні можна оцінити ступінь її пористості.

Відомості про межі змін та середні значення коефіцієнта пористості порід, залежно від їх виду, наведено у табл. 2.

Значення коефіцієнта відкритої пористості вапняків, визначеного газоволюметричним способом, змінюються для досліджених порід від 0,076 до 0,216 за його середнього значення 0,154. Коефіцієнт відкритої пористості

порід, визначений гідростатичним методом шляхом насичення гасом (моделлю нафти), змінюється від 0,049 до 0,184 за його середнього значення 0,128.

За коефіцієнтом відкритої пористості (Дахнов, 1975) досліджені породи належать до III–IV класів колекторів (пористість варіється від середньої – 93 % зразків до низької – 7 % зразків).

В результаті аналізу лабораторних даних встановлено кореляційну залежність між коефіцієнтами пористості досліджених порід, визначеними газоволюметричним способом і методом насичення гасом, що описується лінійною функцією:

$$k_{n,NaCl} = 0,87392 \cdot k_{n,gv} - 0,00661, \text{ при } R^2 = 0,846;$$

де $k_{n,gv}$, $k_{n,rac}$ – коефіцієнти відкритої пористості, визначені газоволюметричним способом та гідростатичним методом відповідно, шляхом насичення гасом. Графік цієї залежності наведено на рис. 1.

Аналіз лабораторних даних також дав змогу встановити кореляційну залежність між густину досліджених порід (σ) та їх коефіцієнтом пористості ($k_{n,rac}$), яка описується лінійною функцією:

$$k_{n,rac} = -0,0001 \cdot \sigma + 0,3274, \text{ при } R^2 = 0,736.$$

Графік отриманої кореляційної залежності наведено на рис. 2.

Таблиця 2

Порода	Значення параметра	Коефіцієнт відкритої пористості, k_n		Коефіцієнт ефективної пористості, k_n
		насич. азотом	насич. гасом	
Мікрито-спаритові та доломітовані піщанисті вапняки	мін.	0,076	0,049	0,005
	макс.	0,216	0,184	0,119
	сер.	0,154	0,128	0,042

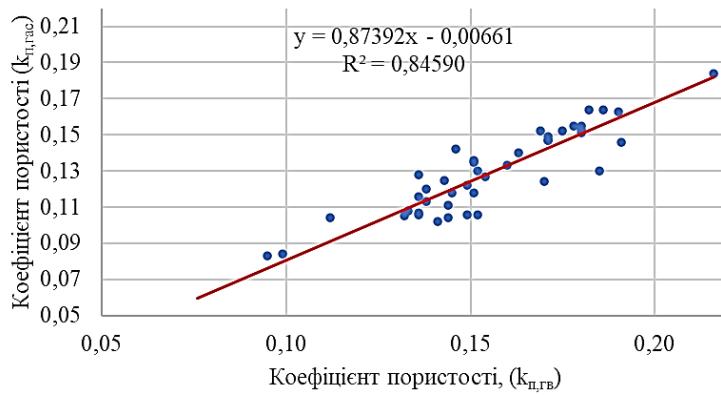


Рис. 1. Залежність між коефіцієнтами відкритої пористості, визначеними газоволюметричним способом ($k_{n,rac}$) і методом насычення гасом $NaCl$ ($k_{n,fr}$)

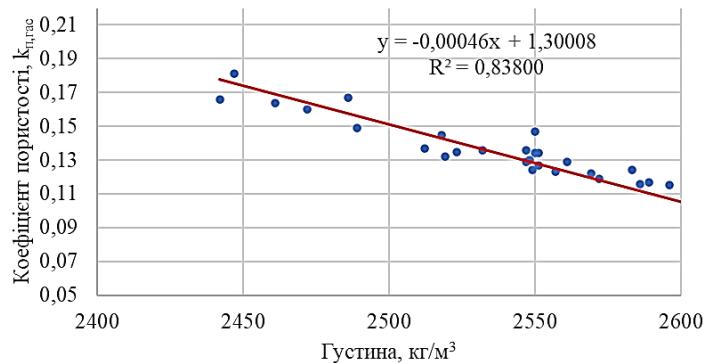
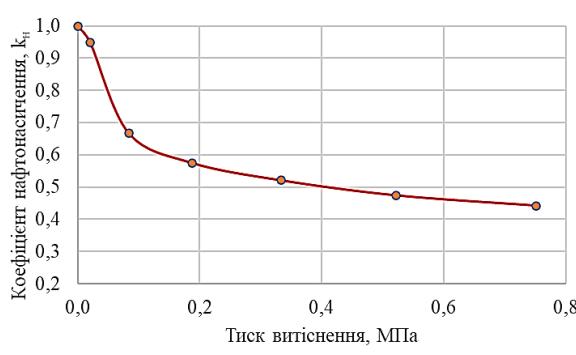
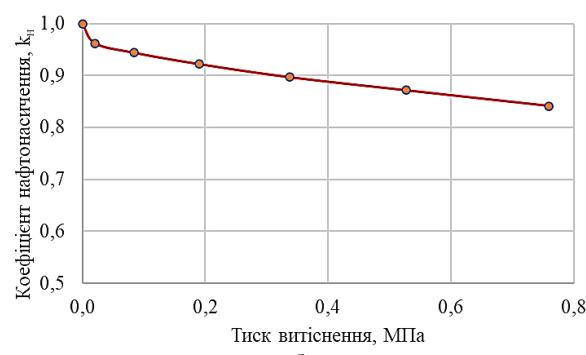


Рис. 2. Залежність коефіцієнта відкритої пористості порід ($k_{n,rac}$), визначеного методом насычення гасом, від густини (σ)

Структура пустотного простору порід. Структура пустотного простору осадових порід значною мірою визначається формою й окатаністю зерен, їх розмірами, сортуванням, орієнтуванням і типом упаковки, а також хімічним складом (Дортман, 1992 а, б; Tiab, & Donaldson, 2015). Структура пустотного простору порід у петрофізичній лабораторії визначалась способом центрифугування їх зразків за допомогою центрифуги ОС-6М. Завдяки аналізу кривих капілярного тиску (ККТ), отриманих за


результатами центрифугування, визначено коефіцієнти залишкового водонасичення (K_{3B}) та структуру пустотного простору досліджених вапняків. Відомості про структуру пустотного простору і коефіцієнти залишкового нафтонасичення наведено в табл. 3.

Для прикладу на рис. 3 а та 3 б наведено типові криві капілярного тиску досліджених порід з різними фільтраційними властивостями.


Таблиця 3

Межі змін і середні значення параметрів пустотного простору порід

Порода	Значення параметра	Вміст пор, %			Коефіцієнт залишкового нафтонасичення, K_{3B}
		надкапілярні	капілярні	субкапілярні	
Мікрото-спаритові та доломітовані піщанисті вапняки	мін.	2,5	7,1	44,2	0,442
	макс.	33,2	36,7	90,0	0,900
	сер.	7,9	18,4	73,6	0,736

а

б

Рис. 3. Типові криві капілярного тиску:
а – вапняки з підвищеними фільтраційними властивостями ($k_n=0,166$; $k_{np}=1,215 \text{ фм}^2$),
б – вапняки з низькими фільтраційними властивостями ($k_n=0,11$; $k_{np}=0,051 \text{ фм}^2$)

За допомогою аналізу кривих капілярного тиску (ККТ) встановлено, що коефіцієнт залишкового нафтонасичення досліджених вапняків змінюється від 0,442 до 0,9, за його середнього значення 0,736 (табл. 3).

Встановлено кореляційну залежність між коефіцієнтом залишкового нафтонасичення (K_{3H}) і коефіцієнтом пористості порід ($K_{p,rac}$), яка описується поліномом 2 порядку:

$$k_{3\text{H}} = -31,91802 \cdot k_{\text{n,rac}}^2 + 3,50346 \cdot k_{\text{n,rac}} + 0,79735, \\ \text{при } R^2 = 0,826.$$

Графік цієї залежності наведено на рис. 4.

Коефіцієнт ефективної пористості $k_{p, \text{еф}}$ (табл. 2), визначений з використанням коефіцієнта залишкового

нафтонасичення, змінюється від 0,005 до 0,119 (середнє значення 0,042).

Аналіз отриманих даних дав змогу також встановити кореляційну залежність між коефіцієнтами пористості ($K_{n,rac}$) і ефективної пористості ($K_{n,eff}$). Графік цієї залежності (рис. 5) описується експоненціальною функцією:

$$k_{\text{п.еф}} = 0,00282 \cdot e^{19,96113 \cdot k_{\text{п.рас}}}, \text{ при } R^2 = 0,855.$$

Встановлена кореляційна залежність між коефіцієнтами ефективної пористості ($K_{n,\text{еф}}$) і пористості порід ($K_{n,\text{rac}}$) має лінійний характер:

$$k_{\text{п,еф}} = -0,191 \cdot k_{\text{зн}} + 0,1752, \text{ при } R^2 = 0,975.$$

Графік цієї залежності наведено на рис. 6.

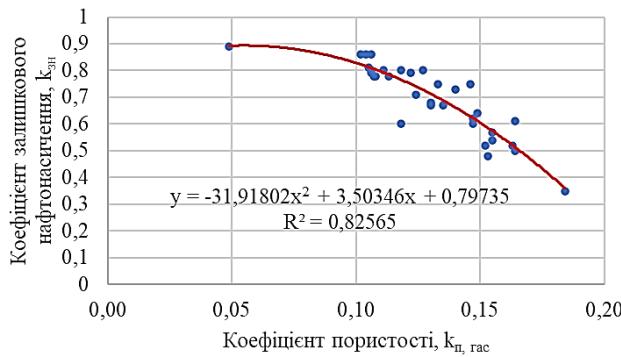


Рис. 4. Залежність коефіцієнта залишкового нафтонасичення (k_{res}) від коефіцієнта пористості порід ($k_{n,\text{rac}}$)

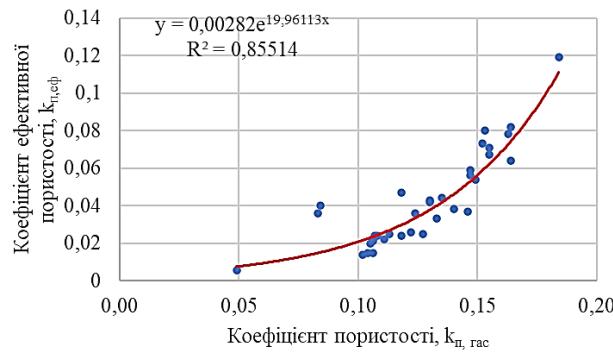


Рис. 5. Залежність коефіцієнта залишкового нафтонасичення (K_{3n}) від коефіцієнта пористості порід ($K_{n,rac}$)

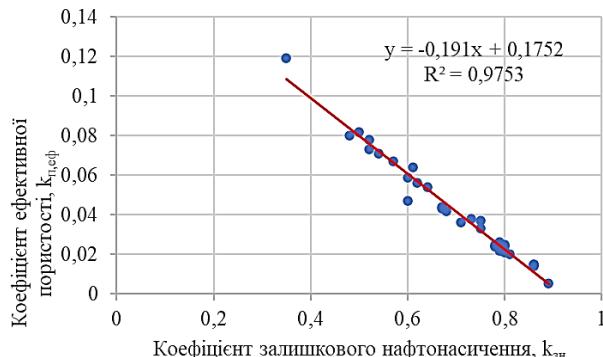


Рис. 6. Залежність коефіцієнта ефективної пористості порід ($K_{\text{п,еф}}$) від коефіцієнта залишкового нафтонасичення ($K_{\text{з}}$)

За результатами капілярометричних досліджень виконано оцінку структури пустотного простору досліджених порід за діаметром капілярів. Розподіл пустотного простору порід на субкапілярні (діаметр $<0,2$ мкм), капілярні (діаметр 0,2–3 мкм) та надкапілярні (діаметр 3–100 мкм) пори (Нестеренко, 2010) наведено в табл. 3. Слід відзначити, що субкапілярні пори участі у фільтрації флюїдів не беруть і зазвичай заповнені залишковою водою. Натомість, флюїди зосереджені в

надкапілярних і капілярних порових каналах, можуть брати участь у фільтраційних процесах. У результаті лабораторних капілярометричних досліджень встановлено, що поровий простір досліджених порід має наступну структуру: вміст надкапілярних пор змінюється від 2,5 до 33,2 % за середнього значення 7,9 %; вміст капілярних пор – від 7,1 до 36,7 % за середнього значення 18,4 %; вміст субкапілярних пор – від 44,2 до 90 % за середнього значення 73,6 %.

Таким чином, за структурою пустотного простору досліджені вапняки здебільшого мають середні ємнісні параметри.

Проникність. Властивість гірських порід, що характеризує їхню здатність пропускати флюїди, називається їх проникністю. Вона визначає швидкість руху флюїдів у породі, а отже, і технологію їх видобутку. Проникність порід контролюється розміром зерен породи, їх формою та просторовим розподілом за розмірами, а також їхньою упаковкою, ступенем глинистості, консолідації й цементації. Зміни проникності можна прогнозувати, виходячи із змін розміру й форми частинок, а також розподілу пустотних каналів у породі. На проникність також суттєво впливає тип глинистого або іншого цементувального матеріалу між піщаними зернами, особливо у разі присутності води. Деякі глинисті мінерали, зокрема монтморилоніт і сметкіт, розбувають у воді і можуть частково або повністю закупорювати пустотний простір (Tiab, & Donaldson, 2015).

Отже, здатність породи пропускати через себе флюїди характеризується коефіцієнтом проникності $k_{\text{пр}}$. У випадку, коли порода на 100 % насычена одним флюїдом (фазою), таким як газ, нафта або вода, називається абсолютною проникністю для даного флюїду. У разі присутності у породі більше одного флюїду, проникність для кожного з них є фазовою, при цьому коефіцієнти проникності $k_{\text{пр},\text{г}}$, $k_{\text{пр},\text{н}}$, $k_{\text{пр},\text{в}}$ характеризують ефективну фазову проникність для газу, нафти й води відповідно. У процесі руху по пустотних каналах пластові флюїди взаємодіють між собою, гальмуючи один одного, тому сума ефективної проникності всіх трьох фаз завжди менша від абсолютної проникності.

За літературними даними, проникність порід-колекторів нафти і газу змінюється в діапазоні від 0,1 до 1000 фм², інколи й більше. Клас колектора зумовлюється його проникністю, що поділяється на: низьку – $k_{\text{пр}} < 1$ фм², задовільну – $k_{\text{пр}} = 1-10$ фм², середню – $k_{\text{пр}} = 10-50$ фм², високу – $k_{\text{пр}} = 50-250$ фм² і дуже високу – $k_{\text{пр}} > 250$ фм² (Tiab, & Donaldson, 2015). Породи, що мають проникність, нижчу 1 фм², вважаються ущільненими. Низька проникність властива алевролітам, аргілітам, ущільненим газоносним пісковикам та матриці вапняків.

Промислова розробка газоносних ущільнених порід можлива шляхом застосування технологій інтенсифікації продуктивних товщ, таких як кислотна обробка та гідророзрив пласта. Ці заходи суттєво підвищують проникність ущільнених порід і дають змогу вести видобуток вуглеводнів із порід-колекторів, які раніше вважалися некондіційними.

Коефіцієнт проникності досліджених вапняків визначався методом стаціонарної фільтрації азоту за допомогою спеціально розробленої установки. Середня відносна похибка визначень коефіцієнта проникності становила 2,5 %. У табл. 4 наведено межі змін і середні значення коефіцієнта проникності досліджених вапняків.

Таблиця 4

Межі змін і середні значення проникності порід

Порода	Значення параметра	Коефіцієнт проникності $k_{\text{пр}}$, фм ²
Мікрото-спаритові та доломітизовані піщанисті вапняки	мін.	0,039
	макс.	2,638
	сер.	0,315

Завдяки аналізу результатів лабораторних досліджень коефіцієнта проникності порід встановлено, що цей параметр змінюється від 0,039 фм² до 2,638 фм² за його середнього значення 0,315 фм². За класифікацією порід згідно з їх проникністю (Дахнов, 1975) досліджені породи належать до: IV класу колекторів (проникність низька, $k_{\text{пр}} = 1-10$ фм²) – 5 % зразків та V класу колекторів (проникність дуже низька, $k_{\text{пр}} < 1$ фм²) – 95 % зразків.

Аналіз отриманих даних дав змогу встановити кореляційну залежність між коефіцієнтом проникності ($k_{\text{пр}}$) і коефіцієнтом ефективної пористості ($k_{\text{п,еф}}$). Графік цієї залежності (рис. 7) описується експоненціальною функцією

$$k_{\text{пр}} = 0,00282 \cdot e^{19,96113 \cdot k_{\text{п,еф}}}$$

Встановлено кореляційну залежність між коефіцієнтом залишкового нафтонасичення ($k_{\text{зн}}$) і проникності ($k_{\text{пр}}$) порід:

$$k_{\text{зн}} = -0,11256 \cdot \ln(k_{\text{пр}}) + 0,48781, \text{ при } R^2 = 0,841.$$

Графік цієї залежності описується логарифмічною функцією (рис. 8).

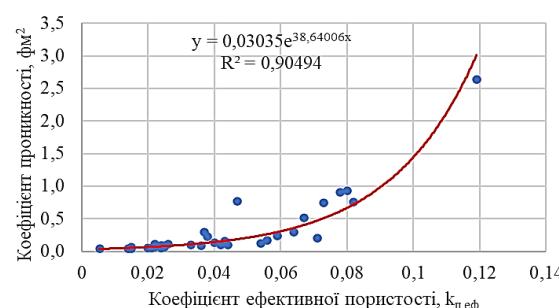


Рис. 7. Залежність коефіцієнта проникності ($k_{\text{пр}}$) від коефіцієнта ефективної пористості порід ($k_{\text{п,еф}}$)

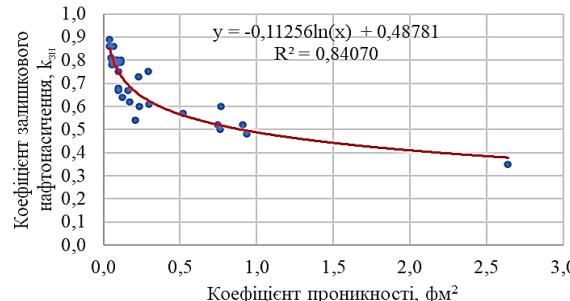


Рис. 8. Залежність коефіцієнта залишкового нафтонасичення ($k_{\text{зн}}$) від коефіцієнта проникності ($k_{\text{пр}}$) порід

Дискусія і висновки

Лабораторні дослідження петрофізичних властивостей вапняків є актуальними щодо оцінки нафтогазового потенціалу перспективних товщ. У цій статті висвітлено результати лабораторних досліджень колекторських властивостей карбонатних порід верхнього карбону Гіндинцівського нафтогазоконденсатного родовища Глинсько-Солохівського ГКР. Досліджені породи представлені мікрото-спаритовими та доломітизованими піщанистими вапняками.

Виконано комплекс петрофізичних досліджень фільтраційно-ємнісних параметрів, а саме.

1. Визначено, що об'ємна густина сухих вапняків змінюється від 2212 до 2600 кг/м³ (середнє 2414 кг/м³). Породи, насычені гасом (модель нафти), мають густину від 2400 до 2654 кг/м³ (середнє 2543 кг/м³). Уявна мінералогічна густина вапняків змінюється від 2747 до 2828 кг/м³ (середнє 2800 кг/м³). Мінливість як мінерального складу досліджених порід, так і пористості спричиняє варіації їх густини.

2. Встановлено, що коефіцієнт пористості вапняків, визначений газоволюметричним способом, змінюється від 0,076 до 0,216 (середнє 0,154). Методом гідростатичного зважування визначено, що коефіцієнт відкритої пористості змінюється 0,049 до 0,184 (середнє 0,128). За коефіцієнтом відкритої пористості досліджені породи належать до III–IV класів колекторів (пористість від середньої – 93 % зразків до низької – 7 % зразків).

Коефіцієнт ефективної пористості вапняків змінюється від 0,005 до 0,119 (середнє 0,046).

3. Визначений коефіцієнт залишкового нафтонасичення досліджених порід змінюється від 0,442 до 0,9 (середнє 0,736).

4. Визначена шляхом капілярометричних досліджень методом центрифугування, структура капілярного простору досліджених вапняків така: вміст надкапілярних пор змінюється: від 2,5 до 33,2 % (середнє 7,9 %); вміст капілярних пор – від 7,1 до 36,7 % (середнє 18,4 %), вміст субкапілярних пор – від 44,2 до 90 % (середнє 73,6 %). За структурою пустотного простору досліджені вапняки здебільшого мають середні ємнісні параметри.

5. В результаті лабораторних досліджень коефіцієнта проникності порід встановлено, що цей параметр змінюється від 0,039 до 2,638 фм² (середнє 0,315 фм²). За значеннями коефіцієнта проникності досліджені породи до: IV класу колекторів (проникність низька) – 5 % зразків та V класу колекторів (проникність дуже низька) – 95 % зразків.

Таким чином, досліджені вапняки мають переважно середні ємнісні параметри та низькі і дуже низькі фільтраційні властивості за винятком окремих зразків. Слід відзначити, що розробка таких колекторів неможлива без застосування методів інтенсифікації пласта.

За допомогою кореляційного аналізу встановлено ряд емпіричних залежностей між фільтраційно-ємнісними параметрами досліджених порід – густиною, коефіцієнтами відкритої та ефективної пористості, залишкового нафтонасичення та проникності. Ці залежності можуть бути використані при інтерпретації даних геофізичних досліджень свердловин та моделюванні фільтраційно-ємнісних параметрів вапняків верхнього карбону Глинсько-Солохівського ГКР та суміжних площ.

Внесок авторів: Сергій Вижва – концептуалізація, методологія, аналіз і обробка даних; Віктор Онищук – методологія, аналіз і обробка даних, написання (оригінальна чернетка, перегляд і редактування); Іван Онищук – аналіз і обробка даних, валідація даних, написання (оригінальна чернетка); Дмитро Онищук –

лабораторні вимірювання, аналіз і обробка даних, формальний аналіз; Олександр Шабатура – програмне забезпечення, аналіз і обробка даних, формальний аналіз.

Подяки. Автори висловлюють щиру подяку ст. лаборанту Цуману В.С. за його активну участь та високий професіоналізм у підготовці зразків і лабораторних дослідженнях.

Джерела фінансування. Роботу виконано в рамках держбюджетної теми №24БП049-01, що фінансується програмою наукових досліджень МОН України.

Список використаних джерел

Вижва, С. А., Онищук, В. І., Онищук, І. І., Рева, М. В., & Шабатура, О. В. (2022а). Колекторські властивості глибокозанурених ущільнених порід карбону центрального грабена ДДЗ. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(96), 11–19. <https://doi.org/10.17721/1728-2713.96.02>

Вижва, С. А., Онищук, В. І., Онищук, І. І., Рева, М. В., & Шабатура, О. В. (2022б). Фільтраційно-ємнісні параметри ущільнених теригенних порід кембрію східного схилу Львівського палеозойського прогину. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 3(98), 33–41. <https://doi.org/10.17721/1728-2713.98.04>

Вижва, С. А., Онищук, В. І., Онищук, І. І., Рева, М. В., Шабатура, О. В., & Олійник, О. В. (2020). Фільтраційно-ємнісні параметри нижньопермських карбонатних порід західної частини Глинсько-Солохівського нафтогазового району Дніпровсько-Донецької западини. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(88), 25–33. <https://doi.org/10.17721/1728-2713.88.04>

Вижва, С. А., Онищук, В. І., Онищук, І. І., & Шабатура, О. В. (2024). Порівняльна характеристика фільтраційно-ємнісних властивостей ущільнених теригенних порід Дніпровсько-Донецької западини та східного схилу Львівського палеозойського прогину. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 4(107), 46–59. <https://doi.org/10.17721/1728-2713.107.06>

Дахнов, В. Н. (1975). *Геофізические методы определения коллекторских свойств и нефтегазонасыщения пород. Недра.*

Дортман, Н. Б. (1992а). *Петрофізика. Справочник. Ч. 1. Недра.*

Дортман, Н. Б. (1992б). *Петрофізика. Справочник. Ч. 2. Недра.*

ДСТУ 41-00032626-00-025-2000. (2001). Коефіцієнт залишкового водонасичення гірських порід. *Методика виконання вимірювань методом центрифугування зразків. Мінекоресурсів України.*

Карпенко, О. М., Михайлів, В. А., & Карпенко, І. О. (2015). До прогнозу освоєння вуглеводневих ресурсів східної частини ДДЗ. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(68), 49–54. [http://www.geolvisnyk.univ.kiev.ua/archive/2015/N%201\(68\)/karpenko.pdf](http://www.geolvisnyk.univ.kiev.ua/archive/2015/N%201(68)/karpenko.pdf)

Карпенко, О., Башкіров, Г., & Карпенко, І. (2014). Визначення вмісту органічної речовини в гірських породах за геофізичними даними. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 3(66), 71–76. <https://doi.org/10.17721/1728-2713.66.12>

Маслов, Б. П., Онищук, І. І., & Шинкаренко, А. В. (2017). Моделювання непінній в'язко-пружинських властивостей теригенно-вапняковистих пісковиків. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 2(77), 99–105. <https://doi.org/10.17721/1728-2713.77.13>

Михайлів, В. А., Анциферов, А. В., Гінтов, О. Б. та ін. (2014а). *Нетрадиційні джерела вуглеводнів України. Східний нафтогазоносний регіон. Книга IV. ВПЦ "Київський університет".*

Михайлів, В. А., Карпенко, О. М., & Огар, В. В. (2015). *Нафта і газ сланцевих порід, ущільнених колекторів, метан вугільних басейнів. Ніка-Центр.*

Михайлів, В. А., Карпенко, О. М., Курило, М. М. та ін. (2014б). *Нетрадиційні джерела вуглеводнів України. Південний нафтогазоносний регіон. Книга III. ВПЦ "Київський університет".*

Михайлів, В. А., Карпенко, О. М., Курило, М. М. та ін. (2018). *Горючі корисні копалини України та їхня геолого-економічна оцінка. ВПЦ "Київський університет".*

Нестеренко, М. Ю. (2010). *Петрофізичні основи обґрунтування флюїдонасичення порід-колекторів. УкрДГР.*

Орлюк, М. І., & Друкареков, В. В. (2018). Прогноз шляхів проходження та місця накопичення вуглеводнів Чернігівського сегменту Дніпровсько-Донецького авлакогену за геомагнітними даними. *Геофізичний журнал*, 2(40), 123–140. <https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.12893>

Орлюк, М. І., & Пашкевич, І. К. (2011). Магнітна характеристика та разломна тектоніка земної кори Шебелинської групpies місторождений як складна частина комплексних поискових критеріїв углеводородов. *Геофізичний журнал*, 6(33), 136–151.

Пашкевич, І. К., Орлюк, М. І., & Лебедь, Т. В. (2014). Магнітна неоднорідність, разломна тектоніка консолідованої земної кори і нефтегазоносність Дніпровсько-Донецького авлакогена. *Геофізичний журнал*, 1(36), 64–80.

Рибалка, С., & Карпенко, О. (2016). Колекторські властивості теригенних порід на великих глибинах центральної частини Дніпровсько-

Донецької западини. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(72), 56–59. <https://doi.org/10.17721/1728-2713.72.08>

Соболь, В., & Карпенко, О. (2021). Нова модель проникності теригенних гранулярних колекторів на прикладі турнейських відкладів Яблунівського нафтогазоконденсатного родовища Дніпровсько-Донецької западини. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(92), 61–66. <https://doi.org/10.17721/1728-2713.92.09>

Старostenko, В. I., & Rusakov, O. M. (Ред.). (2015). *Тектоника і ультралінзний потенціал кристаллического фундамента Дніпровсько-Донецької впадини*. Галактика.

Федоришин, Д. Д., Пятковська, І. О., Трубенко, О. М., Федоришин, С. Д., & Трубенко, А. О. (2018, листопад). *Удосконалення методик виділення порід-колекторів складнопобудованих геологічних розрізів з використанням математичної статистики*. Доповідь на XVII Міжнародній конференції "Геоінформатика: Теоретичні та прикладні аспекти", Київ, Україна.

Iuras, S., Orlyuk, M., Levoniuk, S., Drukarenko, V., & Kruhlov, B. (2023). Unconventional shale gas potential of lower visean organic-rich formations in Glynsko-Solohivskyi petroleum region. *Geodynamics*, 1(34), 80–96. <https://doi.org/10.23939/jgd2023.01.080>

Orlyuk, M., Drukarenko, V., Onyshchuk, I., & Solodkyi, E. (2018). The association of physical properties of deep reservoirs with the geomagnetic field and fault-block tectonics in the hlynsko-solohivskyi oil-and-gas region. *Геодинаміка*, 2(25), 71–88.

Orlyuk, M., Drukarenko, V., & Onyshchuk, I. (2018, листопад). *Physical properties of deep reservoirs of the Glynsko-Solohivskyi oil and gas region*. Доповідь на XII Міжнародній науковій конференції "Моніторинг геологічних процесів та екологічного стану середовища", Київ, Україна.

Tiab, D., & Donaldson, E. C. (2015). *Petrophysics. Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties* (4th ed.). Elsevier.

Vyzhva, S. A., Gozhyk, A. P., Shabatura, O. V., Onyshchuk, V. I., Onyshchuk, D. I., & Onyshchuk, I. I. (2025). Practical content of the elements of petrophysical model of terrigenous sandstones – oil and gas reservoirs in neural networks, deep learning and regression methods. *Geofizicheskiy Zhurnal*, 47(3), 3–31. <https://doi.org/10.24028/gj>

References

Dakhnov, V. N. (1975). *Geophysical methods for the determination of reservoir properties and oil and gas saturation of rocks*. Nedra [in Russian].

Dortman, N. B. (Ed.). (1992a). *Petrophysics. Handbook* (Vol. 1). Nedra [in Russian].

Dortman, N. B. (Ed.). (1992b). *Petrophysics. Handbook* (Vol. 2). Nedra [in Russian].

Fedorishyn, D. D., Piatkovska, I. O., Trubenko, O. N., & Fedorishyn, S. D. (2018, May 15–18). *Improved methods of allocation reservoir rock from complex constructed geological sections by using mathematical statistics*. Paper presented at the 17th International Conference on Geoinformatics – Theoretical and Applied Aspects, Kyiv, Ukraine [in Ukrainian].

GSTU 41-00032626-00-025-2000. (2001). *Coefficient of residual water saturation of rocks. Method of measuring measurements by centrifugation of samples*. Ministry of Natural Resources of Ukraine [in Ukrainian].

Iuras, S., Orlyuk, M., Levoniuk, S., Drukarenko, V., & Kruhlov, B. (2023). Unconventional shale gas potential of lower visean organic-rich formations in Glynsko-Solohivskyi petroleum region. *Geodynamics*, 1(34), 80–96. <https://doi.org/10.23939/jgd2023.01.080>

Karpenko, O., Bashkirov, G., & Karpenko, I. (2014). Geophysical data: Estimating organic matter in rocks. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 3(66), 71–76. <https://doi.org/10.17721/1728-2713.66.12> [in Ukrainian].

Karpenko, O., Mykhailov, V., & Karpenko, I. (2015). Eastern Dnieper-Donets depression: Predicting and developing hydrocarbon resources. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 1(68), 49–54 [in Ukrainian]. [http://www.geovisnyk.univ.kiev.ua/archive/2015/N%201\(68\)/karpenko.pdf](http://www.geovisnyk.univ.kiev.ua/archive/2015/N%201(68)/karpenko.pdf)

Maslov, B., Onyshchuk, I., & Shynkarenko, A. (2017). Modelling of nonlinear viscoelastic properties of terrigenous-calcareous sandstones. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 2(77), 99–105. <https://doi.org/10.17721/1728-2713.77.13> [in Ukrainian].

Mykhailov, V. A. et al. (2014a). *Unconventional sources of hydrocarbons in Ukraine: South oil and gas region. Book III*. PPC "Kyiv University" [in Ukrainian].

Mykhailov, V. A. et al. (2014b). *Unconventional sources of hydrocarbons in Ukraine: Eastern oil-gas-bearing region. Book IV*. PPC "Kyiv University" [in Ukrainian].

Mykhailov, V. A., Karpenko, O. M., & Ogar, V. V. (2015). *Oil and gas of shale rocks and sealed collectors, methane of coal basins*. Nika-Centre [in Ukrainian].

Mykhailov, V. A., Karpenko, O. M., Kurylo, M. M. et al. (2018). *Fossil fuels of Ukraine and their geological and economic evaluation*. PPC "Kyiv University" [in Ukrainian].

Nesterenko, M. Yu. (2010). *Petrophysical basis of the substantiating of fluid saturation of reservoir rocks*. UkrDnHRI [in Ukrainian].

Orlyuk, M. I., & Drukarenko, V. V. (2018). Prediction of pathways and places of accumulation for hydrocarbons of the Chernihiv segment of the Dnieper-Donets aulacogene in relation to magnetic heterogeneity. *Geofizicheskiy Zhurnal*, 40(2), 123–140 [in Ukrainian]. <https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.12893>

Orlyuk, M., & Pashkevich, I. (2011). Magnetic characteristics and fault tectonics of the earth's crust of the Shebelinka group of gas fields as a component of the complex search criteria for hydrocarbons. *Geophysical Journal*, 33(6), 136–151 [in Russian].

Orlyuk, M., Drukarenko, V., & Onyshchuk, I. (2018, November 13–16). *Physical properties of deep reservoirs of the Glynsko-Solohivsky oil and gas region*. Paper presented at the XII International Conference "Monitoring of Geological Processes and Ecological Condition of the Environment", Kyiv, Ukraine. <https://doi.org/10.3997/2214-4609.201803178>

Orlyuk, M., Drukarenko, V., Onyshchuk, I., & Solodkyi, E. (2018). The association of physical properties of deep reservoirs with the geomagnetic field and fault-block tectonics in the hlynsko-solohivskyi oil-and-gas region. *Geodynamics*, 2(25), 71–88 [in Ukrainian].

Pashkevich, I. K., Orlyuk, M. I., & Lebed, T. V. (2014). Magnetic data, fault tectonics of consolidated earth crust and oil-and-gas content of the Dnieper-Donets aulakogen. *Geofizicheskiy Zhurnal*, 36(1), 136–151 [in Russian].

Rybalka, S., & Karpenko, O. (2016). Central part of the Dnieper-Donets Basin: Reservoir properties of deep-laid terrigenous rocks. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 1(72), 56–59 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.72.08>

Sobol, V., & Karpenko, O. (2021). A new model of permeability of terrigenous granular reservoirs on the example of turney deposits of Yablunivske oil and gas condensate field of the Dnieper-Donets basin. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 1(92), 61–66 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.92.09>

Starostenko, V. I., & Rusakov, O. M. (Eds.). (2015). *Tectonics and hydrocarbon potential of the crystalline basement of the Dnieper-Donetsk depression*. Galaktika [in Russian].

Tiab, D., & Donaldson, E. C. (2009). *Petrophysics: Theory and practice of measuring reservoir rock and fluid transport* (M. D. Uglov, Trans.; 2nd ed.). Premium Engineering. (Original work published 2004) [in Russian].

Tiab, D., & Donaldson, E. C. (2015). *Petrophysics. Theory and practice of measuring reservoir rock and fluid transport properties* (4th ed.). Elsevier.

Vyzhva, S. A., Gozhyk, A. P., Shabatura, O. V., Onyshchuk, V. I., Onyshchuk, D. I., & Onyshchuk, I. I. (2025). Practical content of the elements of petrophysical model of terrigenous sandstones - oil and gas reservoirs in neural networks, deep learning and regression methods. *Geofizicheskiy Zhurnal*, 47(3), 3–31. <https://doi.org/10.24028/gj>

Vyzhva, S., Onyshchuk, V., Onyshchuk, D., Onyshchuk, I., Reva, M., & Shabatura, O. (2024). Comparative analysis of reservoir properties of consolidated terrigenous rocks of Dnieper-Donets depression of the eastern slope of the Lviv paleozoic depression. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 4(107), 46–59 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.107.06>

Vyzhva, S., Onyshchuk, V., Onyshchuk, I., Oliinyk, O., Reva, M., & Shabatura, O. (2020). Lower permian carbonate deposits reservoir parameters of western part of Hlynsko-Solohivska area of Dnieper-Donets depression gas-oil-bearing district. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 1(88), 25–33 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.88.04>

Vyzhva, S., Onyshchuk, V., Onyshchuk, I., Reva, M., & Shabatura, O. (2022a). Reservoir properties of deep-seated consolidated rocks of Carboniferous period of the central graben of the Dnieper-Donets depression. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 1(96), 11–19 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.96.02>

Vyzhva, S., Onyshchuk, V., Onyshchuk, I., Reva, M., & Shabatura, O. (2022b). Reservoir properties of consolidated terrigenous rocks of Cambrian period of the eastern slope of the Lviv paleozoic depression. *Visnyk of Taras Shevchenko National University of Kyiv: Geology*, 3(98), 33–41 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.98.04>

Отримано редакцією журналу / Received: 20.01.25
Прорецензовано / Revised: 24.03.25
Схвалено до друку / Accepted: 30.06.25

Serhii VYZHVA¹, DSc (Geol.), Prof., Corresponding Member of the National Academy of Sciences of Ukraine
ORCID ID: 0000-0003-4091-6649
e-mail: s.vyzhva@knu.ua

Viktor ONYSHCHUK¹, PhD (Geol.), Assoc. Prof.
ORCID ID: 0000-0002-2301-2202
e-mail: viktor.onyschuk@knu.ua

Dmytro ONYSHCHUK², PhD (Geol.)
ORCID ID: 0009-0000-7592-2104
e-mail: boenerges@ukr.net

Ivan ONYSHCHUK¹, PhD (Geol.), Senior Researcher
ORCID ID: 0009-0004-0186-7578
e-mail: ivan.onyschuk@knu.ua

Oleksandr SHABATURA¹, DSc (Geol.)
ORCID ID: 0000-0003-0810-3701
e-mail: oshabatura@knu.ua

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

²Alcon Ukraine LLC, Kyiv, Ukraine

RESERVOIR PROPERTIES OF CARBON ROCKS OF THE HNIDYNTSIVSKE OIL AND GAS CONDENSATE DEPOSIT OF THE GLYNSKO-SOLOKHIV GAS CONDENSATE FIELD

B a c k g r o u n d . The paper concerns the results of reservoir properties determination of carbon rocks of the Hnidyntsivske oil and gas condensate deposit of the Glynsko-Solokhiv gas condensate field with the purpose of looking into comprehensive analysis of their physical features.

M e t h o d s . A brief petrographic description of limestones was performed. The bulk density of dry rock samples (matrix density of the rock) is determined by weighing and measuring their geometric dimensions. Hydrostatic weighing method was applied to the rock samples saturated with kerosene. The open porosity coefficient was determined by the gas volumetric method and the method of hydrostatic weighing according to the standard methodology. Capillarometric studies were performed by centrifugation of rock samples.

R e s u l t s . Such reservoir features of rock samples as open porosity coefficient and effective porosity coefficient, residual oil saturation factor and permeability coefficient were researched.

The limits of variation and mean values of the reservoir properties of the studied rocks are given. The capillarometric studies by the method of centrifugation helped to understand the structure of the void space of rocks.

C o n c l u s i o n s . The correlation analysis was applied to establish a number of correlations between the reservoir parameters of the studied rocks – density, open porosity coefficient, effective porosity coefficient and residual water saturation factor, as well as between the porosity coefficients measured in atmospheric and reservoir conditions. These correlations can be used for the interpretation of well logging data and modeling of reservoir parameters of consolidated reservoir rocks.

K e y w o r d s : limestones, density, porosity coefficient, permeability coefficient, residual oil saturation factor, correlation relationships, reservoir properties.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Kifayet KERIMOVA, PhD (Geol. & Mineral.), Assoc. Prof.

ORCID ID: 0000-0003-1173-4600

e-mail: kifayetkerimova585@gmail.com

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Lala KHALILOVA, PhD (Geol. & Mineral.), Assoc. Prof.

ORCID ID: 0000-0003-0411-3216

e-mail: khalilovalala55@gmail.com

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

STUDY OF SEDIMENT GENESIS BASED ON BOREHOLE LOGGING DATA AND EVALUATION OF THE RELATIONSHIP BETWEEN SEDIMENT GENESIS AND RESERVOIR PROPERTIES

(Представлено членом редакційної колегії д-ром геол. наук, проф. О.М. Карпенком)

B a c k g r o u n d . The Bulla-Deniz field is one of the most promising from the point of view of oil and gas content in the South Caspian Trough. It is located in the northern part of the Baku Archipelago. Despite the fact that the Bulla-Deniz field, characterized by deep wells, has been in operation since 1975, it has not yet been fully explored. Its geological structure has been studied on the basis of complex geophysical exploration works, structural mapping, exploration drilling and production material. The wells have penetrated the sediments of the Productive Series (PS) only up to the upper part of the Kirmaky Suite. Deposits of the Sub-Kirmaky and Qala Suites have not been penetrated in the field area. Oil and gas content within the Bulla-Deniz field is confined to horizons V, VII and VIII of the PS. VIII horizon, according to Apsheron stratigraphic scheme, corresponds to the Upper Kirmaky Sandy complex and is represented by two sandy-silty strata in the bottom and top parts. Horizon VII corresponds to the Fasila Suite and is composed predominantly of sandstones. The V horizon (in accordance with the Apsheron section corresponds to horizons VIII-IX) is represented by alternation of thick layers of sand, sandstone and clay.

Such major issues as assessment of sedimentation conditions and genesis of the rocks forming these horizons, as well as establishing the relationship between the genetic origin of rocks and their reservoir properties, remain relevant at present.

One of the most urgent goals today is to conduct geophysical research related to oil and gas field prospecting and exploration using more advanced methods and introducing new technologies. It allows to determine the internal structure of oil and gas bearing structures and oil-bearing horizons with greater accuracy on the basis of field geophysics data.

M e t h o d s . Due to intensification of prospecting and exploration works aimed at identification of oil and gas bearing formations and horizons of Productive Series, there is need to apply modern methodological and interpretative approaches – tectonic, eustatic, stratigraphic and genetic analyses – as an alternative to expensive drilling. From this point of view, determination of sedimentation conditions of horizons and reservoir complexes of the Productive Series is important for a targeted search for oil and gas deposits not associated with anticlinal traps, identification of stratigraphic, lithologic, paleogeomorphologic, epigenetic and other hard-to-recognize traps, as well as for assessment of oil and gas bearing prospects of the studied region and analysis of the distribution of potentially interesting objects within sedimentary basins.

On the other hand, there is a definite relationship between the lithological and mineralogical composition of rocks and their reservoir properties, which ultimately manifests itself in the petrophysical characteristics of reservoir rocks. For this reason, the study of the relationship between the genesis of sediments of the productive strata and their reservoir properties makes it possible to predict the patterns of distribution of sandy material over the area, as well as to draw conclusions about the nature of the development of porous and permeable zones. This, in turn, has important scientific and practical significance for assessing the nature of changes in the reservoir properties of sedimentary rocks.

It is from this point of view that the article proposes a rational approach to identifying the relationship between the genetic origin of sediments and reservoir properties of rocks on the basis of quantitative interpretation of complex well data using the "quantitative model of log facies". Horizons V, VII and VIII of the Productive Series of the Bulla-Deniz field were considered as the object of the research. The results of the research are presented and analyzed from the point of view of assessing the genesis of sediments and their influence on the filtration-capacitance properties of rocks.

R e s u l t s . Using a quantitative log facies model, lithofacies interpretation of well sections X1, X2, X3, X4 and X5 of the conditional area of the Bulla-Deniz field was carried out. During the analysis alluvial stream facies, bars, coastal-beach and shelf (coastal-marine) formations were identified. The relationship between the genetic origin of sedimentary rocks and their reservoir properties was established. The results showed that the physical properties of the studied rocks are directly related to their genesis. Histograms reflecting changes in average relative sandiness and porosity, as well as variation in the thickness of stream facies, bars and beach deposits along the sections of the studied wells were also constructed.

C o n c l u s i o n s . A comprehensive lithofacies and seismic facies analysis was carried out for the Bulla-Deniz field using data from wells X1-X5 and seismic profiles. Facies of stream, bar, coastal-beach, and shelf origin were identified. A clear relationship was established between the genetic origin of sediments and their reservoir properties, particularly in stream and bar facies, where effective porosity and sand body thickness show strong correlation. In contrast, coastal-beach facies exhibit chaotic variation, lacking such correlation. Additionally, seismic facies analysis within the Lower Pliocene interval revealed fluvial, marine, and mixed sedimentation environments, indicating a complex depositional history in the study area.

K e y w o r d s : facies composition, stream, bar, coastal-beach environment, reservoir properties.

Background

The South Caspian Trough is a regional depression with a complex geological and tectonic structure, active geodynamic processes and is characterized by high seismicity and widespread development of mud volcanoes. According to gravimagnetic, seismic and electrical studies, the thickness of the sedimentary cover within the trough exceeds 25 km and is divided into blocks by regional tectonic faults.

The South Caspian Trough (SCT) is extremely rich in hydrocarbon resources. Over the last 25 years Azeri, Gunashli, Chirag, Bahar, Bulla-Deniz, Shahdeniz, Umid, Babek, Apsheron, Karabakh and other fields have been discovered here. The conducted geological and geophysical studies allow us to forecast the presence of significant oil and gas reserves also in the promising structures of the region. In the near future there are very encouraging prospects for discovery of rich oil and gas deposits in deeper

© Kerimova Kifayet, Khalilova Lala, 2025

horizons of the South Caspian Trough (Khalilova, & Seyidov, 2023; Ahmedov, & Khalilova, 2024).

Since most of the identified oil and gas fields within the South Caspian Trough are associated with terrigenous deposits, successful discovery of new deposits depends largely on determining the genesis of these terrigenous formations. Establishing the conditions of sedimentation in the terrigenous strata allows us, first of all, to predict the distribution patterns of sand bodies, to reach conclusions about their morphology, as well as to study the development patterns of porous-permeable strata (Kerimova et al., 2024; Kerimova, & Samadzadeh, 2023; Samadzadeh, 2023).

Determination of rock genesis and analysis of reservoir properties by area are important for both assessment and clarification of oil and gas content of the territory. In this connection, the study of the relationship between the genesis of the sediments of the productive strata and their reservoir characteristics contributes to the identification of patterns of distribution of sandy material, as well as the formation of ideas about the nature of porous and permeable intervals in the section (Seidov et al., 2024; Akhmedov, & Aghayeva, 2022).

The Bulla-Deniz field, located in the northern part of the Baku Archipelago, was chosen as the object of study (Fig. 1). From the tectonic point of view, the structure is elongated in the northwest-southeast direction, its length is about 27 km and width is about 8 km. The main object of field development are horizons V, VII, VIII of the Productive

Series, as well as clay deposits of the Upper Kirmaky Subhorizon (Pogorelova, & Abdulla-zada, 2024).

At the Bulla-Deniz field, oil and gas content is confined to horizons V, VII and VIII of the Productive Series. Horizon VIII, according to Apsheron dissection, corresponds to the Upper Kirmaky Sandy complex. Two sandy-siltstone beds are distinguished in the bottom and top parts of the horizon. Horizon VII (corresponding to the Fasila Suite according to the Apsheron section) is composed mainly of sandstones (about 70 %) and has an average thickness of 94 meters. In the section it is divided into two objects – VII_{upper} and VII_{lower}, with thicknesses of 47 m and 25 m, accordingly. These objects are separated by an interbed clay interval with a thickness of about 22 m. Horizon V (in accordance with the Apsheron partitioning corresponds to horizons VIII–IX) is represented by alternating thick layers of sand, sandstone and clay. Sands and sandstones are characterized by fine and fine grain size and contain carbonate material. The total thickness of the horizon is 129 meters. Within the horizon there are two objects – V_{upper} and V_{lower}, 21 m and 30 m thick respectively, between which there is a 21-meter thick clay interbed. Within the field, oil-and-gas bearing capacity has been identified in these horizons of the Productive Series. However, in the southwestern section of the structure these horizons have not been penetrated in wells, and, accordingly, their oil and gas content remains unknown. No commercial oil and gas deposits were recorded above the V horizon in the geological section of the field (Salmanov et al., 2023).

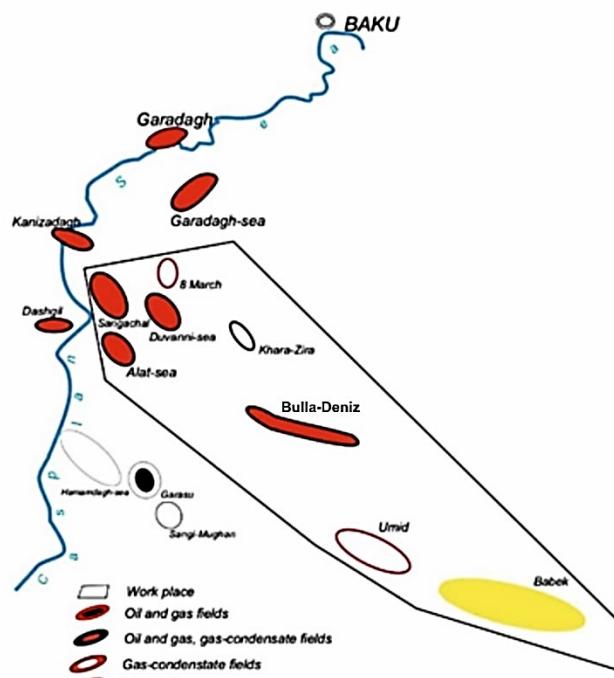


Fig. 1. Oil, gas and gas condensate fields of the Baku Archipelago overview diagram

It is well known that oil and gas reservoir forecasting is largely based on facies analysis of rock formation conditions. In this connection, the reconstruction of conditions of deposit accumulation in the Productive Series by the method of logging facies in the study area remains relevant (Nasibova et al., 2024).

The purpose of this paper aims to study the genetic origin of sediments of horizons V (according to Balakhany Suite lithostratigraphy – horizons VIII–IX), VII horizon (Fasila Suite) and VIII horizon (Upper Kirmaky Sandy

complex) of the Productive Series of the Bulla-Deniz field, selected as the object under study. The relationship between the genetic origin of sediments and their reservoir properties is also analyzed, with a comparative analysis of these horizons. In addition, the objective is to construct three-dimensional spatial models showing the variation of the following parameters for horizons V, VII and VIII over the study area: stream facies, bar and coastal-beach conditions, sandiness, effective porosity, estimated resistivity and volumetric clay content.

Methods

The Bulla-Deniz fold is complicated by longitudinal and transverse tectonic faults and is dissected into a number of distinct blocks. In the northeastern flank there are 6 transverse faults, which divide it into 6 tectonic blocks. Two transverse faults are recorded in the southwestern flank, resulting in its subdivision into 3 blocks. Taking into account that the Bulla-Deniz field is a complex oil and gas bearing zone with numerous tectonic faults, each of the identified

blocks can be considered as a potential oil and gas trap. In this regard, the article uses integrated logging data from five wells located along one geological profile within the Bulla-Deniz field (Fig. 2) (Kerimova, & Samadli, 2024).

Based on the results of quantitative interpretation of complex data for each well, the method of "quantitative logging facies model" was applied, which allowed us to study the conditions of sedimentation and facies origin of deposits of horizons and formation complexes within the study area.

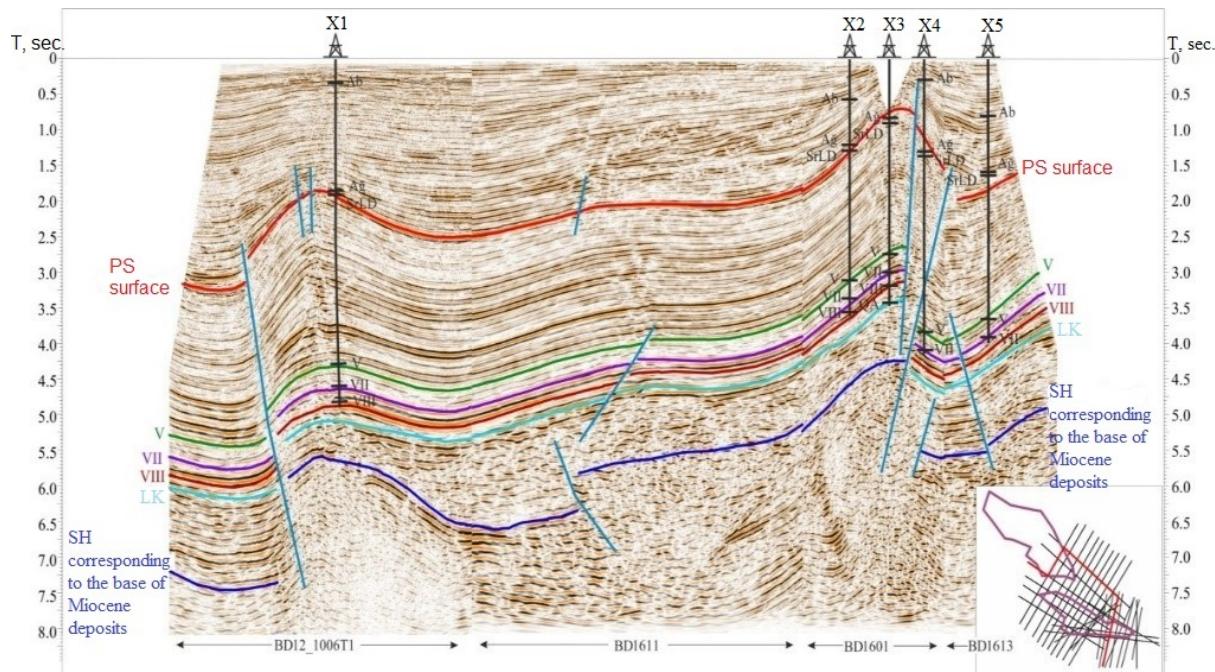


Fig. 2. Stratigraphic referencing of seismic horizons in the Bulla-Deniz field

Based on the results of quantitative interpretation of complex well data, the values of effective porosity and volumetric clay content of the formations were determined and histograms of their changes by depth were constructed. Histograms of effective porosity and volumetric clay content variation by depth were used to analyze and interpret the genetic origin of sediments (Fig. 3).

Results

As can be seen from the figure, in well X1 (conventionally accepted) of the Bulla-Deniz field, the genetic origin of sediments varies by depth (from top to bottom) as follows: In the 5650–5700 m depth interval, a facies of bar origin is identified; In the interval 5700–5713 m – a facies of coastal-beach conditions; In the interval 5713–5829 m a successive change of facies of stream, coastal-beach zone and bar is traced; In the 5829–6100 m interval, there is an alternation of stream, bar, coastal-beach zone, shelf and again coastal-beach facies. This facies succession reflects the dynamics of sedimentation and indicates a complex sedimentary history within the study area.

In the conditional well X2 in the depth interval 5568–5742 m, a sequential change of facies (from top to bottom) is observed in the following order: bar – stream – stream – coastal-beach zone – stream – bar – stream – bar. In the interval 5742–6018 m, alternation of facies of bar, coastal-beach, shelf, coastal-beach and again shelf origin is recorded. In the deeper interval – 6018–6346 m – the sequence of facies is traced: stream – coastal-beach zone – bar – coastal-beach zone – shelf – coastal-beach zone. As for conditional well X3, in the interval 5080–5164 m there is an alternation of facies of coastal-beach and bar origin, in the interval 5164–5555 m –

facies of coastal-beach zone prevail, in the interval 5555–5626 m – facies of bar origin, and in the interval 5626–5900 m the facies of coastal-beach genesis prevail again. This facies variability reflects the complex morphodynamics of the sedimentary environment within the Bulla-Deniz field and indicates the alternation of different sedimentary settings within one stratigraphic section.

According to the results of interpretation of conditional well X4, the facies sequence in the section is as follows: In the interval 4832–4909 m from top to bottom there is an alternation of facies: coastal-beach zone – stream – coastal-beach zone – stream – coastal-beach zone – stream. In the interval 4909–5146 m, a change of facies is recorded: bar – coastal-beach zone – bar – coastal-beach zone. In the interval 5146–5388 m the sequence: stream – coastal-beach zone – stream – coastal-beach zone is recorded. In the interval 5388–5669 m the sequence: bar – coastal-beach zone – bar – coastal-beach zone – stream – coastal-beach zone is observed. In the interval 5669–5849 m the following facies alternation is observed: bar – stream – coastal-beach zone – stream. Such a detailed facies interpretation indicates a complex sedimentary environment characterized by frequent change of facies environments (bar bodies, streams, beach and shelf zones), which directly affects the variability of reservoir properties of rocks within the section.

According to the results of interpretation of the section of conditional well X5, the facies composition of sediments at depth (from top to bottom) changes as follows: In the interval 5016–5166 m, a successive facies change is observed: shelf (coastal) environment – coastal-beach zone – bar formation. In the 5106–5387 m interval, the following alternation is

traced: stream – coastal-beach zone – stream – bar – stream. In the interval 5387–5610 m, facies of shelf zone, coastal-beach zone and bar formation are recorded. In the 5610–5944 m interval, a facies sequence is observed: stream – coastal-beach zone – stream – coastal-beach zone. Such

facies change indicates alternation of conditions with different hydrodynamic activity and energy of sedimentation, which has a significant impact on the lithology of rocks, their porosity-permeability properties and, accordingly, on the prospects of oil and gas bearing within this area.

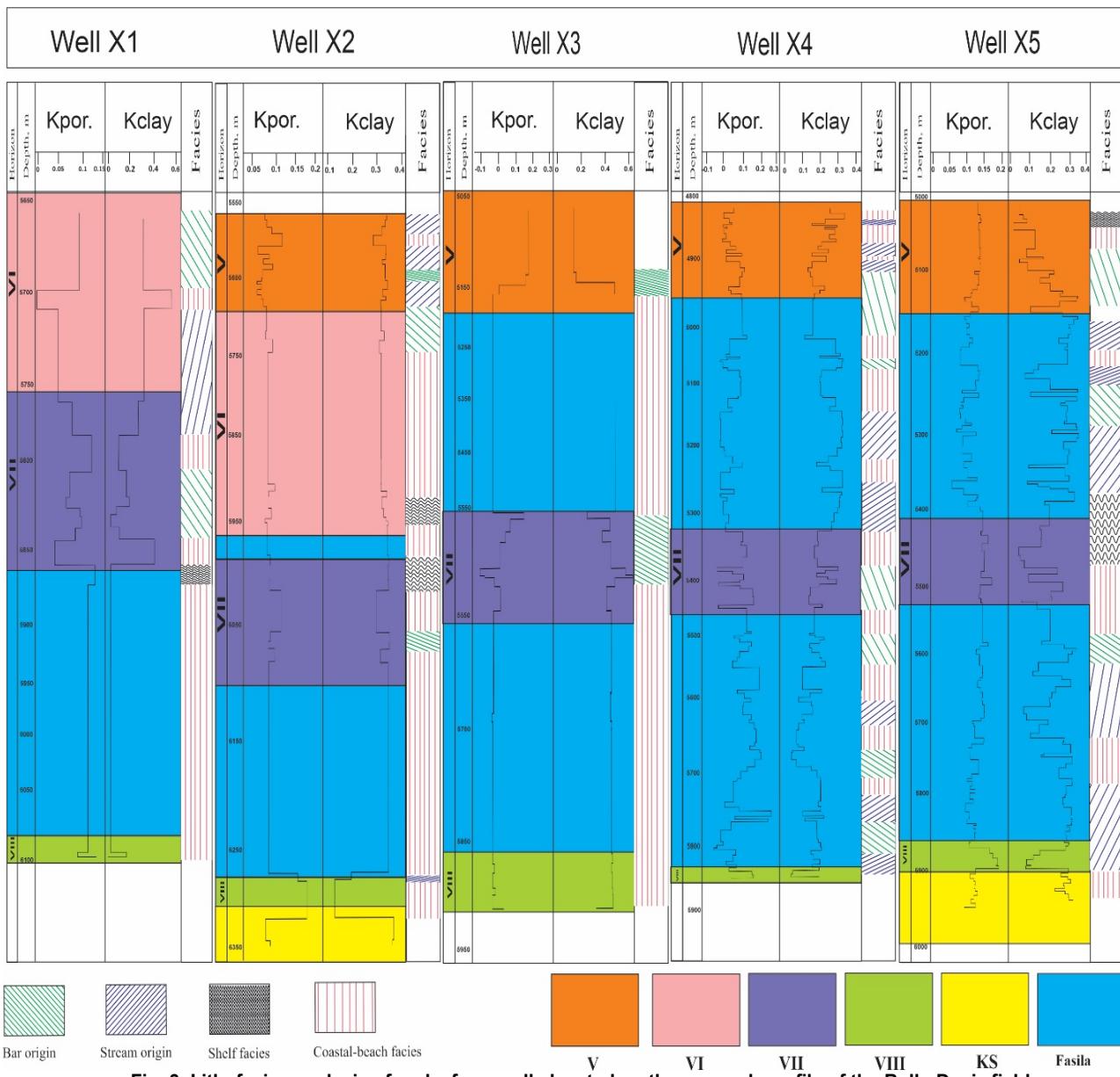


Fig. 3. Lithofacies analysis of rocks from wells located on the research profile of the Bulla-Deniz field

As part of this research, the following parameters were calculated for each well section in intervals where stream, bar, and coastal-beach facies were identified: mean value of effective porosity of the formations ($K_{por.mean}$), average thickness of sandy ($H_{clay.ave.}$) and clayey ($H_{sand.ave.}$) beds, relative thickness of sandy bodies ($H_{rel.sand}$). For each of these parameters, graphs of variation by well were plotted. For this purpose, within each well section, in the intervals of distribution of stream, bar, coastal-beach and shelf facies, the reservoir thickness within the total reservoir thickness (H_1) was calculated using the following formula (1):

$$H_1 = (H_{clay.ave.} + H_{sand.ave.})/2 \quad (1)$$

here H_1 – thickness of the reservoir part by horizon; $H_{clay.ave.}$ – average thickness of clay layers; $H_{sand.ave.}$ – average thickness of sandy strata.

Using formula (2), the relative reservoir capacity by horizon was estimated for stream facies, bars, and coastal-beach conditions:

$$H_{rel.} = H_1/H_t \quad (2)$$

here $H_{rel.}$ – relative reservoir thickness, H_1 – thickness of the reservoir part within the formation, H_t – total thickness of the reservoir within the selected interval (Kerimova, Aliyev 2022; Kerimova, Khalilova, 2020).

Using formula (3) for each well section, they were calculated separately: mean value of effective porosity of formations ($K_{por.mean}$), relative thickness of sand bodies by horizon ($H_{rel.sand}$) in intervals where stream, bar, and coastal-beach facies were identified. The results of these calculations are summarized in Tab. 1.

$$H_{rel.sand} = 1 - H_{rel.} \quad (3)$$

Table 1

Estimation of parameters $H_{rel.sand}$, H_{stream} and $K_{por.mean}$ on facies origin of sediments of horizons V, VII and VIII of the Productive Series of the Bulla-Deniz field

Well №	Stream origin facies			Bar origin facies			Coastal-beach origin facies		
	$H_{rel.sand}$, m	$K_{por.mean}$	H_{bar}	$H_{rel.sand}$, m	$K_{por.mean}$	H_{bar}	$H_{rel.sand}$, m	$K_{por.mean}$	H_{bar}
X1	0,632	0,248	97,16	0,489	0,169	28,6	0,633	0,175	70,5
X2	0,545	0,202	55,84	0,554	0,205	22,23	0,563	0,215	93
X3	0,582	0,183	12,66	0,615	0,197	29	0,544	0,186	233
X4	0,612	0,182	75,58	0,496	0,185	89,23	0,586	0,189	33,55
X5	0,534	0,215	180,7	0,537	0,203	120,4	0,622	0,180	109,6

Note: On the basis of the data in Tab. 1, the corresponding graphs reflecting the peculiarities of the parameters variation by wells located on the studied geological profile were constructed (Fig. 4, Fig. 5, Fig. 6).

Based on the comparative analysis of the curves of change of parameters $H_{rel.sand}$, H_{stream} and $K_{por.mean}$ along the studied profile, the following was established: From well X1 towards well X2, there is a general decrease in all three parameters: thickness of the facies of stream origin decreases from 97.16 m to 55.84 m, the relative thickness of sand bodies decreases from 0.532 to 0.545, mean effective porosity decreases from 24.8 % to 20.2 %. In the direction from well X2 to X3: stream facies thickness decreases to 12.6 m, the mean effective porosity decreases to $K_{por.mean}=18.3$ %, in contrast, the relative thickness of sand bodies increases to $H_{rel.sand}=0.582$ m. In the interval from well X3 to X4: the thickness of the facies of stream genesis increases again and reaches $H_{stream}=75.58$ m, the mean effective porosity continues to decrease to $K_{por.mean}=18.2$ %, relative thickness of sand bodies increases to $H_{rel.sand}=0.612$ m. These changes indicate the variability of sedimentation conditions and reservoir properties along the profile, which indicates the complex facies and lithologic heterogeneity of the studied area of the Bulla-Deniz field.

The section of conditional well X5 shows a significant increase in the thickness of the stream facies, which reaches 180.9 m. At the same time: mean effective porosity is $K_{por.mean}=21.5$ %, relative thickness of sand bodies decreases and makes $H_{rel.sand}=0.534$ m.

When considering all three curves separately, we can conclude that for facies of stream origin, the curves $H_{rel.sand}$ and $K_{por.mean}$ generally follow each other along the profile. This indicates that there is a certain regularity in the variation of these parameters along the profile. Thus, it can be stated that the change in the relative thickness of the sand reservoir ($H_{rel.sand}$) along the profile is, to a large extent, equivalent to the change in the thickness of the stream facies. In other words, the thicker the stream facies, the higher the proportion of sandy material and, consequently, the higher the effective porosity is (Fig. 4). This relationship confirms the importance of facies analysis in predicting reservoir properties and indicates a direct relationship between the genetic type of sediments and their reservoir potential.

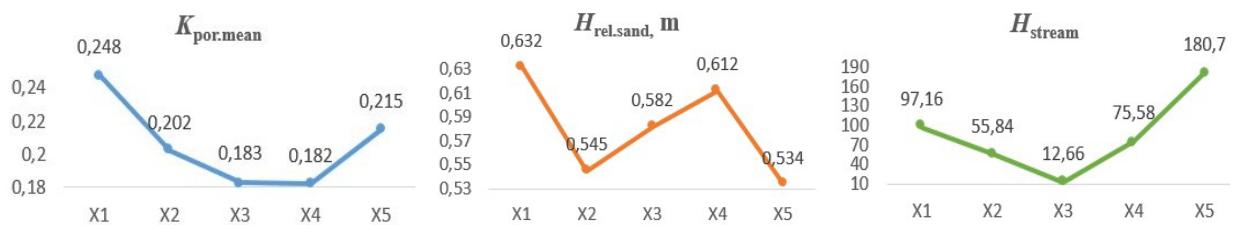


Fig. 4. Comparative plot of variation of $K_{por.mean}$, $H_{rel.sand}$ and H_{stream} parameters along the profile for the stream origin facies

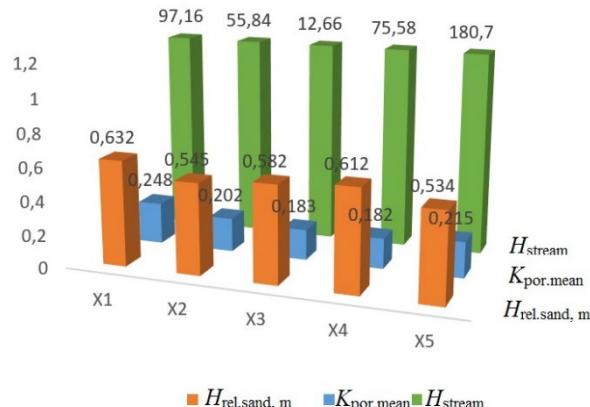


Fig. 5. Histogram of the distribution of parameters $H_{rel.sand}$, $K_{por.mean}$ and H_{stream} across wells for the stream origin facies

The growth of $K_{por.mean}$ (mean effective porosity) may indicate the compaction of rocks under the action of gravity, as well as the heterogeneity of reservoirs. Analyzing all three curves separately, we can conclude that for the stream facies, the plots of $H_{rel.sand}$ (relative sand reservoir thickness) and $K_{por.mean}$ plotted along the profile are mutually correlated and follow a similar trend. This indicates that there is a

consistent pattern between the sandiness of rocks and their filtration-capacity properties within the stream sediments.

Histograms of the distribution of parameters $H_{rel.sand}$, H_{stream} and $K_{por.mean}$ across wells were constructed (Fig. 5).

Similar studies were also used to determine the intervals of distribution of bar and coastal-beach facies in deposits of V, VII and VIII horizons of the Productive Series for each well section

along the selected profile. The following parameters were calculated for each interval where these facies were identified: mean value of effective porosity ($K_{\text{por.mean}}$), facies thickness (respectively H_{bar} – for bars and $H_{\text{coast.b.}}$ – for coastal-beach

deposits), relative thickness of sand bodies ($H_{\text{rel.sand}}$). On the basis of these data, plots of parameter variation along the profile (Figs. 6 and 7), histograms of parameters distribution along wells (Figs. 8 and 9) were plotted.

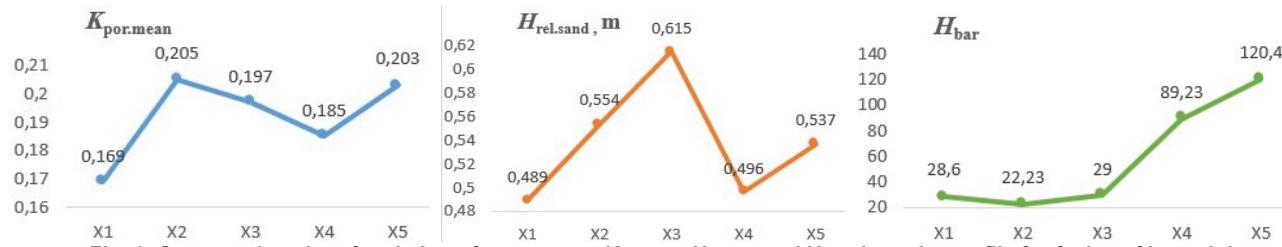


Fig. 6. Comparative plot of variation of parameters $K_{\text{por.mean}}$, $H_{\text{rel.sand}}$ and H_{bar} along the profile for facies of bar origin

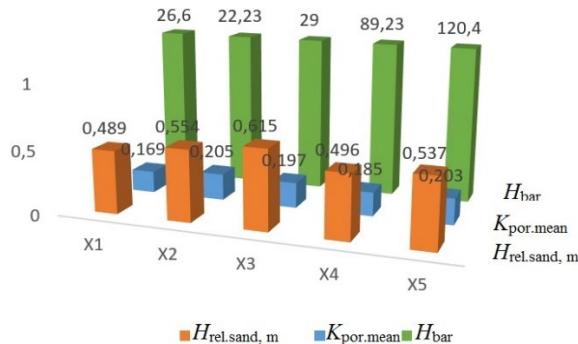


Fig. 7. Graph of distribution of parameters $H_{\text{rel.sand}}$, $K_{\text{por.mean}}$ and H_{bar} across wells for the bar origin facies

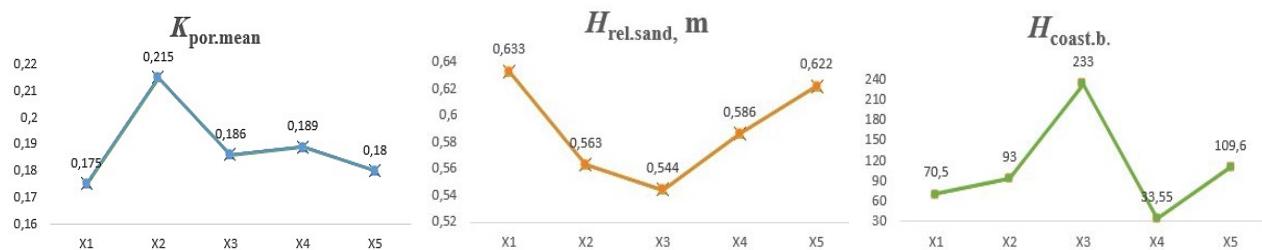


Fig. 8. Comparative plot of variation of parameters $K_{\text{por.mean}}$, $H_{\text{rel.sand}}$ and $H_{\text{coast.b.}}$ along the profile for the facies of coastal-beach origin

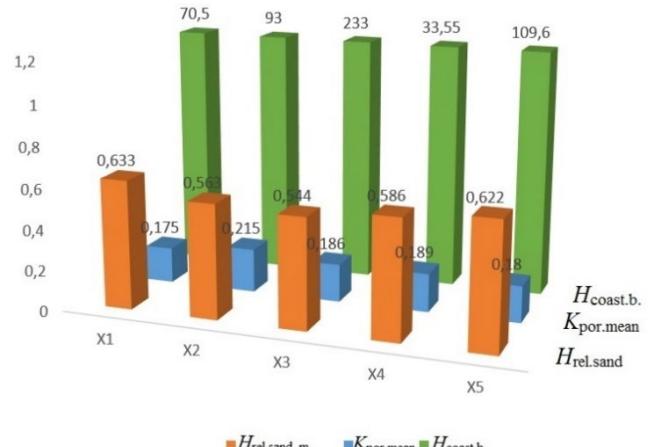


Fig. 9. Graph of distribution of parameters $H_{\text{rel.sand}}$, $K_{\text{por.mean}}$ and $H_{\text{coast.b.}}$ across wells for the facies of coastal-beach origin

Based on the comparative analysis of the graphs of variation of parameters $H_{\text{rel.sand}}$, H_{bar} and $K_{\text{por.mean}}$ along the profile in the intervals where bar facies are identified, the following was established (Fig. 6): In the direction from well X1 to X2, there is an increase in the values of mean effective porosity ($K_{\text{por.mean}}$) and relative thickness of sand bodies ($H_{\text{rel.sand}}$), while the thickness of the bar facies itself (H_{bar})

decreases. This indicates that the relative reservoir capacity varies with the combination of effective porosity and facies thickness. From X2 to X3, the bar facies thickness increases slightly, but the effective porosity decreases to $K_{\text{por.mean}}=19.7\%$, while $H_{\text{rel.sand}}$ continues to increase, reaching 0.615 m. Further along the profile from X3 to X4, the thickness of the bar facies continues to increase and

reaches $H_{\text{bar}}=89.23$ m. However, a decrease in both effective porosity ($K_{\text{por,mean}}=18.5$ %) and relative thickness of sand bodies ($H_{\text{rel,sand}}=0.495$ m) is observed in this interval.

In the section of conditional well X5 the mean value of effective porosity and relative thickness of sand bodies in comparison with well X4 increased and amounted, respectively: $K_{\text{por,mean}}=20.3$ %, $H_{\text{rel,sand}}=0.537$ m. The growth of $K_{\text{por,mean}}$ value is explained, first of all, by compaction of rocks under the action of gravity and heterogeneity of reservoirs. Analyzing all three graphs separately, we can conclude that for the bar facies of the profile, the curves describing $H_{\text{rel,sand}}$ and $K_{\text{por,mean}}$ generally follow the same trend. This indicates that there is a definite regularity between the parameters reflecting the filtration-capacitance properties of the rocks. In well X5, the thickness of the bar facies also reached the maximum value – $H_{\text{bar}}=120.4$ m. Analysis of Figure 7 shows: the highest value of mean effective porosity ($K_{\text{por,mean}}=20.5$ %) was recorded in well X2, the minimum value ($K_{\text{por,mean}}=16.9$ %) is in well X1. In terms of bar facies thickness: the maximum is in well X5 ($H_{\text{bar}}=120.4$ m), the minimum is in well X1 ($H_{\text{bar}}=28.6$ m). Relative thickness of sand bodies ($H_{\text{rel,sand}}$): the maximum value is observed in X3 ($H_{\text{rel,sand}}=0.615$ m), the minimum is at X1 ($H_{\text{rel,sand}}=0.489$ m).

Based on the comparative analysis of the graphs of variation of the parameters $H_{\text{rel,sand}}$, $H_{\text{coast,b.}}$ and $K_{\text{por,mean}}$ along the profile in the intervals where facies of coastal-beach origin were identified, the following was established (Fig. 8). In the direction from well X1 to X2, there is a decrease in the value of relative thickness of sand bodies ($H_{\text{rel,sand}}$), while the mean effective porosity ($K_{\text{por,mean}}$) and facies thickness ($H_{\text{coast,b.}}$) increase. This indicates that the change in relative reservoir capacity in this interval is a function of the combination of porosity and total facies thickness. In the interval from X2 to X3, the thickness of the coastal-beach facies slightly increases, but the effective porosity decreases to $K_{\text{por,mean}}=18.6$ % and $H_{\text{rel,sand}}$ also decreases to 0.544 m. In the interval from X3 to X4, the thickness of the coastal-beach facies decreases to $H_{\text{coast,b.}}=53.55$ m, while the effective porosity slightly increases to $K_{\text{por,mean}}=18.9$ %, and the relative thickness of sand bodies also increases, reaching $H_{\text{rel,sand}}=0.586$ m.

In the section of the conditional well X5, compared to X4, there is observed: decrease in average effective porosity to $K_{\text{por,mean}}=18$ %, increase in the relative thickness of sand bodies to $H_{\text{rel,sand}}=0.622$ m. At first sight, this may seem paradoxical, but the decrease in porosity may be due to compaction of rocks under gravity, and the increase in sandiness may be due to greater thickness of sand beds or their better sorting and stability along the section. Thus, an increase in $K_{\text{por,mean}}$ values in other sections may indicate the expansion of pore space and relative homogeneity of reservoirs, while in this case we observe the opposite trend. It follows that there is a definite but indirect dependence between $K_{\text{por,mean}}$ and $H_{\text{rel,sand}}$ parameters – the character of their change can be both coordinated and multidirectional, depending on sedimentation conditions, lithology and textural properties of rocks. In addition, the relative thickness of the sandy reservoir ($H_{\text{rel,sand}}$) varies naturally with the total thickness of the layer, which indicates the importance of taking stratigraphic thickness into account when interpreting reservoir properties.

Analysis of Fig. 9 shows the following key patterns for intervals with coastal-beach facies: the mean effective porosity ($K_{\text{por,mean}}$) reaches its highest value in well X2 at 21.5 %, and the lowest value in well X1 – 17.5 %. The thickness of the coastal-beach facies reaches its maximum

in well X3 – $H_{\text{coast,b.}}=233$ m, and the minimum in well X4 – $H_{\text{coast,b.}}=38.55$ m. The relative thickness of sand bodies ($H_{\text{rel,sand}}$) shows the highest value in well X1 – 0.633 m, and the lowest value in well X3 – 0.544 m.

Based on the well and seismic data, isopach maps (equal thickness of deposits) and seismofacial maps were also compiled for the interval between the Lower Kirmaky Suite and horizon VII of the Productive Series (Figs. 10 and 11).

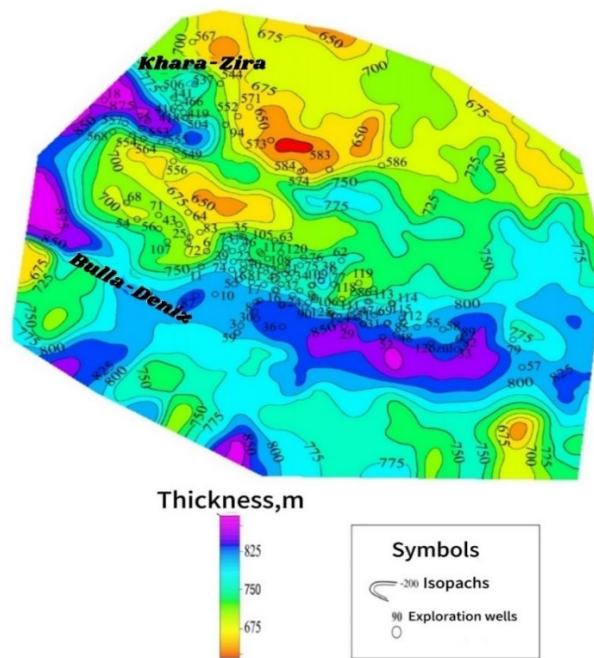


Fig. 10. Map of equal thicknesses (isopach) for the interval between the Lower Kirmaky Suite and horizon VII of the Productive Series

As can be seen from Figure 10, on the isopach map for horizon VII of the Productive Series, the thickness of the studied interval varies within 500–900 m. The most pronounced pattern is a decrease in sediment thickness from the south-western (SW) part of the area toward the north-east (NE). At the same time, localized increases in thickness are observed in the area of wells No. 29, No. 33 and No. 52, which may be related to tectonic or sedimentary features such as localized troughs or zones of enhanced sedimentation.

As can be seen from Fig. 11, three seismic facies were identified on the seismic facies map for the study interval: SF1, SF2, and SF4. SF1 corresponds to shelf conditions of sedimentation, where stable, relatively uniform seismic reflections are observed. SF2 is characterized by low amplitude, which is probably related to changes in the lithological composition of rocks or variability in sedimentation conditions (e.g., transitional environments between the shelf and coastal zone). SF4 represents a facies formed under conditions of high-energy sedimentation, which is reflected in sharper, more contrasting seismic responses. All identified seismic facies were traced over the area on the basis of the seismic facies map, which allows us to conclude about facies zonality and dynamics of sedimentation processes within the studied interval.

The transition from one facies to another may be associated with changes in depositional conditions and a variety of lithologic compositions of rocks. As a result of such facies and lithologic transitions within the studied interval, an increase in sandiness toward the north-eastern (NE) part of the study area is observed. This may indicate the displacement of zones of more intense sedimentation or the stream of detrital material from active feeding sources in this direction.

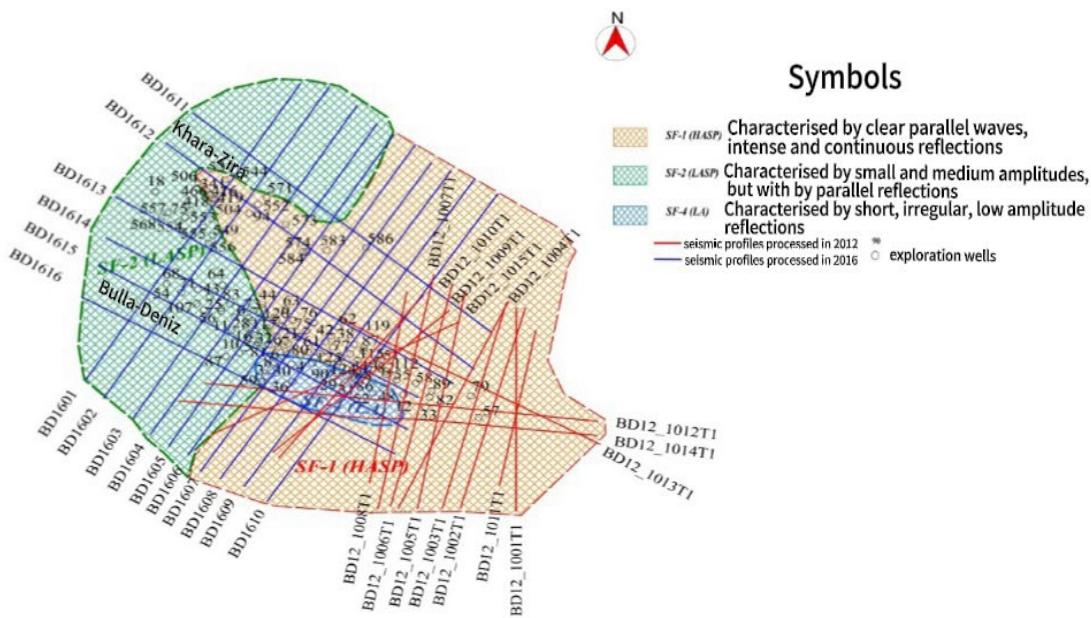


Fig. 11. Seismic facies map for the interval between the Lower Kirmaky Suite and horizon VII of the Productive Series

Discussion and conclusions

A lithofacies analysis of sedimentary rocks from sections of conventionally accepted wells X1, X2, X3, X4 and X5 in the Bulla-Deniz field was performed using a quantitative logging facies model. As a result of the analysis, facies of stream, bar, coastal-beach and shelf origin were identified.

The relationship between the genetic origin of sediments of horizons V, VII and VIII of the Productive Series of the Bulla-Deniz field and their reservoir properties has been studied. According to the results of the research it was found that physical properties of rocks directly depend on the conditions of their formation and genetic type.

a) According to the graph of variation in the values of the parameters $H_{\text{rel},\text{sand}}$, H_{stream} and $K_{\text{por},\text{mean}}$ for the facies of stream origin along the studied profile, it can be seen that the curves $H_{\text{rel},\text{sand}}$ and $K_{\text{por},\text{mean}}$ generally repeat each other. This, in turn, indicates that there is a definite relationship between the relative thickness of sand beds and effective porosity. It was found that the value of the relative thickness of sand beds varies in proportion to the total thickness of the sedimentary complex belonging to the same facies and the effective porosity of the corresponding bed. Thus, the higher the porosity and thickness of the facies, the greater the specific thickness of sand reservoirs, which emphasizes the importance of a comprehensive assessment of lithofacies parameters in predicting reservoir properties.

b) For the facies of bar origin along the studied profile there is a general trend of increasing values of $K_{\text{por,mean}}$ (mean effective porosity) in all wells. However, the analysis shows that the $H_{\text{rel,sand}}$ (relative sand reservoir capacity) and H_{bar} (bar facies capacity) curves generally follow each other.

c) In facies of coastal-beach origin, there is no clear pattern between the parameters $H_{\text{rel.sand}}$, $H_{\text{coast.b.}}$ and $K_{\text{por.mean}}$. Changes in these parameters are chaotic and independent of each other, indicating that there is no stable relationship between facies thickness, sandiness and effective porosity under these conditions.

For horizons V, VII and VIII of the Productive Series of the Bulla-Deniz field, histograms were constructed to show the variation in the following parameters by wells: facies of stream, bar and coastal-beach origin, relative sandiness ($H_{rel.sand}$), mean effective porosity ($K_{por.mean}$).

Based on the dynamic and kinematic characteristics of the seismic wave field observed on time sections, three seismic facies (SF1, SF2, and SF4) were identified within the deposits of the Lower Pliocene – in the interval from the Lower Kirmaky Suite (LKS) to horizon VII. As a result of the seismic facies analysis, sedimentation conditions were studied, which allowed us to conclude about the diversity of genesis of deposits of the Lower Pliocene complex within the study area. The sediments were found to be of fluvial, marine and mixed origin, indicating a change of sedimentation environments during the geologic history of the section formation.

Author's contribution: Klfayet Kerimova – writing, investigation, methodology, formal analysis, conceptualization, data curation, supervision; Lala Khalilova – investigation, writing, visualization, data curation, formal analysis, supervision.

References

Akhmedov, T., & Aghayeva, M. (2022). Prediction of petrophysical characteristics of deposits in Kurovdagh field by use of attribute analysis of 3D data. *Geofizicheskiy Zhurnal*, 44(3), 103–112. <https://doi.org/10.24028/gj.v44i3.261976>

Akhmedov, T., & Khalilova, L. (2024). Structure and litho-facial features of the Qala Suite deposits of the Zykh-Hovsan area according to 3D seismic and well logging data. *Visnyk of Taras Shevchenko National University of Kyiv. Geography*, 3(106), 19–27. <https://doi.org/10.17721/1728-2713.106.03>

Kerimova, K., & Aliyev, N. (2022). Study of the interrelation between the geneeses and reservoir properties of productive series deposits in Pirallahi field on the basis of oil-field geophysical data. *Geofizicheskiy Zhurnal*, 44(4), 146–154. <https://doi.org/10.24028/gj.v44i4.264849>

Kerimova, K., Samadzadeh, A., & Bayramova, I. (2024). Study on the genesis of deposits of the Productive Series of the Bibi-Heybat field by using a complex of borehole data. *Journal of Geology, Geography and Geoecology*, 33(4), 721–728. <https://doi.org/10.15421/112467>

Kerimova, K., & Samadzadeh, A. (2023). Facial composition of the deposits of the productive strata based on qualitative interpretation of the log data. *Geofizicheskiy Zhurnal*, 45(5). <https://doi.org/10.24028/gj.v45i5.289107>

Kerimova, K., & Samadli, U. (2024). Determination of petrophysical parameters of reservoirs in promising horizons and formations of the Bulla-Deniz field based on integrated well data (using Techlog software). *Geofizicheskiy Zhurnal*, 46(4). <https://doi.org/10.24028/gj.v46i4.310472>

Kerimova, K. A., & Khalilova, L. N. (2020). Studying the genesis of deposits of the productive strata on the basis of GIS data. *Gorniy Zhurnal*, 8, 68–71 [in Russian]. [Керимова, К. А., & Халилова, Л. Н. (2020). Изучение генезиса отложений продуктивной толщи на основе данных комплекса ГИС. *Горный журнал*, 8, 68–71]. <https://www.rudmet.ru/catalog/journals/1/2020> <https://doi.org/10.17580/gzh.2020/08/11>

Nasibova, G., Mukhtarova, K., Ganbarova, S., & Nasibova, S. (2024). *The geological risk of changing the parameters of the reservoirs depending on the*

depth in a number of fields of the Baku Archipelago. <https://doi.org/10.24412/1932-2321-2024-681-390-398>

Pogorelova, E., & Abdulla-Zada, M. (2024). Oil and gas bearing complexes and litho-stratigraphic characteristics of Pliocene deposits of the Bulla-Deniz field. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 4(107), 31–39. <https://doi.org/10.17721/1728-2713.107.04>

Salmanov, A. M., Maharramov, B. I., Qaragozov, E. Š., & Kerimov, N. S. (2023). *Geology and Development of Oil and Gas Fields in the Maritime Aquatory of Azerbaijan*. MSY LLC Publishing.

Samadzadeh, A. A. (2023). Assessment of the quality reservoirs for some deposits of the Baku Archipelago. *SOCAR Proceedings*, 1, 13–18 [in Russian].

[Самедзаде, А. А. (2023). Оцінка якості колекторів по некоторим

месторождениям Бакинського архіпелага. *SOCAR Proceedings*, 1, 13–18]. <https://proceedings.socar.az/az/journal/90> <https://doi.org/10.5510/OGP20230100799>

Seidov, V., & Khalilova, L. (2023). Evolution of hydrocarbon deposits in the South Caspian Basin. *Geofizicheskiy Zhurnal*, 45(3). <https://doi.org/10.24028/gj.v45i3.282420>

Seidov, V., Khalilova, L., & Bayramova, I. (2024). Analysis of the reservoir properties of rocks of the Lower Kura depression (Azerbaijan). *Geofizicheskiy Zhurnal*, 46(5). <https://doi.org/10.24028/gj.v46i5.308245>

Отримано редакцію журналу / Received: 17.04.25

Прорецензовано / Revised: 29.05.25

Схвалено до друку / Accepted: 30.06.25

Кіфаєт КЕРІМОВА, канд. геол.-мінералог. наук, доц.,
ORCID ID: 0000-0003-1173-4600

e-mail: kifayetkerimova585@gmail.com

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Лала ХАЛІЛОВА, канд. геол.-мінералог. наук, доц.

ORCID ID: 0000-0003-0411-3216

e-mail: khalilovalala55@gmail.com

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

ВИВЧЕННЯ ГЕНЕЗИСУ ОСАДОВИХ ПОРІД ЗА ДАНИМИ КАРОТАЖУ СВЕРДЛОВИН ТА ОЦІНКА ВЗАЄМОЗВ'ЯЗКУ МІЖ ГЕНЕЗИСОМ ОСАДІВ І КОЛЕКТОРСЬКИМИ ВЛАСТИВОСТЯМИ

В ступ. Родовище Булла-Деніз є одним із найперспективніших щодо нафтогазоносності у Південнокаспійському прогині. Воно розташоване в північній частині Бакинського архіпелагу. Неважаючи на те, що родовище Булла-Деніз, яке розкрите глибокими свердловинами, експлуатується з 1975 року, воно ще не було повністю вивчене. Іого геологічна будова досліджувалася на основі комплексу геофізичних методів, структурного картування, пошукового буріння та матеріалів із видобутку. Свердловини пройшли лише до верхньої частини Кірмакинської світи в межах Продуктивної товщі (ПТ). Відклади Підкірмакинської та Галінської світи не були розкриті в межах родовища. Нафтогазоносність родовища Булла-Деніз приурочена до горизонтів V, VII та VIII ПТ. Горизонт VIII, згідно з Апшеронською стратиграфічною схемою, відповідає Верхньокірмакинському піщаному комплексу й представлений двома шарами піщано-алевритових відкладів у нижній і верхній частинах. Горизонт VII відповідає світі Фасіла і переважно складається з пісковиків. Горизонт V (відповідно до Апшеронського розрізу – горизонти VIII–IX) представлений черуванням потужних шарів піску, пісковика та глини.

Такі важливі питання, як оцінка умов осадконакопичення та генезису порід, що формують ці горизонти, а також встановлення зв'язку між генетичними походженнями порід і їх колекторськими властивостями, залишаються актуальними.

Одним із найбільш актуальніх завдань є проведення геофізичних досліджень, пов'язаних з пошуком і розвідкою нафтових і газових родовищ із використанням більш сучасних методів і впровадженням нових технологій. Це дає змогу з більшою точністю визначити внутрішню будову нафтогазоносних структур і нафтоносних горизонтів на основі польових геофізичних даних.

Методи. У зв'язку з активізацією пошукових і розвідувальних робіт, спрямованих на виявлення нафтогазоносних утворень і горизонтів Продуктивної товщі, виникла потреба у застосуванні сучасних методологічних і інтерпретаційних підходів – тектонічного, евстатичного, стратиграфічного та генетичного аналізів – як альтернативи дорогому бурінню. З цього погляду важливим є визначення умов осадконакопичення горизонтів і колекторських комплексів ПТ для цілеспрямованого пошуку покладів, не пов'язаних з антилініальними пастками, ідентифікації стратиграфічних, літологічних, палеогеоморфологічних, епігенетичних та інших складно розрізнаваних пасток, а також для оцінки нафтогазоносного потенціалу регіону та аналізу поширення перспективних об'єктів у межах осадових басейнів.

З іншого боку, існує певний зв'язок між літологічним складом порід і їх колекторськими властивостями, що в кінцевому підсумку проявляється у петрофізичних характеристиках колекторських порід. Саме тому дослідження взаємозв'язку між генезисом відкладів продуктивної товщі та їх колекторськими властивостями дає змогу прогнозувати закономірності поширення піщаного матеріалу на території, а також робити висновки про характер розвитку пористих і проникних зон. Це, у свою чергу, має важливе наукове та практичне значення для оцінки мінливості колекторських властивостей осадових порід.

З цього погляду у статті запропоновано раціональний підхід до виявлення зв'язку між генетичним походженням відкладів і колекторськими властивостями порід на основі кількісної інтерпретації комплексних даних каротажу свердловин за допомогою "кількісної моделі лог-фасій". Як об'єкт дослідження розглянуто горизонти V, VII та VIII Продуктивної товщі родовища Булла-Деніз. Результатами дослідження наведено й проаналізовано щодо оцінки генезису відкладів та їх впливу на фільтраційно-ємнісні властивості порід.

Результати. За допомогою кількісної лог-фасійальної моделі проведено літологічно-фасійальну інтерпретацію розрізів свердловин X1, X2, X3, X4 та X5 умовної ділянки родовища Булла-Деніз. У процесі аналізу виділено фасії алювіальних потоків, мілин, прибережно-пляжні та шельфові (морські) утворення. Встановлено взаємозв'язок між генетичним походженням осадових порід і їх колекторськими властивостями. Результатами показали, що фізичні властивості досліджуваних порід безпосередньо пов'язані з їхнім генезисом. Крім того, побудовано етюдами, що відображають зміни середньої відносної піщаності й пористості, а також варіації фасій потоків, мілин і пляжних відкладів по розрізах досліджуваних свердловин.

Висновки. Проведено комплексний літологічно-фасійальний і сейсмо-фасійальний аналіз для родовища Булла-Деніз на основі даних свердловин X1–X5 та сейсмічних профілів. Виділено фасії потоків, мілин прибережно-пляжного і шельфового походження. Встановлено чіткий зв'язок між генетичним походженням осадів і їх колекторськими властивостями, особливо у фасіях потоків і мілин, де ефективна пористість і товщина піщаних тіл мають тісний кореляційний зв'язок. Натомість прибережно-пляжні фасії демонструють хаотичну варіаційність без такої кореляції. Крім того, сейсмо-фасійальний аналіз у межах нижньоліттєвого інтервалу виявив флювіальні, морські й змішані середовища осадконакопичення, що свідчить про складну історію осадконакопичення в досліджуваному районі.

Ключові слова: фасійальний склад, потік, мілина, прибережно-пляжне середовище, колекторські властивості.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

ГЕОЛОГІЯ РОДОВИЩ КОРИСНИХ КОПАЛИН

UDC 550.832
 DOI: <http://doi.org/10.17721/1728-2713.110.03>

Sultan Heybet JAFAROV, Doctoral Student
 ORCID ID: 0000-0001-6227-7150
 e-mail: ceferovsoltan@gmail.com
 AzerGold, Baku, Azerbaijan
 Baku State University, Baku, Azerbaijan

Nazim Ajdar IMAMVERDIYEV, DSc (Geol. & Mineral.), Prof.
 e-mail: inazim17@yahoo.com
 Baku State University, Baku, Azerbaijan

DETERMINATION OF HYDROTHERMAL ALTERATION STAGES OF AGHYOKHUSH GROUP AND MEREH DEPOSITS (LESSER CAUCASUS)

(Представлено членом редакційної колегії д-ром геол. наук, проф. В.А. Михайловим)

Background. Aghyokhush Group deposits are located on a morphogenetic junction of the volcano-tectonic-related fault systems of the Lesser Caucasus. The referred fault systems mostly consist of fault groups, sub-meridional faults, and north-sloping syn-volcanic, tectonic fault systems and thrusts directed from northwest to southeast. The geological structure of the Chovdar ore area is where, the Aghyokhush group and Mereh deposits are located on complex Middle and Upper Jurassic magmatic, metamorphic, and sedimentary rocks. The mineral assemblages and alteration zones observed in the Aghyokhush group and Mereh ore deposits are considered indicators for explaining the formation mechanism of mineralization.

Methods. To be able to understand structural controls on ore mineralization, geological mapping, and chip sampling was done by AzerGold CJS's geologists. As a result, predictions were made on the location, lithological compound, alteration characteristics, size, and grade of potential ore bodies. Consequently, to examine the form and shape, the grade of potential orebody diamond drilling was carried out on a site, and core material from each drill hole was logged and sampled during the explanatory process.

Results. The mineral assemblages and alteration zones observed in the Aghyokhush group and Mereh ore deposits are considered indicators for explaining the formation mechanism of mineralization. Tectonic discontinuities resulted in crushing and brecciation, which led to hydrothermally altered joints, planes, and ore mineralization over the discontinuities, which also, infrequently resulted in fault planes along the faults. Widespread rhyolite and rhyolite-dacite rocks in the ore field are mainly volcanogenic-sedimentary and volcanic, also, in some interval's subvolcanic facies. Mineralization phases caused alteration of the rock facies within deposits. Hydrothermal zoning was observed within altered rocks, that gradually changed from the margins to the center. The minerals identified are pyrite, chalcopyrite, pyrrhotite (rarely), marcasite, siderite, barite, quartz (vein and veinlets), vuggy silica, chalcedony, malachite, azurite, hematite, limonite, goethite, kaolinite, alunite, chlorite, epidote, calcite 2M mica, and sericite in Aghyokhush group and Mereh deposits. As a result of the research, it is thought that the mentioned deposits are formed by the hydrothermal alteration of medium to felsic composed volcanic and subvolcanic rock facies, as a satellite deposits that are associated with Chovdar epithermal gold deposit.

Conclusions. Discovered deposits are formed by the hydrothermal alteration of medium to felsic-composed volcanic and subvolcanic rock facies, as satellite deposits that are spatially and temporally associated with the Chovdar epithermal gold deposit. Deposits are formed by hydrothermal processes which lead to intermediate to high-sulfidation alteration characteristics on lithological units within the ore area. The mentioned alteration styles and structural controls that led to the discovery of deposits will be implemented in future exploration works that are going to be carried out on a Chovdar ore area.

Keywords: Aghyokhush group and Mereh ore deposits, Lesser Caucasus, hydrothermal alteration, intermediate to high-sulfidation porphyry-related epithermal deposits.

Background

By the end of the 20th and the beginning of the 21st centuries, ideas on ore-controlling processes, metallogenic settings and the genesis of epithermal gold deposits of the Southern Caucasus have dramatically altered. Firstly, ideas that suggested illustrated somehow simultaneously, only controlled by faults, also, separate products of various ore-forming processes. Today ideas support that, the deposits are related by a common origin and separated from the magmatic bodies through faults and represent some unique factors such as alteration halos, mineral paragenesis and tectonic controlled by faults.

Exploration for low, intermediate, and high sulfidation epithermal gold deposits, detecting their general features, and developing contemporary methodology for their prospecting and exploration in the Lesser Caucasus were extremely important for improving the resources and discovery of new epithermal Au deposits such as Aghyokhush-1, 2, 3, and Mereh deposit (Arribas, 1995; Hedenquist, 2000; Goldfarb, Groves, & Gardoll, 2001; Payot et al., 2005; John et al., 2018; Wang et al., 2019, etc.).

All the deposits are controlled by faults. Only Au grades reach economically significant grades. Ag only can be mined within Au orebody, as gold mineralization is weakly associated with Ag. Ore mineralization that occurs within unaltered parts of deposits is strongly followed by disseminated and veinlet pyrite mineralization, also, chalcopyrite is abundant within the orebody. The economical cutoff grade for Au mineralization is considered to be 0.3 ppm and the ore material planned to be carried to the main Chovdar plant for processing.

Exploration work that is carried out through the Chovdar ore area, is firstly based on only geochemical sampling of the hydrothermally altered prospects. Also, during the time and energy-consuming sampling process, all the lithological units were representatively sampled to detect mineralization prospects. By obtaining some Au grades, we considered creating a geochemical anomaly map for the area. Investigation of all of the hydrothermal alteration styles that occur within and as halos corresponding to the anomalies that illustrate higher-grade Au mineralization was done during the exploration process. Such exploration process for

© Jafarov Sultan Heybet, Imamverdiyev Nazim Ajdar, 2025

Au mineralization actively applied on exploratory work done within last years. As a result, collected data such as alteration styles and their correspondence to the Au mineralization, also using characteristics of alteration stages as an indicative factor throughout the exploration work carried in the region, resulted in detecting of new Au mineralization prospects such as Peyedere, Chaikend, Nerimanli and so on.

Methods

Geological setting. Lokh-Kharabakh zone Middle Jurassic-Cretaceous Island zone of global extent. This metallogenic belt covers territories of Armenia, Azerbaijan, Georgia, and it is covered by Cenozoic (Early Quaternary) andesite-basaltic nappes, and continues to Turkey and beyond. The modern metallogenic model of above mentioned zone is investigated by an international team of Swiss, Georgian, Armenian, and Azeri geologists (Mederer et al., 2013; Richards, 2015; Moritz et al., 2016).

Dashkasan ore district located in Lokh-Kharabakh metallogenic belt, is situated nearly 54 km southwest of Ganja, the second-largest city in Azerbaijan. Dashkasan region is known as one of the oldest mining industry cities of

Azerbaijan and houses different geological processes representing epithermal, magmatic-sulfide, skarn, and other distinctive types of mineralization. The magmatism of the region occurred in two main phases, Lower Cretaceous and Upper Jurassic (Fig. 1). The rocks that formed during the mentioned periods such as Lower Bajocian were composed of basaltic-andesites and andesites, in contrast, rocks that were generated by Upper Bajocian aged volcanism were composed as dacite-rhyolitic or rhyolitic formations. Also, mentioned formations are sometimes cross-cut, covered, or dislocated by andesitic lava, tuffs, tuff-breccias, subvolcanic diabase dykes and bodies, tuff-conglomerates, tuff-breccias, tuff-sandstones and diorite to granodiorite porphyries produced during The Bathonian volcanism. The Upper Jurassic aged formations are mostly andesite lavas and tuff-sedimentary formations, tuff-breccias, tuff-sandstones, tuff-conglomerates, and fresh or marbled limestones. Intrusions that took most of the ore-forming processes that occurred during the Upper Jurassic – Lower Cretaceous are composed of aphanitic gabbros, gabbro-diorites, and diorite to granite intrusive or subvolcanic bodies.

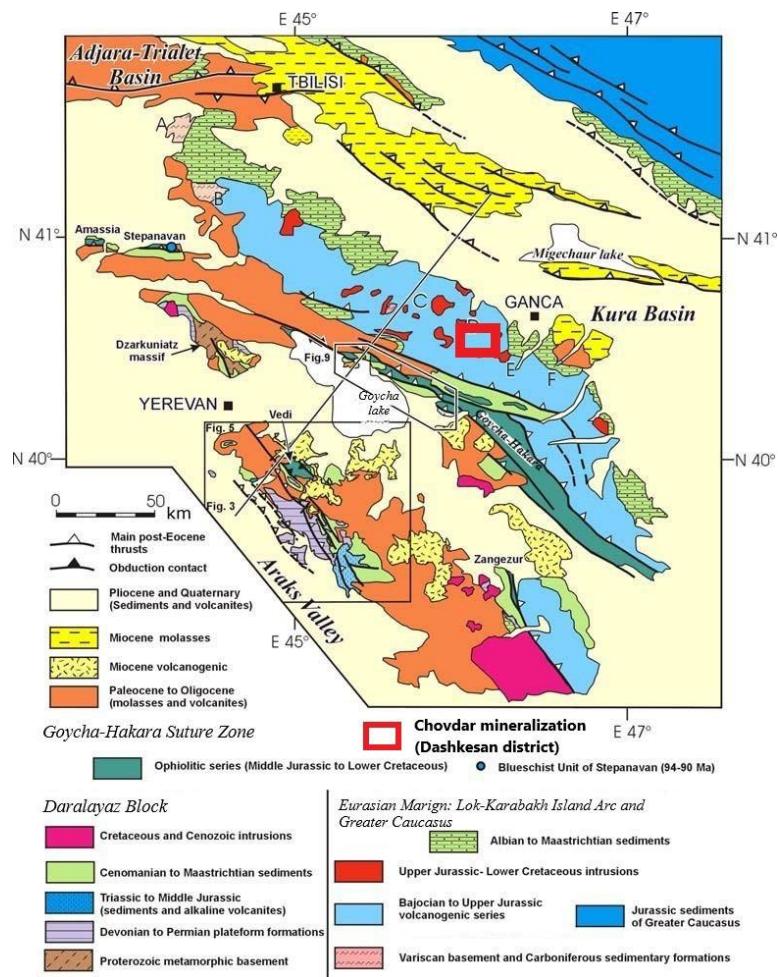


Fig. 1. Structural map of the Lesser Caucasus

The geology of the region is strongly complex due to the different characterized morphogenetic volcano-tectonic structures and fault systems. Faults, that are parallel directed such as Dashalti, and Chovdar deposits, are located upstream of the Danayeri River with vertical strike angles that are characterized by brecciations due to the slickensided surfaces and narrow hydrothermal alterations.

Barite veinlets are mainly connected to the mentioned fault systems. Geological and geotectonic investigation of the northern sides of the Chovdar mineralization area showed that the borderline for the local hydrothermal alteration zones is faults with lesser amplitudes. The above mentioned parallel directed faults are characterized by coulisse-shaped close occurrence and 75–85-degree dip angles.

Aghyokhush group and Mereh deposits are situated in the Dashkesan district of Azerbaijan, within a Caucasian segment of the Tethyan metallogenic belt, one of the world's major metallic provinces, that consists of many sectors. The geodynamic evolution of the Caucasian segment of the Tethys metallogenic belt was observed with the subduction and collision of Arabia and Gondwana-derived microplates with the Eurasia plate (Moritz, & Baker, 2019, Sosson, Rolland, & Müller, 2019). The mentioned deposits are located in the Lok-Karabakh belt of the Lesser Caucasus metallogenic province. From the Jurassic to the approximately end of the Cretaceous the Lok-Karabagh belt of the Lesser Caucasus belonged to a relatively continuous magmatic arc. Ore deposition formed during the Jurassic to Cretaceous subduction-related magmatism occurs mainly in porphyry Cu-Mo, epithermal Au-Cu, skarn deposit, also

discretely spread in polymetallic (Pb, Zn) mineralization areas. They are typically distributed in discrete areas and ore districts along the magmatic belt and deposited spatially and temporally connected to the gabbro-diorite to granodiorite compounded intrusive and subvolcanic bodies.

The main ore-controlled structure known as Sadax-Narchala-Pirinyal started from the Cobalt mine and continued towards the east-northern direction of Aghyokhush group deposits until crossed with the Hachagaya-Peyedere-Nuzgar fault system (Fig. 2). The mentioned structure lies parallel to the Chovdar deposit and restricts the deposit's volcanic structures in the east-southern direction. Right in this part mentioned fault system branches out are likely in swarm-bundle form, by crossing the Narchala deposit and covering the Aghyokhush group deposits.

Fig. 2. Location of Aghyokhush group and Mereh deposit

Mineralization. Petrological and mineralogical determinations were made from drill core and surface samples to identify mineral paragenesis and lithological characteristics of ore bodies and wall rock. The mineralization area generally consists of the Bajocian and the Bathonian aged intermediate to felsic volcanic rocks that typically occur as andesitic, dacitic, and rhyolitic composition. The composition of Middle Jurassic rocks is typically Lower Bajocian aged and composed from basaltic-andesites, also, the Upper Bajocian aged dacite-rhyolite rocks. Due to the intensive metasomatic processes, sometimes we are unable to differentiate rocks that are composed differently. Mentioned behavior mainly occurs between dacitic and rhyolitic rocks. Sometimes relict structures of rocks are used to detect lithofacies of volcanics. In some areas, rock units are cross-cut and complicated by various dykes and subvolcanic bodies (Musayev, Huseynov, & Naghiyev, 2020). Unlike the Aghyokhush deposits, the subvolcanic body of the quartz-diorite porphyries bounds the northern to north-western part of the Mereh deposit. Quartz-diorite-composed rock is typically unaltered and does not constrain any ore

containing mineralization. Some intervals of the diorite porphyries are cross-cut by quartz-carbonate veinlets and rarely contain visible disseminated marcasite also infrequently (rarely) pyrite mineralization. On rock wall contact quartz-diorites are slightly altered by the propylitic alteration, with the presence of chlorite mineralization. All the deposits constrain Au mineralization within the orebody which is mainly composed of hydrothermally altered rhyolite, rhyolite-dacitic, and slightly dacitic volcanic and subvolcanic series.

Mineralisation Aghyokhush-1 deposit mainly argillic to advanced argillic from surface to deeper horizons with the presence of kaolinite, alunite (infrequent), dickite (rarely), and pyrophyllite within the residual and vuggy silica, also strong silicification of rhyodacite and rhyolitic volcanic (Musayev, Huseynov, & Naghiyev, 2020). Due to weathering, sulfide minerals are not common and overprinted by Fe oxide and hydroxides in the ore body. Ore mineral assemblages follow Au mineralization within alteration compounded limonite, and infrequent hematite. Gangue minerals such as calcite and gypsum are uncommon within the orebody. Barite mineralization is

common and increases respectively with Au mineralization. Barite mineralization shows up as veinlets that fill cracks and fissures and also form mineral aggregates within the cavities of vuggy silica (Naghiyev et al., 2021).

Aghyokhush-2 deposit is mostly known for its advanced argillic to the argillic alteration from deeper horizons to surface with the presence of kaolinite, alunite, within the residual and vuggy silica, also strong silicification of rhyodacite and rhyolitic volcanic. Secondary quartzites (residual, vuggy silica) take up a significant part of the ore body. Due to the weathering, sulfide minerals are not common and are overprinted by mostly Fe oxides in the ore body. In contrast ore mineral assemblages that follow Au mineralization in the Aghyokhush-2 mostly hematite, are compared to limonite in the Aghyokhush-1. Also, gangue minerals such as calcite, and gypsum are not common within the orebody. However, barite is common and increases respectively to Au mineralization. Barite mineralization in Aghyokhush-2 is logged more frequently than in Aghyokhush-1 and shows as veinlets that fill cracks and fissures and also form mineral aggregates within the cavities of silicic alteration.

Mineral assemblages of the Aghyokhush-3 deposit showing the silicic (mostly) character of the ore body must be noticed, and alteration changes respectively from the surface to the middle of the orebody, with the presence of halloysite and kaolinite, sericite (rare). The ore body was made up by strongly silicified rhyodacitic and rhyolitic volcanic rocks. Compared to the Aghyokhush-2 deposit, In Aghyokhush-3 vuggy silica is uncommon, silicification mostly occurs as residual silica, chalcedony particles within the brecciated rock mass, and silicified intervals. Sulfide minerals such as disseminated pyrite are detected within ore mass. Also, ore mineral assemblages that follow Au mineralization are mostly limonite and hematite approximately in ~3/1 ratio. Gangue minerals such as calcite, and gypsum are detected rarely and not common within the orebody. Barite mineralization was noticed logged only in a few intervals.

Mineralization of the Mereh deposit is characterized as phyllitic to silicic (mostly) from surface to center of the orebody with presence of 2M mica (rare), kaolinite, and sericite, with strong silicification of rhyodacite, rhyolitic volcanic rocks. Compared to Aghyokhush-2–3 deposits, In Mereh silicification mostly occurs partly vuggy silica, residual silica, strongly silicification of the rock mass, and chalcedony breccias within hydrothermally brecciated intervals of the ore body. Sulfide minerals such as disseminated and veinlet pyrite, rarely chalcopyrite are detected within ore mass. Also, ore mineral assemblages that follow Au mineralization are mostly disseminated, veinlets (infrequent) pyrite, limonite, and hematite within the weathered zone. Gangue minerals such as calcite, and gypsum are detected rarely and not common within the orebody. Barite mineralization is uncommon and not logged.

Epithermal environments of Aghyokhush group and Mereh deposits. It is obvious that deposits with various textures and mineral assemblages refer to different stages of epithermal environments, also, mineral associations, and fluid inclusions that record temperature and pressure. The maximum temperature recorded in an epithermal environment is about 300°C, although most of the deposits form in a temperature interval from 160° to 270 °C (Hedenquist, Arribas, & Gonzalez-Urien, 2000). Hydrostatic pressure limits the maximum temperature by the vapor pressure of boiling water at a given depth. As there is the

strongest evidence that boiling is common within epithermal deposits, the temperature interval mentioned above corresponds to a depth range of about 50 to 700 m below the paleowater table, respectively (Sillitoe, 1999). The reason for mineral deposition in the epithermal environment is variation in the composition of fluids due to the fast change of thermobaric parameters within the epithermal environment, from deeper horizons to the surface. Also, intensive changes in temperature and pressure parameters cause boiling, which is the reason for the precipitation of bisulfite-complexed metals such as gold. Boiling and the immediate rapid temperature drop also result in numerous related features, such as gangue mineral deposition such as calcite, barite, adularia, gypsum veinlets, kaolinite, alunite, sericite, also, mineralization of quartz with various structures and textures, and so on. Formation of steam-heated waters and hot springs that create alteration halos and lithographs such as chalcedony and/or opaline blankets, alunite-kaolinite, silica sinter, and so on (Hedenquist, Arribas, & Gonzalez-Urien, 2000).

As mentioned above main alteration style of the Aghyokhush-1 and 2 deposits is strongly argillitic to advanced argillitic, with the presence of kaolinite, alunite, vuggy silica, and pyrophyllite. Barit aggregates are abundant within the ore body and are associated mainly with vuggy silica. Deposits separated each other with andesitic to andesite-dacitic volcanics. Ore bodies were completely oxidized and sulfide minerals in the Aghyokhush-1 deposit changed mostly iron hydroxides as limonite (with the presence of goethite) and weakly distinguishable hematite. Whereas, in the Aghyokhush-2 deposit complete oxidization occurs with abundant presence of hematite with rare limonitisation. There is a weak correlation of Au with As, Sb, and Hg in deposits that are all oxide, suggesting some secondary mobility of this suite of elements. Barite is an insoluble gangue mineral that commonly accompanies high-sulfidation sulfide mineralization, and it remains even after the complete oxidation of sulfides. The presence of vuggy quartz, kaolinite, and alunite, and their occasional association with barite enable us to characterize the epithermal environment of both deposits as high-temperature acid-sulfate composition, high-sulfidation epithermal deposits (Fig. 3 A, B).

The main alteration style of the Aghyokhush-3 deposit is mostly silicic and phyllitic with the presence of kaolinite, sericite (rarely), and halloysite. Barit aggregates are not common and not logged in drill cores. Deposits are located in north-western side of the same morphogenetic volcanotectonic fault system of the Aghyokhush-1 and 2 deposits and cross-cut faults with lesser amplitude. Ore body almost oxidized and sulfide minerals in the Aghyokhush-3 deposit changed mostly iron hydroxides as limonite and hematite. Hematite mineralization is less abundant than limonite. Pyrite minerals were detected within unchanged chalcedony particles that were observed in hydrothermally brecciated intervals that were cemented with clay minerals or late silicification. The presence of kaolinite, halloysite sericite (rarely) and silicic alteration enable us to characterize the epithermal environment of the deposit as shallow depth intermediate to late high-sulfidation epithermal deposit. The presence of sericite and absence of alunite and barite enable us to predict that the mineralization on the Aghyokhush-3 deposit results in a relatively less pH and lower temperature environment than Aghyokhush-1 and 2 deposits (Fig. 3 C).

Fig. 3. (A) Representative core samples from the orebody of the Aghyokhush-1 deposit.

The presence of vuggy silica kaolinite within the orebody indicates high pressure and highly acidic fluids that precipitated gold grades as argillic to advanced argillic alteration HS deposit. (B) Typical core samples from the orebody of the Aghyokhush-2 deposit. Hydrothermal alteration dominated by vuggy and residual silica that is associated with kaolinite and alunite indicates low pH, and high temperature advanced argillic (strongly) HS epithermal deposit. (C) Core samples from the Aghyokhush-3 deposit that illustrate weathered, crushed and fractured, strongly altered, kaolinized volcanic rock with the presence of halloysite and residual silica also silicified breccias specify deposit as HS epithermal deposit (relatively shallow deep, low temperature).

(D) Representative core samples from the Mereh deposit with the presence of silicification, chalcedony fragments, silicified breccias, sericite, and hydrothermal brecciation within the orebody indicate high-pressure and high-temperature fluids that show characteristics of greater deep high-sulfidation epithermal deposit

Alteration style on the Mereh deposit is characterized as silicic to phyllitic altered, with the presence of 2M mica (rarely), kaolinite, sericite, residual silica (some intervals with vuggy quartz), chalcedony fragments within hydrothermal brecciated intervals. Barit aggregates were not detected on the drill core and outcrop samples. The deposit is located in north-western side of the Quytul-Narimanli-Aghyokhush fault system. The north-western part of the deposit is bordered with quartz-diorite subvolcanic rocks. The ore body itself is partly weathered and contains sulfide minerals such as pyrite, and chalcopyrite (rarely). Weathering changed

sulfide minerals to limonite and hematite. Marcasite is not common and only observed on quartz-diorite rocks, within slightly chloritized intervals and without any correlation with Au mineralization. Silicification is strong within orebody, kaolinite, and sericite mineralization is common. All above mentioned factors enable us to characterize the epithermal environment of the deposit intermediate to high-sulfidation epithermal deposit (Fig. 3 D).

Discussion and conclusions

The Aghyokhush-1, 2, 3, and Mereh gold deposit located in the Dashkesan ore district belongs to the Lok-Karabakh

metallogenic belt and is tectonically situated in the subduction-related zone in the Lesser Caucasus region. Region characterized it is multi-stage volcano-plutonic activity periods that caused the formation of Chovdar, Aghyokhush, Mereh epithermal, and other porphyry-epithermal, skarn deposits in the Lok-Karabakh metallogenic district.

The main ore minerals observed in the research area are limonite, hematite, pyrite, and chalcopyrite. In a region scale deposit is surrounded by mineral assemblages of propylitic alteration (chlorite-sericite-epidote). Barite, which is a gangue mineral in high sulfidation deposits, indicates an end member of the epithermal processes in the region and commonly fills up the fault systems as veinlets. Also, it is insoluble and remains in the system, when all sulfides are weathered and oxidized. The hydrothermal alteration zones identified in Aghyokhush-1, 2 deposits are argillic to advanced argillic, and in the Aghyokhush-3 and Mereh deposits phyllitic to silicic.

In general, as a result of the given data above, in the region rocks that contain ore mineralization are called the altered rhyolites and secondary quartzites. Phyllitic, advanced argillic, and argillitic alterations are observed in secondary quartzites and a significant part of the ore mineralization is observed within mentioned zones. Hydrothermal alteration is considered as high-sulfidation moderate to acidic ≥ 2 pH (presence of alunite) below the paleosurface water table to 150–300 meters (presence of residual silica, vuggy quartz) in Aghyokhush-2 and 1 deposit (Hedenquist et al., 1996). In the Aghyokhush-3 deposit hydrothermal alteration is considered as intermediate to high-sulfidation, but less acidic compared to Aghyokhush-1 and 2. Logged 2M mica (rarely), kaolinite, sericite, and pyrophyllite (rarely), enables us to consider the hydrothermal alteration of Mereh deposit at greater depth (approximately ~500 meters), high temperature, intermediate to high-sulfidation epithermal deposit.

By using the mentioned factors such as alteration halos and rock facies that are strongly related to mineralization, and ore-controlled fault systems new Au mineralization prospects were detected and are currently under investigation stage. Formerly in the region, the main factors for exploration processes considered even or both faults and alteration characteristics, while, exploration work that was done by our team considered taking into account firstly alteration characteristics as a vector, faults as a ore controlling factors, and lithofacial characteristics of the rocks. For instance, by taking into account all the mentioned factors, exploration work that was done in the region, Narimanli, and Peyedere mineralization areas were discovered. Alteration style of the Narimanly Au area is strongly similar to the Mereh deposit and characterized as silicic to phyllitic altered, kaolinite, sericite, residual silica (some intervals with vuggy quartz), chalcedony fragments within hydrothermal brecciated intervals. Relict fragments of unaltered rocks illustrate rhyolitic to rhyolitic volcanics. The alteration style of the Chaikend Au area is silicic and phyllitic with the presence of kaolinite, sericite (rarely), and halloysite. Due to the alteration of the rocks facial belonging of the rocks was identified by unaltered parts and fragments, and again, Au containing altered orebody mostly belong to either rhyolitic or rhyodacitic compounded volcanic.

As a result, all the data given above, which illustrate the style of mineralization, alteration halos, and rock facies that are strongly related to mineralization can be complex methods for the exploration of new potential Au and Cu porphyry deposits. However, the unresolved part of the question is the investigation of the temperature, and

pressure, and, detailed mineralogical, fluid inclusion, and petrographic analyses will provide more precise information about the deposits. As formerly stated, porphyry and epithermal deposits are reported separately, also, without any attention to the potential genetic relation between them (Ghaderi, Narges, & Mina, 2018; Kuşcu, Tosdal, & Gençalioğlu-Kuşcu, 2019, etc.). However, Sillitoe outlined a genetic unity of porphyry copper and epithermal gold mineralization (Sillitoe, 2000).

As mentioned above, the studying of the P/T conditions, investigation ore mineralogy, fluid inclusion, isotope and petrographic analyses must be done to establish comprehensive exploration strategy and methodology, that, can lead to discovery of several porphyry copper and high sulfidation epithermal gold deposits in region.

Authors' contribution: Sultan Heybet JAFAROV – writing, investigation, methodology, formal analysis, conceptualization, data curation, supervision; Nazim Ajdar IMAMVERDIYEV – investigation, writing, visualization, data curation, formal analysis, supervision.

Acknowledgements. During the preparation of this study, we would like to thank Dr. Fuad Huseynov and Mr. Alasgar Mammadov for their support in the establishment of the map, Ms. Narmina Aliyeva, Ms. Narmina Ismayilova for the collection of data on the region. Finally, especially we thank the honored engineer of the Azerbaijan Republic, Dr. Shahbeddin Musayev for his important role in the discovery of this mineralization and for sharing valuable information during the research.

References

- Arribas, A., Jr. (1995). Characteristics of high sulfidation epithermal deposits, and their relation to magmatic fluid. In J. F. H. Thompson (Ed.), *Magmas, Fluids, and Ore Deposits* (pp. 419–454). Mineralogical Association of Canada.
- Ghaderi, M., Narges, Y., & Mina, B. K. (2018). *Porphyry copper deposits of Iran*. Tarbiat Modares University Press.
- Goldfarb, R. J., Groves, D. I., & Gardoll, S. (2001). Orogenic gold and geologic time: A global synthesis. *Ore Geology Reviews*, 18(1–2), 1–75.
- Hedenquist, J. W., Arribas, A., Jr., & Gonzalez-Urri, E. (2000). Exploration for epithermal gold deposits. *Reviews in Economic Geology*, 13, 245–277.
- John, D. A., Vikre, P. G., du Bray, E. A., Blakely, R. J., Fey, D. L., Rockwell, B. W., Mauk, J. L., Anderson, E. D., & Graybeal, F. T. (2018). *Descriptive models for epithermal gold-silver deposits* (Scientific Investigations Report 2010-5070-Q). U.S. Department of the Interior, U.S. Geological Survey.
- Kuşcu, I., Tosdal, R. M., & Gençalioğlu-Kuşcu, G. (2019). Chapter 8. Porphyry-Cu Deposits of Turkey. In F. Pirajno, T. Ünlü, C. Dönmez, & B. M. Şahin (Eds.), *Mineral Resources of Turkey* (pp. 337–425). Springer Nature Switzerland AG.
- Mederer, J., Moritz, R., Ulianov, A., & Chiaradia, M. (2013). Middle Jurassic to Cenozoic evolution of arc magmatism during Neotethys subduction and arc-continent collision in the Kapan Zone, southern Armenia. *Lithos*, 177, 61–78.
- Moritz, R., & Baker, T. (2019). Metallogeny of the Tethyan Orogenic Belt: From Mesozoic Magmatic Arcs to Cenozoic Back-Arc and Postcollisional Settings in Southeast Europe, Anatolia, and the Lesser Caucasus: An Introduction. *Economic Geology*, 114(7), 1227–1235.
- Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., & Putlitz, B. (2016). Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. *Gondwana Research*, 37, 465–503.
- Musayev, Sh., Huseynov, F., & Naghiyev, M. (2020). *Report / notification on "Discovery and its commercial value" on Aghyokhush gold deposit*.
- Naghiyev, M., Gojayeva, N., Jafarov, S., et al. (2021). Determination of hydrothermal alteration zones containing mineralization in Chovdar gold deposit, Dashkesan region. In *3rd International European conference on interdisciplinary scientific researches* (pp. 536–542).
- Payot, B. D., Maglambayan, V. B., Dimalanta, C. B., Yumul, G. P., Jr., Tamayo, R. A., Jr., Matsuda, T., Suzuki, S., & Bellon, H. (2005). Geology and hydrothermal alteration of the low sulfidation Pantingan Gold System, Mount Mariveles, Bataan (Luzon), Philippines. *Resource Geology*, 55(3), 155–162.
- Richards, J. P. (2015). Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. *Ore Geology Reviews*, 70, 323–345.
- Sillitoe, R. H. (1999). Styles of high-sulfidation gold, silver and copper mineralization in the porphyry and epithermal environments. In *Pacrim '99 Congress, Australasian Institute of Mining and Metallurgy, Bali, Indonesia, Proceedings* (pp. 29–44).

Sosson, M., Rolland, Y., & Müller, C. (2010). Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. *Geological Society, London, Special Publications*, 340, 329–352.

Alizade, A. (Ed.). (2005). *Geology of Azerbaijan. Vol. 6: Useful minerals (2nd ed.)*. Nafta-Press [in Russian]. [Али-заде, А. (Гл. Ред.). (2005). *Геология Азербайджана. Т. 6: Полезные ископаемые (2-е изд.)*. Nafta-Press.].

Султан Гейбет ДЖАФАРОВ, докторант

ORCID ID: 0000-0001-6227-7150

e-mail: ceferovsoltan@gmail.com

AzerGold, Баку, Азербайджан

Бакинський державний університет, Баку, Азербайджан

Назім Аждар IMAMBERDIЕВ², д-р геол.-мінералог. наук, проф.

e-mail: inazim17@yahoo.com

Бакинський державний університет, Баку, Азербайджан

Wang, L., Qin, K., Song, G., & Li, G. (2019). A review of intermediate sulfidation epithermal deposits and subclassification. *Ore Geology Reviews*, 107, 434–456.

Отримано редакцію журналу / Received: 01.05.25

Прорецензовано / Revised: 26.05.25

Схвалено до друку / Accepted: 30.06.25

ВИЗНАЧЕННЯ СТАДІЙ ГІДРОТЕРМАЛЬНОГО ЗМІНЕННЯ РОДОВИЩ АГІОХУШСЬКОЇ ГРУПИ ТА МЕРЕХ (МАЛІЙ КАВКАЗ)

В ст у п . Родовища групи Агіохуш розташовані на морфогенетичному стику вулкано-тектонічних систем розломів Малого Кавказу. Згадані системи розломів переважно складаються з груп розломів, субмеридіональних розломів та систем сино-вулканічних, тектонічних розломів із північним нахилом і насувіє, спрямованих із північного заходу на південний схід. Геологічна структура рудного району Човдар, де розташовані родовища групи Агіохуш та Мерех, складена складними магматичними, метаморфічними та осадовими породами середньої та верхньої юри. Мінеральні асоціації та зони зміни, що спостерігаються в рудних родовищах групи Агіохуш та Мерех, розглядаються як індикатори для пояснення механізму утворення мінералізації.

М е т о д и . Для розуміння структурного контролю рудної мінералізації геологи AzerGold CJS виконали геологічне картування та шліхове опробування. В результаті зроблено прогнози щодо розташування, літологічного складу, характеристик зміни, розміру та вмісту потенційних рудних тіл. Відповідно, для вивчення форми та розміру, вмісту потенційних рудних тіл на ділянці проведено алмазне буріння, а керновий матеріал з кожної сівердловини задокументовано та відібрано під час розведувального процесу.

Р е з у л ь т а т и . Мінеральні асоціації та зони зміни, що спостерігаються в рудних родовищах групи Агіохуш та Мерех, розглядаються як індикатори для пояснення механізму утворення мінералізації. Тектонічні розриви призвели до дроблення та брекчізації, що спричинило гідротермально змінені тріщини, площини та рудну мінералізацію над розривами, що також, нечасто, призводило до площин розломів уздовж розломів. Широко розповсюджені ріолітів та ріоліт-дацитові породи в рудному полі є переважно вулканогенно-осадовими та вулканічними, а також, в деяких інтервалах, субвулканічними фасіями. Фази мінералізації спричинили зміну гірських фасій усередині родовищ. Гідротермальна зональність спостерігалається в змінених породах, яка поступово змінювалася від краю до центру. Виявлені мінерали: пірит, халькопірит, піротін (рідко), марказит, сидерит, барит, кварц (жили та прожилки), пористий кремнезем, халцедон, малахіт, азурит, гематит, лімоніт, гіотит, каолініт, алюніт, хлорит, епідот, кальцит, слюда 2M та серцицит у родовищах групи Агіохуш та Мерех. В результаті досліджені вважається, що згадані родовища утворені гідротермальною зміною вулканічних та субвулканічних гірських фасій середнього та кислого складу, як сателітні родовища, пов’язані з епітермальним золоторудним родовищем Човдар.

В и с н о в к и . Виявлені родовища утворені гідротермальною зміною вулканічних та субвулканічних гірських фасій від середнього до кислого складу, як сателітні родовища, просторово та тимчасово пов’язані з епітермальним золоторудним родовищем Човдар. Родовища утворені гідротермальними процесами, що призводять до характеристик зміни від проміжного до високосульфідного типу на літологічних одиницях у межах рудного району. Згадані результати досліджень, що призвели до відкриття родовищ, будуть застосовані в майбутніх розведувальних роботах, які проводитимуться в рудному районі Човдар.

К л ю ч о в і с л о в а : родовища Агіохушської групи та Мерех, Малий Кавказ, гідротермальне змінення, проміжні до високосульфідних порфірові епітермальні родовища.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; in the decision to publish the results.

Володимир МИХАЙЛОВ, д-р геол. наук, проф.
ORCID ID: 0000-0002-1837-9739
e-mail: vladvam@gmail.com

Київський національний університет імені Тараса Шевченка, Київ, Україна

Максим РЕВА, канд. геол. наук, доц.
ORCID ID: 0000-0003-1141-093X
e-mail: Reva_max@ukr.net

Київський національний університет імені Тараса Шевченка, Київ, Україна

ПЕРСПЕКТИВИ ВИДОБУТКУ ЛІТІЮ В УКРАЇНІ

(Представлено членом редакційної колегії д-ром геол. наук, проф. Шнюковим С.Є.)

Вступ. Розглянуто перспективи розробки літієвих родовищ в Україні, що зумовлені попитом сучасної промисловості на літій та літієву сировину. Проблема забезпечення літієм особливо гостро стоїть для розвинутих країн ЄС, де він на 100 % забезпечується імпортом і США, де частка імпорту сягає 50 %. Для України забезпечення літієм є надзвичайно актуальним питанням, через проблеми в енергетиці та розбудову систем накопичення і передачі альтернативної електроенергії.

Методи. В роботі використано методи збору та аналізу фондів, методи порівняння та аналогій.

Результати. Наведено статистику щодо видобутку літію у світі щодо оцінених запасів. Ця інформація показує, що основні джерела літієвої сировини у світі приурочені до ропи солоних озер Чилі, Болівії, менші за об'ємами джерела пов'язані з пегматитами. В Україні в 80–90-х роках виявили кілька родовищ літію, пов'язаних із пегматитами: Шевченківське (Донецька область), Крута Балка (Запорізька область), Полохівське і Станкуватське (Ділянка Добра) (Кіровоградська область). Руди Шевченківського родовища і ділянки Крута Балка складені переважно сподуменом, що зумовлює досить простий способ іх збагачення, але родовища розташовані на непідконтрольній території, що унеможливлює їх розробку. Руди Полохівського родовища складені переважно петалітом, а Станкуватського – петалітом і сподуменом, що ускладнює технологію їх збагачення. На Станкуватському родовищі оцінено прогнозні ресурси рубідію, цезію, танталу, ніобію, берилію та олова, що підвищує його інвестиційну привабливість. Передбачається, що перспективним ресурсом літію в Україні можуть бути супутні пластові води (СПВ) нафтових і газових родовищ. Останнім часом цей ресурс набуває популярності у світі, оскільки у СПВ багатьох родовищ вуглеводнів встановлено підвищенні концентрації літію, рубідію, цезію, йоду, брому та бору. Вважається, що оптимальна концентрація літію у СПВ має бути не менш як 100 мг/л, але досі розробки деяких родовищ показують економічну доцільність вилучення літію із СПВ за концентрації 20–30 мг/л. У СПВ деяких нафтогазових родовищ України зафіксовано вміст до 10–23 мг/л, однак системних досліджень з цього питання не проводилося, тому надати об'єктивну оцінку цього ресурсу наразі неможливо. Це зумовлює потребу проведення детального вивчення супутніх пластових вод нафтогазових регіонів України.

Висновки. В Україні існує багато проблем із видобутком літію, оскільки родовища досить слабо вивчені та існують проблеми з геолого-економічною їх оцінкою. Проте серед корінних родовищ літію в Україні найбільшу інвестиційну привабливість має Полохівське родовище петалітових руд. Також досить перспективним ресурсом для літієвої сировини є супутні-пластові води нафтогазових родовищ.

Ключові слова: родовище, літій, супутні пластові води, геолого-економічна оцінка.

Вступ

Постановка проблеми. Літій належить до критичної сировини у всіх промислово розвинених країнах світу, зокрема країни ЄС на 100 % залежать від його імпорту, а США – на 50 %. Це пов'язано з різким зростанням його споживання, насамперед для виробництва літієвих батарей. Так, якщо у 2014 р. світове споживання літію було 31,4 тис. т, то у 2024 р. – вже 117,4 тис. т. Відповідно зросла і ціна літію: якщо в 2012–2020 рр. вона коливалася близько 8–12 тис. \$/т, то в 2022 р. досягла 78 тис. \$/т. Після цього, правда, вона дещо знизилася і нині

стабілізувалася на рівні 40–50 тис. \$/т. Тим не менш, зrozуміло є комерційна привабливість цього металу для будь якої країни. Тому питання про можливий видобуток літію на теренах України є надзвичайно актуальним (Мінеральні ресурси..., 2020; Про затвердження..., 2024).

Аналіз останніх досліджень і публікацій. Видобуток літію у світі постійно зростає, так, якщо у 2015 р. він становив 62 587 т, то в 2022 р. він вже досяг позначки 345 829 т. На початку 20-х років цього століття його видобуток здійснювали 11 країн (табл. 1).

Таблиця 1

Світовий видобуток і запаси літію (Mineral Commodity..., 2023; World Mining..., 2021, 2024)

Країна	Видобуток, т						Запаси, тис. т	Ресурси, млн т
	2015	2016	2017	2018	2019	2022		
Австралія	24 140	29 640	98 260	114 920	103 000	149 800	2 800	6,3
Чилі	22 500	31 240	32 520	38 850	47 770	110 350	8 600	9,0
Китай	4 350	6 000	14 700	15 300	16 600	57 900	1 000	4,5
Аргентина	7 860	12 200	12 360	13 810	13 670	14 210	1 700	17,0
Зімбабве	1 405	2 030	1 850	3 160	2 650	3 540	230	0,54
Бразилія	308	440	533	600	2 390	7 863	95	0,4
США	1 820	1 800	1 420	1 500	1 400	1 640	630	6,8
Португалія	204	307	604	914	710	210	60	0,25
Болівія	0	10	20	10	160	250	н/зв	21,0
Росія	0	0	0	0	0	46	н/зв	н/зв
Нігерія	0	0	0	50	50	20	н/зв	н/зв
Канада	0	0	66	8 750	1 200	0	370	1,7
Намібія	0	0	0	600	0	0	н/зв	0,009
Всього	62 587	83 667	162 333	198 464	189 600	345 829	17 000	80

© Михайлов Володимир, Рева Максим, 2025

Існує два головних джерела літію: це, по-перше, ропа солених озер Чилі, Болівії та інших країн, а по друге – рідкіснометалічні пегматити, відомі в Австралії, США, Канаді тощо. Безсумнівно, найвигіднішим джерелом літію є ропа солених озер, де собівартість його видобутку є мінімальною, а технології вилучення достатньо розроблені (Marcinov et al., 2023). Однак у багатьох країнах видобуток літію здійснюється також з гранітних пегматитів, тим більш, що, крім літію, вони часто містять підвищені вмісті танталу, ніобію, рубідію, цезію, олова, берилію. Крім цих джерел, у світі дискутується питання видобутку літію із супутніх пластових вод нафтових родовищ і можливих технологій такого видобутку (Marcinov et al., 2023; Murodjon et al., 2020).

Що стосується України, тут ще в 80-ті – 90-ті роки минулого століття було виявлено кілька родовищ літієвих пегматитів, що дає змогу ставити питання про власний видобуток літію. Ці родовища і пегматитові поля, з якими вони пов'язані, достатньо широко висвітлені в геологічній літературі (Бакаржіев и др., 2000; Білоус, Слободян, & Парфенюк, 2024; Возняк та ін., 2000; Галецький, Заріцький, & Князев, 1987; Еременко и др., 1996; Іванов та ін., 2000; Ісааков, & Бобров, 2000; Сукач та ін., 2021). Окремі роботи присвячені перспективам розробки пластових вод нафтогазових районів і родовищ як джерела йоду і брому (Бандуріна та ін., 2014; Кучманич, Бриндзя, & Щемельов, 2018).

Частини загальної проблеми, які не були роз'язані раніше. Однак реальної геолого-економічної оцінки цих родовищ не надавалось і залишається невідомим, чи буде видобуток літію з них економічно доцільним. Крім того, майже ніхто не ставив питання перспектив видобутку в Україні літію із супутніх пластових вод нафтогазових родовищ, де, за нашими даними, спостерігається його підвищений вміст (Рева, 2016, 2019; Чомко, Рева, & Диняк, 2016; Reva, & Chomko, 2018).

Метою статті є об'єктивна оцінка перспектив видобутку літію в Україні як із корінних джерел, так і із супутніх пластових вод нафтогазових родовищ, оцінка інвестиційної привабливості конкретних об'єктів літієвої мінералізації і загального стану вивченості цієї проблеми в Україні.

Методи

Корінні родовища літію України. В Україні відомо чотири родовища літію, пов'язані з рідкіснометалічними гранітними пегматитами раннього докембрію, які обліковуються в Державному балансі запасів: Шевченківське (Донецька область), Крута Балка (Запорізька область), Погохівське і Станкуватське (Ділянка Добра) (Кіровоградська область), а також кілька проявів у центральній частині Українського щита (Липнязький, Надія, Жовторіченський, Комендантський та ін.). Розглянемо їх з погляду інвестиційної привабливості.

Результати

Шевченківське родовище сподуменових руд відкрито у 1982 р. Воно представлене рядом рудних тіл у жильній системі субмеридіонального простягання, два з яких є головними і вміщують практично всі запаси літію. Їх середня товщина сягає 40 м, довжина 600–700 м, вони складені кварц-альбіт-сподуменовим (з мікрокліном та петалітом) агрегатом внутрішніх зон пегматитових тіл. Сподумен у ньому утворює блоки розміром 8–10 см, петаліт – дрібнозернисті гнізда розміром до 5–20 см. Вміст оксиду літію у середньому становить 1,22 %, понад 95 % запасів пов'язані зі сподуменом, що зумовлює можливість застосування значно поширеніших технологій збагачення. Крім того, в рудах встановлено підвищений вміст Rb, Cs, Ta, Nb, Be, Sn, які можуть розглянутися як супутні

компоненти. Запаси літієвих руд родовища затверджені протоколом ДКЗ СРСР № 10525 від 28.10.1988 р. у кількості (тис. т) за категоріями: C₁ 528, C₂ 1574,5, C₂пб 163,8, всього – 2 266,3 тис. т. Крім того, цим же протоколом затверджені запаси титану, ніобію, берилію (закриті дані), а також кварцу – 4863,6 тис. т і слюди – 527,2 тис. т; перезатверджені протоколом ДКЗ України № 4152 від 02.11.2017 (відомості закриті). Оскільки родовище розташоване на непідконтрольній території, обговорювати його інвестиційну привабливість не має сенсу.

Ділянка Крута Балка, відкрита у 1975 р., представлена трьома рудними зонами кварц-альбітових зі сподуменом пегматитових тіл, у яких вміст Li₂O сягає 0,008–6,55 %; Ta₂O₅ – 0,001–0,268 %; Nb₂O₅ – 0,001–0,036 %; Rb₂O – 0,001–0,395 %; Cz₂O – 0,001–0,129 %; РЗЕ – до 0,009 %. На ділянці попередньо за категоріями C₁ і C₂ підраховано запаси руд танталу, ніобію, літію (закрита інформація), а також запаси концентратів, які утворюються під час збагачення рідкіснометалічних руд: польового шпату у кількості 809,8 тис. т, кварцу – 582,6 тис. т, слюди – 205,1 тис. т. Ділянка розташована на непідконтрольній території, що зумовлює неактуальність оцінки її інвестиційної привабливості.

Погохівське родовище петалітових руд представлене трьома крутоспадними рудними тілами в пегматитах облямування Корсунь-Новомиргородського плутону (рис. 1).

Перше рудне тіло простежено за простяганням на 550 м, за падінням – на 800 м, його середня товщина 60 м, середній вміст Li₂O 1,25 %; друге простежено за простяганням на 350 м, за падінням – на 400 м, його товщина 13–75 м, середній вміст Li₂O 1,21 %; третє має значно менші параметри. Рудні тіла складені петалітом (27,6–36,2 %), альбітом (26,3–28,0 %), пертитовим калішпатом (19,1–20,9 %), кварцом (15,8–21,7 %), звідка сподуменом (до 2 %). Петаліт представлений дрібнозернистими мономінеральними скупченнями розміром до 10–20 см і розсіяними дрібними включеннями у мікроклін-кварц-альбітовому матриксі. Вміст Li₂O в петаліті коливається від 4,0 до 4,8 %, у сподумені – від 6,7 до 7,1 % (Возняк та ін., 2000); середній вміст Li₂O в петалітовій руді – 1,10 % (Еременко и др., 1996).

Відомості про запаси родовища є закритими, що ускладнює незалежну геолого-економічну оцінку родовища. Методом експертної оцінки за аналогією з подібними родовищами світу можна оцінити його ресурси приблизно в 60–65 млн т руди та 700–800 тис. т Li₂O (Mykhailov, Hrinchenko, & Malyuk, 2022); інвестиційну привабливість родовища визначено як середню (за експертною оцінкою 65 балів по 100-бальній шкалі) (Михайлов, 2023). На видобування петалітових літієвих руд родовища ТОВ "Укрлітій-видобування" видано спеціальний дозвіл № 6195 від 03 квітня 2017 р., дійсний до 03 квітня 2037 р.

Проблема полягає в мінеральному складі літієвих руд, які представлені майже виключно петалітом, у той час, коли флотаційні технології збагачення призначенні переважно для сподумену. Тобто потрібна розробка осо-блівих технологій збагачення петалітових руд.

Станкуватське родовище (ділянка Добра) сподумен-петалітових руд відкрито у 1989 р. Воно представлене двома рудопроявами – Станкуватським і Надія в Кіровоградській області, у західній зовнішній зоні Липнязького гранітного куполу. Вони пов'язані із серією крутоспадних пегматитових тіл у зоні завтовшки до 140–150 м, у центральній частині якої і зосереджені найпотужніші рудні тіла (рис. 2).

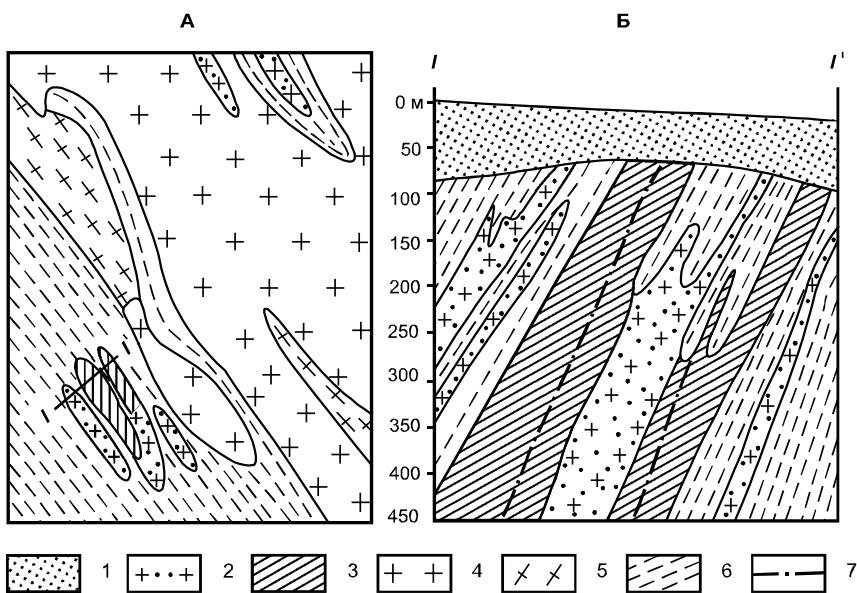


Рис. 1. Схематична геологічна карта (А) та розріз (Б) Полохівського родовища (Еременко и др., 1996):

1 – осадові відклади чохла; 2 – пегматоїдні граніти з убогою літієвою мінералізацією; 3 – пегматити з багатою літієвою мінералізацією (петаліти); 4 – граніти; 5 – мігматити; 6 – гнейси; 7 – розломи

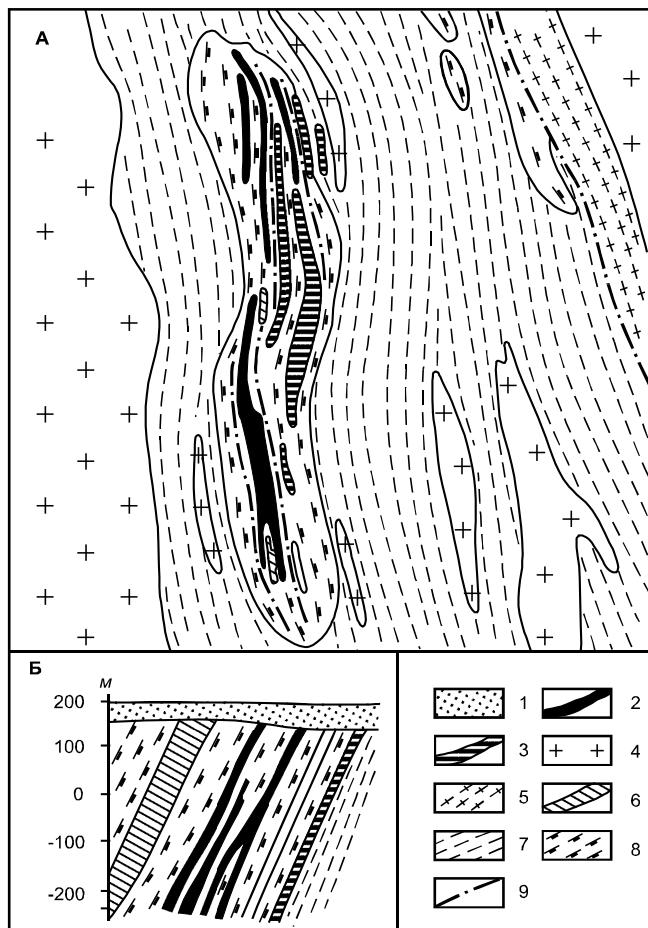


Рис. 2. Схематична геологічна карта (А) та розріз (Б) Станкуватського родовища (Еременко и др., 1996):

1 – осадові відклади чохла; 2 – пегматити з багатою літієвою мінералізацією; 3 – пегматити з бідою літієвою мінералізацією; 4 – граніти; 5 – мігматити; 6 – піроксеніти; 7 – гнейси; 8 – амфіболіти; 9 – розломи

Вміст Li_2O в окремих рудних тілах коливається від 0,345 до 2,23 %, у середньому сягає 1,26 %. Руди комплексні: петалітові (32 %), сподуменові (28 %), сподумен-петалітові (17 %) і петаліт-сподуменові (23 %), що ускладнює

технологію збагачення руд через потребу селективного вилучення сподуменового і петалітового концентратів.

Запаси і ресурси літієвих руд затверджено протоколами ДКЗ № 4211-ДСК від 15.12.2017 і № 4461-ДСК від 08.08.2018

за категорією С₂ (закриті дані, середній вміст Li₂O 1,34 %), Р₁ – 1218135,1 т (середній вміст Li₂O 1,37 %), Р₂ – 70634,5 т (середній вміст Li₂O 1,43 %), а також ресурси Ta₂O₃ – 4745,4 т, Nb₂O₅ – 8238,4 т, Rb₂O₅ – 104074,0 т, BeO – 22081,5 т, SnO₂ – 4456,5 т, CsO₂ – 7971,4 т (Інвестиційний атлас..., 2021).

Завдяки комплексності руд родовища його інвестиційну привабливість визначено як високу (74 бали по 100-балльній шкалі) (Михайлов, 2023), але з аналізу результатів опробування рудних тіл, наведених на офіційному сайті Держгеонадра (Інвестиційний атлас..., 2021) виникають сумніви щодо їхніх параметрів, зокрема стосовно суттєвого завищенння товщини рудних тіл, що може значно зменшити загальну оцінку запасів родовища і його інвестиційної привабливості. Це також зумовлює необхідність перегляду первинного фактичного матеріалу і щодо інших рідкіснометалічних родовищ України.

Літій у супутніх пластових водах нафтогазових родовищ. Питання видобутку літію з СПВ нафтогазових родовищ, розробки технологій його вилучення із цих вод вже дискутується у світовій науковій літературі, а на деяких родовищах США вже розпочався його

дослідницько-промисловий видобуток (Marcinov et al., 2023; Murodjon et al., 2020). Останнім часом постає питання можливості такого видобутку літію з СПВ нафтогазових родовищ України (Рева, 2016, 2019; Чомко, Рева, & Диняк, 2016).

Теоретичним підґрунтям цього питання є присутність літію в СПВ нафтогазових родовищ. Доведено, що пластові води присутні в переважній більшості нафтогазових родовищ, де можуть займати різну позицію щодо продуктивних пластів, завдяки чому виділяють СПВ контурні (крайові), підошовні, проміжні, верхні, нижні, змішані (рис. 3). Виділяють як сухо водоносні пласти, так і зв'язану (залишкову, поховану) воду у складі продуктивних порід. Вміст останньої може коливатися в широких межах, але найчастіше сягає 20–30 % від обсягу колектора. Цінність СПВ як сировини для вилучення літію полягає ще в тому, що її цілеспрямовано не потрібно видобувати, а вона є похідним компонентом видобутку нафти і газу. Об'єм видобутої води на деяких родовищах України становить понад 90 % від загального об'єму видобутого флюїду.

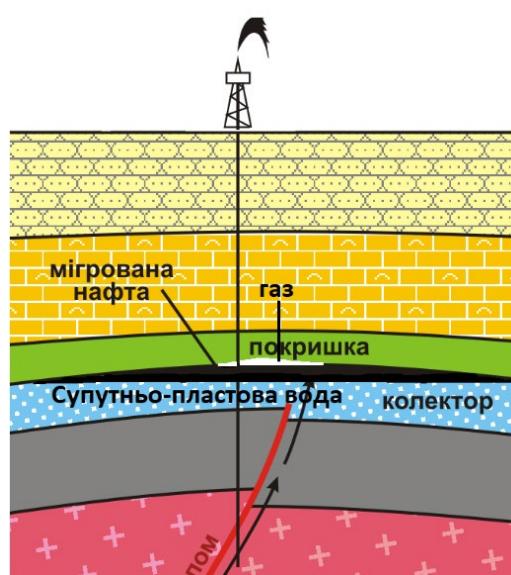


Рис. 3. Пластові води нафтогазових родовищ
(<https://ukraine-oss.com/suputno-plastovi-vody-i-naftogazovij-galuzi-problema-chy-rishennya/>)

З аналізу наявних даних щодо вмісту літію в СПВ родовищ вуглеводнів нафтогазоносних регіонів України випливає два найважливіші висновки. По-перше, визначення літію в СПВ нафтогазових родовищ проводилося спорадично, в явно недостатній кількості для об'єктивної оцінки його вмісту у водах всіх чи більшості родовищ вуглеводнів. По друге, практично у всіх пробах, де здійснювалося таке визначення, фіксується підвищений вміст літію в кількостях від перших мг/л до 10–20 мг/л (табл. 2). Такі вмісті літію не становлять промислового інтересу, хоча й свідчать про його присутність у СПВ деяких українських родовищ.

Крім літію, у проаналізованих пробах відзначається підвищений вміст йоду, брому, бору, рубідію, цезію. Особливо звертає на себе увагу ураганий вміст рубідію і цезію в СПВ Кулачихінського родовища, яке, за умови підтвердження цих результатів, може бути джерелом супутнього видобутку цих елементів.

За матеріалами (Knapik, Rotko, & Marszałek, 2023) найсприятливіша для видобутку концентрація літію в

розсолах має бути не менш як 100 мг/л, хоч в деяких продуктивних нафтогазових формаціях і районах вона опускається до 28–57 мг/л (табл. 3).

Із цими матеріалами збігаються дослідження канадської компанії Volt Lithium з успішного вилучення літію із солювів розчинів з його концентрацією від 34 до 120 мг/л методом додавання до розсолу високоселективної абсорбуючої молекули, яка уловлювала літій і швидко відділяла його від води (News – Volt Lithium Corp, 2023).

Зрозуміло, що чим вища концентрація літію, тим дозріальнішим є його видобуток. Але з аналізу наявних матеріалів випливає висновок про нерівномірний розподіл літію в СПВ нафтогазових площ. Так, на перспективних площах Республіки Дагестан вміст літію в СПВ коливається переважно від 22 до 57 мг/л і тільки на одній Тарумівській плоші сягає 196–200 мг/л. Мінімальна промислова концентрація літію на цих родовищах встановлена у кількості 10 мг/л. На нафтогазоносних площах Оренбурзької області вміст літію в СПВ коливається від

10,5 до 660 мг/л; Непско-Ботубинської площині (Іркутська область) – від 30 до 105 мг/л.

Головними методами вилучення літію з розсолів є: галургічний з багатостадійним випаровуванням; мембраний; екстракційний; сорбційного вилучення за допомогою абсорбуючих речовин, наприклад гідроксиду алюмінію, який формує з літієм сполуки $\text{LiCl}\cdot2\text{Al}(\text{OH})_3\cdot\text{nH}_2\text{O}$ (Karuppasamy et al., 2024; Liu et al., 2023).

Отже, в багатьох випадках встановлено доцільність використання супутніх пластових вод нафтогазових родовищ як гідромінеральної сировини для видобутку літію та інших компонентів. Це є підставою для детального вивчення СПВ нафтогазових родовищ України з метою їх оцінки як гідромінеральної сировини. Поки що систематичних досліджень з цього питання не проводилося, а наявних матеріалів явно недостатньо для об'єктивної оцінки їх потенціалу як джерела літію та інших елементів.

Таблиця 2

Концентрації хімічних елементів в супутніх пластових водах деяких родовищ, мг/л (Атлас..., 1998)

Родовище	Горизонт	J	Br	B	K	NH_4	S_2	Li	Rb	Cs
Східний НГР										
Липоводолинське НГК	B-20 B-22 B-26	10,58 37,36 9,52	157,2 173,2 149,2	12,35 18,52 12,35	715 2417 425	104,4 198,5 93,6	680 800 780	10 12 18	8 6 4	- - 0,3
Роменське Н	-	49,31	0,62	0,07	49,1	0,84	-	0,06	-	-
Шатравинське Н	B-26 T	8,46 8,46	131,9 113,2	9,88 -	1900	н/зв н/зв	750 750	19 19	1,35 1,35	0,3 0,3
Кулачихінське НГК	B-16 B-17 B-21 T	7,47 4,72 10,17 7,62	141,94 32,41 22,68 136,9	16,48 21,66 8,68 16,57	78387,8 38428,3 19267,6 65437,8	133,42 107,99 29,39 121,5	н/зв н/зв н/зв н/зв	н/зв н/зв н/зв н/зв	17541,1 15430,8 8874,9 27888,0	154348,6 93029,8 44493,8 158640,2
Березівське ГК	C-5 B-166	9,56 15,82	72,04 81,06	26,38 59,33	41,25	123,15 118,19	- 1520	- 12,0	- 1,0	- 0,1
Кампанське НГК	B-15в B-19н	6,35 10,58	103,9 108,6	9,88 12,35	980 990	100,8 108,0	415 700	15,1 16,25	2,3 1,3	0,47 0,55
Андріяшівське ГК	B-19в B-19н B-20-21	8,0 10,5 8,0	181,0 129,2 142,0	12,3 12,0 11,2	н/зв н/зв н/зв	н/зв 604 340	0,99 20,0 18,0	0,39 6,0 6,0	0,010 0,025 н/зв	0,010 0,025 н/зв
Василівське НГК	B-15 B-17с B-17н B-18в B-19в B-20 T-1	6,35 23,0 12,7 9,5 15,5 7,2 6,4	105,2 143,9 227,8 188,0 163,6 107,0 53,3	12,35 12,35 18,52 18,60 39,28 22,00 н/зв	600 1000 900 575 209 153 1000	74 104 108 77 368 580 н/зв	422 232 270 368 н/зв н/зв н/зв	10,0 23,0 11,3 13,9 5,95 0,3 н/зв	1,4 1,6 0,6 0,9 0,3 0,3 н/зв	0,28 0,39 0,05 0,35 н/зв н/зв н/зв
Рудівсько-Червонозаводське ГК	B-20 T-3	4,23 2,112	90,58 73,26	н/зв н/зв	н/зв н/зв	н/зв н/зв	360 930	6,45 8,4	0,5 0,47	0,15 0,3
Чутівське ГК	A-6-8	42,0	683,0	14,60	н/зв	183,0	н/зв	3,9	2,07	н/зв
Новоселівське ГК	Б-12	2,07	97,9	7,0	24932,2	36,8	345,8	2,79	0,90	н/зв
Лаврентіївське Г	C-17	2,5	н/зв	н/зв	17,0	15,0	н/зв	1,9	н/зв	н/зв
Західний НГР										
Вижомлянське Г	-	20-42	20-120	10-80		10-210	60-80	4-5	0,7-1,0	0,1-0,15
Підлісівське Н	МЛ-1	19,47	209,0	111,36	365	21,4		6,5	0,75	0,6
Русько-Комарівське Г	Д-2 Д-3 Д-4 Д-5	4,23 4,11 5,50 1,09	11,22 6,35 7,48 13,40	- 3,1 18,6 -	737,5 198,3 46,7 858,2	10,0 10,0 1,67 10,0	10,20 5,40 4,10 10,0	5,10 0,21 0,12 3,16	0,47 0,18 0,20 0,43	0,38 0,13 0,15 0,20

Примітка. Результати аналізу вмісту K, Rb, Cs у водах Кулачихінського НГК родовища викликають сумніви і потребують перевірки. Родовища: Н – нафтові; Г – газові; ГК – газоконденсатні; НГК – нафтогазоконденсатні. н/зв – аналіз не проводився

Таблиця 3

Концентрації хімічних елементів в супутніх пластових водах деяких родовищ світу (Knapik, Rotko, & Marszałek, 2023)

Формація, родовище	Na^+	K^+	Ca^{2+}	Mg^{2+}	Cl^-	SO_4^{2-}	Li^+	Sr^{2+}	Br^-
	г/л	мг/л							
Qianjiang Formation of the Jianghan Basin, China, sample QJ50	85.8	1.44	1.24	0.24	132.9	4.62	119	-	371
Qianjiang Formation of the Jianghan Basin, China, sample QJ52	124.1	2.62	0.66	0.09	191.7	4.30	150	-	583
Qianjiang Formation of the Jianghan Basin, China, sample QJ16	101.8	4.03	3.32	0.26	172.1	0.39	80	263	400
Smackover Formation, field Kerlin, county Columbia, sample 140	71.4	8.34	45.70	2.97	196.1	0.55	445	2980	5850
Smackover Formation, field Pine Tree, county Columbia, sample 199	63.0	3.02	39.80	2.12	201.5	0.18	277	2760	5640
Smackover Formation, field Yantis, county Wood, sample 226	75.4	7.43	26.90	4.51	192.0	0.20	505	2670	3080
Carboniferous formation in west Poland	53.0	3.06	36.00	2.53	165.0	2.09	81	2347	-
Leduc Formation, Alberta, Canada, sample D-31	61.0	3.90	22.80	2.00	145.0	0.22	140	660	436
Swan Hills Formation, Alberta, Canada, sample RCAH37-576B	69.6	4.60	24.37	2.25	147.4	0.21	118	845	462
Wolfcamp Shale-tight oil, USA	45.1	0.90	2.77	0.38	75.4	0.65	28	421	639
Bakken-tight oil, USA	91.7	5.31	17.00	1.34	177.8	0.76	57	1450	874
Marcellus Formation, USA	43.7	0.87	18.95	1.67	116.1	0.05	127	3693	1126

Дискусія і висновки

1. Аналіз фактичного стану речей показує, що проблема власного видобутку літію в Україні набагато складніша, ніж це звучить в бравурних речах деяких дослідників і можновладців, і потребує уваги, ретельного вивчення і проведення детальних досліджень. По суті, вона відзеркалює загальний стан геології в Україні, який останні 15 років не приділяє достойна увага.

2. З корінних родовищ літію України, пов'язаних з гранітними пегматитами, найбільшу інвестиційну привабливість має Полохівське родовище петалітових руд у Кіровоградській області за умови розробки технології їх збагачення. Спеціальний дозвіл на розробку цього родовища має ТОВ "Укрлітіввидобування".

3. У подальшому для об'єктивної оцінки інвестиційної привабливості родовищ рідкісних металів України рекомендується проведення детального аналізу первинних матеріалів з переінтерпретацією їх результатів.

4. Потребує ретельних досліджень також можливість вилучення літію із супутніх пластових вод нафтогазових родовищ. На жаль, системних досліджень цієї проблеми в Україні не проводилося, є тільки поодинокі випадки визначення вмісту літію у водах окремих родовищ нафти та газу, які свідчать про наявність літію у СПВ, але в недостатніх для промислової розробки кількостях. Тому рекомендується проведення масових опробувань СПВ з аналізом на вміст літію та інших рідкісних металів, зокрема рубідію і цезію.

5. Реальній оцінці родовищ корисних копалин значно заважаєrudиментарна, ще з радянських часів, закритість інформації, яка аж ніяк не сприяє залученню інвестицій в гірничодобувний сектор України.

Внесок авторів: Володимир Михайлов – концептуалізація, аналіз, написання (оригінальна чернетка); Максим Рева – аналіз, валідація даних, написання (перегляд і редактування).

Список використаних джерел

Атлас родовищ нафти і газу України. (1998). В шести томах. УНГА.

Бакаржієв, А. Х., Маківчук, О. Ф., Іванов, Б. Н., Еременко, Г. К., & Палкін, В. П. (2000). Мелкозернистые петалітовые руды – новый вид литийсодержащего минерального сырья Украины. *Мінеральні ресурси України*, 1, 16–19.

Бандуріна, О. В., Єрмакова, І. А., & Захарченко, Л. С. (2014). Перспектива видобутку йоду з пластових вод нафтогазових родовищ Полтавського нафтогорючого району. *Збірник наукових праць (Галузеве машинобудування, будівництво). ПолтНТУ*, 3(42), 106–111.

Білоус, О. І., Слободян, Б. І., & Парфенюк, В. О. (2024). Літієві пегматити України: проблеми і переваги освоєння родовищ. *Мінеральні ресурси України*, 2, 3–9. <https://doi.org/10.31996/mru.2024.2.3-9>

Возняк, Д. К., Бугасенко, В. М., Галабурда, Ю. А., Мельников, В. С., Павлишин, В. І., Бондаренко, С. М., & Сьомка, В. О. (2000). Особливості мінерального складу та умов утворення рідкіснометалевих пегматитів західної частини Кіровоградського блоку (Український щит). *Мінералогічний журнал*, 22(1), 21–41.

Галецкий, Л. С., Заріцкий, А. І., & Князев, Г. І. (1987). Субграфіческі сподуменові і петаліт-сподуменові пегматити одного із докембрійських полей. *Геологічний журнал*, 47(1), 136–141.

Еременко, Г. К., Іванов, Б. Н., Бєльх, Н. А. і др. (1996). Мінералогіческие особенности и условия образования литиевых пегматитов Кировоградского блока (Украинский щит). *Мінералогічний журнал*, 18(1), 48–57.

Іванов, Б. Н., Лисенко, В. В., Маківчук, О. Ф. та ін. (2000). Екзоконтактові метасоматити літієвих гранітних пегматитів Шполино-Ташлицького рідкіснометалевого рудного району. *Мінеральні ресурси України*, 4, 11–13.

Інвестиційний атлас надркористувача. Стратегічні та критичні мінерали. (2021). Державна служба геології та надр України.

Ісаков, Л. В., & Бобров, О. Б. (2000). Літієві пегматити Шевченківського пегматитового поля (Західнє Приазов'я). *Мінеральні ресурси України*, 1, 23–30.

Кучманич, Н. Г., Бриндзя, І. В., & Щемельов, Г. В. (2018). Пластові води Бориславського нафтогорючого району як джерело йоду та брому. *Вісник Харківського національного університету імені В.Н. Каразіна. Геологія, географія, екологія*, 48. <https://doi.org/10.26565/2410-7360-2018-48-05>

Михайлов, В. А. (2023). Стратеїчні корисні копалини України та їхня інвестиційна привабливість. ВПЦ "Київський університет". http://www.geol.univ.kiev.ua/lib/Stratehichni_Korysni_Kopalyny.pdf

Мінеральні ресурси України. Щорічник. (2020). ДВНП "Геоінформ України". http://geoinf.kiev.ua/M_R_2020.pdf

Про затвердження Загальнодержавної програми розвитку мінерально-сировинної бази України на період до 2030 року. Закон України № 4154-IX від 18.12.2024. <https://zakon.rada.gov.ua/laws/show/3268-17#Text>

Рева, М. (2016). Супутньо-пластові води в Східному нафтогазовому регіоні України як джерело небезпеки або цінний ресурс. *Вісник КНУ. Геологія*, 72, 81–85. <https://doi.org/10.17721/1728-2713.72.12.12>

Рева, М. В. (2019). Геолого-економічна оцінка супутньо-пластових вод нафтових і газових родовищ Східного нафтогазового регіону України як цінної гідромінеральної сировини [Дис. канд. геол. наук, Київський національний університет імені Тараса Шевченка].

Сукач, В. В., Ісаков, Л. В., Безвінний, В. П., & Шпильчак, В. О. (2021). Пшуки родовищ рідкісних металів у Східноукраїнській пегматитовій області – важливий складник геологорозвідувальних робіт в Україні. *Мінеральні ресурси України*, 4, 6–15.

Супутньо-пластові води у нафтогазовій галузі: проблема чи рішення? – Офіс Сталин Рішень. (n.d.). Retrieved April 11, 2025, from <https://ukraine-oss.com/suputno-plastovi-vody-u-naftogazoviy-galuzi-problema-chy-rishennya>

Чомко, Д., Рева, М., & Дінкя, О. (2016). Супутньо-пластова вода нафтових родовищ як гідромінеральна сировина. *Вісник КНУ імені Тараса Шевченка. Геологія*, 4(75), 77–81.

Karuppasamy, K., Mayyas, A., Alhseinh, E., Hassan-Beck, H., & Alfantazi, A. (2024). Exploring lithium extraction technologies in oil and gas field-produced waters: From waste to valuable resource. *Chemical Engineering Journal Advances*, 20, 100680. <https://doi.org/10.1016/j.ceja.2024.100680>

Knapik, E., Rotko, G., & Marszałek, M. (2023). Recovery of Lithium from Oilfield Brines – Current Achievements and Future Perspectives: A Mini Review. *Energies*, 16, 2–28.

Liu, Q., Yang, P., Tu, W., Sun, H., Li, S., & Zhang, Y. (2023). Lithium recovery from oil and gas produced water: Opportunities, challenges, and future outlook. *Journal of Water Process Engineering*, 55, 104148. <https://doi.org/10.1016/j.jwpe.2023.104148>

Marcinov, V., Klimko, J., Takasova, Z. et al. (2023). Lithium Production and Recovery Methods: Overview of Lithium Losses. *Metals*, 13(7), 1213. <https://doi.org/10.3390/met13071213>

Mineral Commodity Summaries. (2023). USGS. https://www.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/usgs-2023-mineral-commodity-summaries-white-paper.pdf

Murodjon, S., Yu, X., Li, M., Duo Ji, & Deng, T. (2020). Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water and Geothermal Water. *Thermodynamics and Energy Engineering*. <https://doi.org/10.5772/intechopen.90371>

Михайлів, В. А., Хрінченко, О. В., & Малюк, В. І. (2022). Exploration and mining perspectives of the critical elements for green technologies in Ukraine. *Geological Society, London, Special Publications*. <https://doi.org/10.1144/SP526-2021-133>

News-Volt Lithium Corp. (2023, April 18). <https://voltlithium.com/news>

Reva, M. V., & Chomko, D. F. (2018). Hydrogeochemical database of reservoir waters of oil fields in the Eastern region of Ukraine as the first way to the effective using prodused water. *17th International Conference on Geoinformatics – Theoretical and Applied Aspects*. <https://doi.org/10.3997/2214-4609.201801765>

World Mining Data. (2021). Volume 36. C. Reichl & M. Schatz (Eds.). Mineral Production. Vienna. <https://www.world-mining-data.info/wmd/downloads/PDF/WMD2021.pdf>

World Mining Data. (2024). Volume 36. C. Reichl & M. Schatz (Eds.). Mineral Production. Vienna. <https://www.world-mining-data.info/wmd/downloads/PDF/WMD%202024.pdf>

References

Atlas of Oil and Gas Fields of Ukraine. (1998). In six volumes. UNGA [in Ukrainian].

Бакаржієв, А. Х., Маківчук, О. Ф., Іванов, Б. Н., Еременко, Г. К., & Палкін, В. П. (2000). Fine-grained petalite ores – a new type of lithium-containing mineral raw materials of Ukraine. *Min. resources of Ukraine*, 1, 16–19 [in Russian].

Бандуріна, О. В., Єрмакова, І. А., & Захарченко, Л. С. (2014). Prospect for the production of iodine from the formation waters of the naftogaz deposits of the Poltashkoye naftogaz region. *Collection of scientific works (Galuzev machine-building, everyday life)*. PoltNTU, 3(42), 106–111 [in Ukrainian].

Білоус, О. І., Слободян, Б. І., & Парфенюк, В. О. (2024). Україна's lithium pegmatites: issues and advantages of field development. *Mineral Resources of Ukraine*, 2, 3–9 [in Ukrainian]. <https://doi.org/10.31996/mru.2024.2.3-9>

Chomko, D., Reva, M., & Reva, M. (2016). Stratified produced water in oil fields as hydromineral raw material. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 4(75), 77–81 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.75.12>

Eremenko, G. K., Ivanov, B. N., Belykh, N. A., et al. (1996). Mineralogical features and conditions of formation of lithium pegmatites of the Kirovograd block (Ukrainian shield). *Mineralog. zhurn.*, 18(1), 48–57 [in Russian].

Galetsky, L. S., Zaritsky, A. I., & Knyazev, G. I. (1987). Subgraphic spodumene and petalite-spodumene pegmatites of one of the Precambrian fields. *Geol. Journal*, 47(1), 136–141 [in Russian].

Isakov, L. V., & Bobrov, O. B. (2000). Lithium-bearing pegmatites of the Shevchenko pegmatite field (Western Azov region). *Mineral Resources of Ukraine*, 1, 23–30 [in Ukrainian].

Ivanov, B. N., Lisenko, V. V., Makivchuk, O. F. et al. (2000). Exocontact metasomatism of lithium granite pegmatites of the Shpoliano-Tashlitsky rare metal ore district. *Min. resources of Ukraine*, 4, 11–13 [in Ukrainian].

Karuppasamy, K., Mayyas, A., Alseainat, E., Hassan-Beck, H., & Alfantazi, A. (2024). Exploring lithium extraction technologies in oil and gas field-produced waters: From waste to valuable resource. *Chemical Engineering Journal Advances*, 20, 100680. <https://doi.org/10.1016/j.cej.a.2024.100680>

Knapik, E., Rotko, G., & Marszałek, M. (2023). Recovery of Lithium from Oilfield Brines – Current Achievements and Future Perspectives: A Mini Review. *Energies*, 16, 2–28.

Kuchmanych, N. G., Bryndza, I. V., & Shchemelev, G. V. (2018). Reservoir water of Boryslav oilfield as a source of iodine and bromine. *Visnyk of V.N. Karazin Kharkiv National University. Geology, Geography, Ecology*, 48 [in Ukrainian]. <https://doi.org/10.26565/2410-7360-2018-48-05>

Liu, Q., Yang, P., Tu, W., Sun, H., Li, S., & Zhang, Y. (2023). Lithium recovery from oil and gas produced water: Opportunities, challenges, and future outlook. *Journal of Water Process Engineering*, 55, 104148. <https://doi.org/10.1016/j.jwpe.2023.104148>

Marcinov, V., Klimko, J., Takasova, Z. et al. (2023). Lithium Production and Recovery Methods: Overview of Lithium Losses. *Metals*, 13(7), 1213. <https://doi.org/10.3390/met13071213>

Mineral Commodity Summaries. (2023). USGS. https://www.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/white-papers/usgs-2023-mineral-commodity-summaries-white-paper.pdf

Mineral Resources of Ukraine. Yearbook. (2020). DVNP "Geoinform of Ukraine" [in Ukrainian]. http://geoinf.kiev.ua/M_R_2020.pdf

Murodjon, S., Yu, X., Li, M., Duo Ji, & Deng, T. (2020). Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water and Geothermal Water. *Thermodynamics and Energy Engineering*. <https://doi.org/10.5772/intechopen.90371>

Mykhailov, V. A., Hrinchenko, O. V., & Malyuk, B. I. (2022). Exploration and mining perspectives of the critical elements for green technologies in Ukraine. *Geological Society, London, Special Publications*. <https://doi.org/10.1144/SP526-2021-133>

Mykhaylov, V. A. (2023). *Strategic Mineral Resources of Ukraine and Their Investment Attractiveness*. Kyiv University Press [in Ukrainian]. http://www.geol.univ.kiev.ua/lib/Stratehichni_Korysni_Kopalyny.pdf

News-Volt Lithium Corp. (2023, April 18). <https://voltlithium.com/news>

On approval of the National Program for the Development of the Mineral and Raw Materials Base of Ukraine for the Period Until 2030. Law of Ukraine

No. 4154-IX of 18.12.2024 [in Ukrainian]. <https://zakon.rada.gov.ua/laws/show/3268-17#Text>

Produced Waters in the Oil and Gas Industry: Problem or Solution? – Office of Sustainable Solutions. (n.d.) [in Ukrainian]. Retrieved April 11, 2025, from <https://ukraine-oss.com/suputno-plastovi-vody-u-naftogazovij-galuzi-problema-chy-rishennya>

Reva, M. V. (2019). *The geological and economic assessment of produced waters of oil and gas fields of Eastern oil and gas field region of Ukraine as a valuable hydro-mineral raw material* [Dissertation of the candidate of geological sciences, Taras Shevchenko National University of Kyiv] [in Ukrainian].

Reva, M. V., & Chomko, D. F. (2018). Hydrogeochemical database of reservoir waters of oil fields in the Eastern region of Ukraine as the first way to the effective using prodused water. *17th International Conference on Geoinformatics – Theoretical and Applied Aspects*. <https://doi.org/10.3997/2214-4609.201801765>

Reva, M. (2016). Prodused water – source of pollution or valuable resource in the Eastern oil region, Ukraine. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 72, 81–85 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.72.12>

Subsoil User Investment Atlas. Strategic and Critical Minerals. (2021). State Service of Geology and Subsoil of Ukraine [in Ukrainian]. <https://www.geo.gov.ua/wp-content/uploads/presentations/ukr/investicijnyj-atlas-nadrokoristuvacha-strategichni-ta-kritichni-minerali.pdf>

Sukach, V., Isakov, L., Bezvynnyi, V., & Shpylchak, V. (2021). Prospecting of rare metals in the East-Ukrainian pegmatite province – important part of geological exploration in Ukraine. *Mineral Resources of Ukraine*, 4, 6–15 [in Ukrainian]. <https://doi.org/10.31996/MRU.2021.4.6-15>

Vozniak, D. K., Bugayenko, V. M., Halaburda, Yu. A., Melnykov, V. S., Pavlyshyn, V. I., Bondarenko, S. M., & Symonka, V. O. (2000). Features of the mineral composition and conditions of formation of rare pegmatites in western part of the Kirovograd block (the Ukrainian shield). *Mineral. J.*, 22, 21–41 [in Ukrainian].

World Mining Data. (2021). Volume 36. C. Reichl & M. Schatz. Mineral Production. Vienna. <https://www.world-mining-data.info/wmd/downloads/PDF/WMD2021.pdf>

World Mining Data. (2024). Volume 36. C. Reichl & M. Schatz. Mineral Production. Vienna. <https://www.world-mining-data.info/wmd/downloads/PDF/WMD%202024.pdf>

Отримано редакцією журналу / Received: 05.03.25
Прорецензовано / Revised: 01.04.25
Схвалено до друку / Accepted: 30.06.25

Volodymyr MYKHAYLOV, DSc (Geol.), Prof.

ORCID ID: 0000-0002-1837-9739

e-mail: vladvam@gmail.com

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Maksym REVA, PhD (Geol.), Assoc. Prof.

ORCID ID: 0000-0003-1141-093X

e-mail: Reva_max@ukr.net

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

PROSPECTS OF LITHIUM EXTRACTION IN UKRAINE

B a c k g r o u n d . The paper examines the prospects for the development of lithium deposits, which are determined by the demand of modern industry for lithium and lithium raw materials. The supply of lithium is particularly acute for developed countries, for example, the EU is 100 % and the USA is 50 % supplied by imports of lithium raw materials. For Ukraine, lithium supply is an extremely urgent issue, caused by problems in the energy sector and the development of alternative electricity storage and transmission systems.

M e t h o d s . The work used methods of collecting and analyzing funds, methods of comparison and analogies.

R e s u l t s . The authors provide statistics on lithium production in the world relative to estimated reserves. Statistical data show that the main sources of lithium raw materials in the world are confined to the brine of salt lakes in Chile and Bolivia, and smaller in volume are sources associated with pegmatites. Lithium deposits in Ukraine were discovered in the 80s–90s, they are associated with pegmatites: Shevchenkivske (Donetsk region), Kruta Balka (Zaporizhzhya region), Polokhivske and Stankuvatske (Kirovohrad region). The ore at the Shevchenkivske deposit and the ore at the Kruta Balka area are mainly represented by spodumene, which makes ore processing quite simple. These deposits are located in uncontrolled territory, which makes their development impossible. The ores of the Polokhivske deposit are composed mainly of petalite, and those of the Stankuvatske deposit are composed mainly of petalite and spodumene, which complicates the technology of ore processing. The authors noted that the Stankuvat deposit has greater investment attractiveness due to the estimated forecast resources of rubidium, cesium, tantalum, niobium, beryllium and tin. The article describes another promising lithium resource in Ukraine, this is produced water oil and gas fields (OGPW). Recently, this resource has been gaining popularity among researchers, as it has increased concentrations of lithium, rubidium, cesium, iodine, bromine and boron. Compared to brine from salt lakes, the concentrations of lithium in the OGPW are lower, but the advantage is that they do not require capital investments in their extraction. According to the currently available extraction technologies, it is believed that the optimal concentration of lithium in water should be 100 mg/L, the development of some deposits shows economic feasibility at concentrations of 20–30 mg/L. In the produced water of some oil and gas fields of Ukraine, lithium contents of up to 10–23 mg/L have been recorded, but it is impossible to give an objective assessment of this type of resource due to the lack of systematic research. This necessitates the need for a detailed study of the produced water of the oil and gas regions of Ukraine.

C o n c l u s i o n s . In Ukraine, there are many problems with lithium production, since the deposits are poorly studied, there are also problems with their geological and economic assessment. However, among the indigenous lithium deposits in Ukraine, the Polokhiv deposit of petalite ores has the greatest investment attractiveness. Also, a promising resource for lithium raw materials is the OGPW.

K e y w o r d s : deposit, lithium, produced waters, geological and economic assessment.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

ГЕОЛОГІЯ НАФТИ І ГАЗУ

УДК 553.98.045/477.83
 DOI: <http://doi.org/10.17721/1728-2713.110.05>

Олег ОСТАШ, асп.

e-mail: olehostash7@gmail.com

Івано-Франківський національний технічний університет нафти і газу, Івано-Франківськ, Україна

Валерій ОМЕЛЬЧЕНКО, канд. геол. наук, доц.

ORCID ID: 0000-0002-2939-4088

e-mail: ovgeo@nung.edu.ua

Івано-Франківський національний технічний університет нафти і газу, Івано-Франківськ, Україна

Тетяна КАЛИНІЙ, асист.

ORCID ID: 0009-0001-0902-2981

e-mail: tetiana.kalynii@nung.edu.ua

Івано-Франківський національний технічний університет нафти і газу, Івано-Франківськ, Україна

ЛІТОЛОГІЧНІ ОСОБЛИВОСТІ НИЗЬКОПРОНИКНИХ НАФТОГАЗОНАСИЧЕНИХ ПОРІД-КОЛЕКТОРІВ У РОЗРІЗІ НЕОГЕНОВИХ ВІДКЛАДІВ НА ПРИКЛАДІ БУЦІВСЬКОГО ГАЗОВОГО РОДОВИЩА

(Представлено членом редакційної колегії д-ром геол. наук, проф. В.А. Михайловим)

Вступ. Досліджено проблему низькопористих і низькопроникних порід-колекторів, що характерне для покладів вуглеводні в неогенових відкладах Зовнішньої зони Передкарпатського прогину. Низька ефективність традиційних методів оцінки газонасиченості та продуктивності цих порід створює значні перешкоди для їх освоєння, що вимагає застосування нових підходів.

Методи. Дослідження проводилось на основі аналізу кернового матеріалу, відбраного з продуктивних горизонтів Буцівського газового родовища. Було виконано детальний петрофізичний аналіз, включаючи оцінку текстурних та структурних особливостей порід, а також характеристику пористості та проникності. Використовувалися методи насичення зразків фарбниками, мікроскопія та гранулометричний аналіз.

Результати. Встановлено, що низькопористі породи-колектори мають значний вплив текстури, структури та мінерального складу на їхні фільтраційно-смнісні властивості. Основним типом пористості є субкапілярна, яка забезпечує обмежену проникність. Аналіз зразків показав, що частина ефективного порового простору, яка бере участь у фільтрації, є низькою (менш як 40 % у загальній структурі відкритого простору). Основними продуктивними горизонтами є піщано-глинисті відклади нижньодашаєвської світи.

Висновки. Дослідження підтвердило, що для інтенсифікації видобутку газу з низькопористих порід потрібно застосовувати методи хімічного впливу, такі як кислотні обробки, які сприяють створенню зв'язних каналів у поровому просторі. Отримані результати мають практичне значення для оптимізації розробки газових горизонтів Передкарпатського прогину та можуть бути використані при плануванні розвідувальних і експлуатаційних робіт.

Ключові слова: Зовнішня зона Передкарпатського прогину, порода-колектор, керн, фракції, псаміти, вуглеводні.

Вступ

Постановка проблеми. Проблема низькопористих, низькопроникних порід-колекторів актуальна для покладів вуглеводнів. Впровадження сучасних технологій інтенсифікації видобутку та повноти вилучення вуглеводнів із надр – це шляхи збільшення коефіцієнта вилучення вуглеводнів, які пов'язують з низькопористими породами-колекторами, при $Kp < 10-12\%$ (Орлов, Омельченко, & Локтєв, 2012). Останні мають значне поширення в нафтогазоносних регіонах світу, але тривалий час були поза увагою, оскільки за рентабельністю освоєння зосереджених у них ресурсів не могли конкурувати з традиційними породами-колекторами. Уперше низькопористі породи-колектори почали освоювати у США, коли були виявлені значні за запасами поклади газу "центрально-басейнового" типу в щільних пісковиках мезозойського віку Скелястих гір, а потім і в палеозойських басейнах Північноамериканської платформи. Поклади газу "центрально-басейнового" типу можуть бути відкриті також у Західному нафтогазоносному регіоні України. За пошуко-вими критеріями, що використовують геологи США, вони прогнозуються в межах центральної частини Крукеницької западини, де піщано-глинисті відклади міоценового віку перетворені до стадії катагенезу МК₃. У межах локальних об'єктів низькопористі породи виповнюють окремі

структурні елементи родовищ – пласти, прошарки, лінзи – і в різних просторових співвідношеннях можуть контактувати з високопористими.

Аналіз джерел та літератури. На сучасному етапі пошуково-розвідувальних робіт на газ існуючі методи ГДС не дають змоги однозначно діагностувати та обґрунтувати характер насичення порід-колекторів у тонкошаруватому піщано-глинистому розрізі Зовнішньої зони Передкарпатського прогину (Атлас родовищ нафти і газу України, 1998). Керн зазвичай не відбирається повною мірою, а проби шламу не досліджуються напевним чином (Крупський, 2014). В результаті зазначеного окремі потужні піщано-алевритові товщі (30–250 м) нижньосарматських відкладів неогену запишаються не вивченими на предмет їх газонасичення і оцінки можливих резервів приросту запасів та додаткового видобутку газу, оскільки інтервали глибин з невизначенім характером насичення не випробовуються на продуктивність. У результаті цього в Передкарпаті було пропущено багато промислових газоносних інтервалів у піщано-глинистих пачках (Бойко, & Колодій, 1995). Методичні питання дослідження порід-колекторів викладені в науковій літературі (Крупський та ін., 2014), але вони не можуть бути застосовані для дослідження проб шламу і потребують подальшого науково-методичного дослідження та удосконалення (Дригант, 2001; Крупський,

© Осташ Олег, Омельченко Валерій, Калиній Тетяна, 2025

2011). Слід відзначити, що низькопористі породи-колектори складають значну частину розрізів нафтогазоносних регіонів України (Колодій, 2004; Гладун та ін., 2011).

В.О. Федишин (Федишин, 2005) вказував на проблему низькопористих, низькопроникних порід-колекторів для газових покладів, наголошуючи на тому, що вуглеводневий газ істотно рухоміший за нафту, а різниця в розмірі та будові молекул дає йому змогу переміщатися по пласту через пори значно меншого діаметра. У Крукеницькій западині поклади газу пов'язані переважно з тонкошаруватими низькопористими породами-колекторами, які мають регіональне поширення, зокрема на Хідновицькому, Пинянському, Садковицькому, Залужанському, Буцівському родовищах та на перспективних площах, і вони можуть бути передумовою для збільшення газовіддаючого об'єму продуктивних пластів виявленіх родовищ (Локтєв, Локтєв, & Грицанчук, 2023). Основними продуктивними горизонтами є піщано-глинисті горизонти нижнього сармату, які вміщують промислові поклади газу на Хідновицькому, Садковицькому, Пинянському та Залужанському газових родовищах (Орлов, Омельченко, & Локтєв, 2012).

Результати випробування свердловини № 201-Залужани, в якій з пісковиків карпатію (коєфіцієнт пористості 14 %) отримано змішану продукцію: газ, конденсат, нафта, свідчили про їх перспективність в межах Крукеницької западини.

Ю.З. Крупський (Крупський, 2001) приділяє увагу тонкошаруватим породам-колекторам у піщано-глинистій товщі неогену Зовнішньої зони Передкарпатського прогину. Він звернув увагу на те, що в інтервалах глинистих порід майже завжди можуть бути прошарки піщаних порід-колекторів, в яких можна очікувати наявність мікрапокладів газу. Думаемо, що із цим треба погодитись, оскільки це підтверджується результатами наших досліджень на багатьох площах Зовнішньої зони Передкарпатського прогину (Михайлов та ін., 2021).

Підтвердженням наявності покладів вуглеводнів у крейдо-палеогенових відкладах Українських Карпат є результати дослідження органічної речовини (Колтун, 2000).

Постановка завдання. На сьогодні дослідження низькопористих і низькопроникних порід-колекторів є ключовим завданням вивчення та розробки вуглеводневих покладів у неогенових відкладах Зовнішньої зони Передкарпатського прогину. Актуальність завдання визначається потребою у впровадженні сучасних методів інтенсифікації видобутку газу з таких порід, а також у розробці методик оцінки газонасиченості та продуктивності колекторів неогенових відкладів. Недоліки існуючих

методів геофізичних досліджень свердловин і недостатнє дослідження кернового матеріалу ускладнюють виявлення перспективних газоносних інтервалів і їх розробку. Завданням статті є аналіз літологічних особливостей низькопроникних порід-колекторів Буцівського газового родовища, визначення їхньої будови, пористості та рекомендації щодо інтенсифікації видобутку газу.

Методи

Дослідження проводилось на основі аналізу кернового матеріалу, відібраного з продуктивних горизонтів Буцівського газового родовища. Було виконано детальний петрофізичний аналіз, включаючи оцінку текстурних та структурних особливостей порід, а також характеристику пористості та проникності. Використовувалися методи насичення зразків фарбниками, мікроскопія та гранулометричний аналіз.

Результати

Виклад основного матеріалу. На прикладі Буцівського газового родовища розглянемо досліджені літологічні особливості низькопроникних, щільних порід-колекторів на взірцях відібраного кернового матеріалу з горизонтів нижньодашавської світи неогену, які є потенційно газонасиченими і з них можливо видобувати вуглеводні. Родовище розташоване в центральній частині Крукеницької западини Зовнішньої зони Передкарпатського прогину і межує з Хідновицьким газовим родовищем з південного заходу, на якому продуктивними відкладами є горизонти верхньодашавської ВД-12-13 та нижньодашавської підсвіти НД-1-5-7-9. За складом вони являють собою літологічні пачки з ритмічним перешаруванням пісковиків з глинами, аргілітами та алевролітами. Буцівське газове родовище відкрито в 2009 р. за результатами випробування пошукової свердловини № 2-Буцівська із нижньодашавської підсвіти, горизонт НД-3, з дебітом газу 4,10 тис. м³/добу, на шайбі Ø 3,02 мм.

У пошуковій свердловині № 1-Буцівська, горизонт НД-12 керн представлений тонкоритмічним перешаруванням двох щільних і сульфідизованих відмін з вуглефікованими рослинними рештками: алевропісковиків дрібнозернистих зі слюдисто-карбонатним цементом і алевролітических глинисто-слюдисто-гідррослюдистих аргілітів (рис. 1). Колір аргілітів бурувато-сірий. Бурій відтінок зумовлений окисненням піриту і вуглефікованих рослинних решток (справа чорне). Текстура ритмічно-шарувата. Товщина шарів від часток мм до 1–2 мм, зрідка зустрічаємо шари завтовшки до 4 мм. Структура дрібно-псамітово-алеврітова. Тріщини, ознаки видимої пористості та наявність вуглеводнів не спостерігаються.

Рис. 1. Керн пошукової свердловини № 1-Буцівська. Горизонт НД-12

В розвідувальній свердловині №7-Буцівська відібрано три зразки керну з різних горизонтів. Керн з горизонту НД-3, представлений неритмічним хвилястим перешаруванням крупно-дрібноуламкових алевролітів та аргілітів зі слюдисто-кальцитовим цементом, крапельно-лінзоподібними домішками бітумоїдів і сульфідів, глауконітом та з яскраво вираженою контрастно-шаруватою міжзерновою проникністю (рис. 2). Колір породи сірий зі слабо проявленими бурими плямами. Текстура щільна, неритмічно шарувата. Товщина шарів і прошарків – від часток 2–3 мм до 1–2 см. Структура алеврітова до алевро-

пелітової. У породі спостерігається плямиста дрібно-вкраплена сульфідизація (бури плями) та пошарове розташування бітумоїдної речовини (чорне). Ознаки тріщинуватості та візуально помітної пористості відсутні. Коефіцієнт піщаності становить 80 %.

Пористість породи визначалась шляхом насичення її фарбником зеленого кольору і показана на (рис. 3) у вигляді стилізованої колонки породи завтовшки 25 мм. У цій породі проникність забезпечується міжзерновими субкапілярними і частково капілярними порами.

Рис. 2. Керн розвідувальної свердловини № 7-Буцівська. Горизонт НД-3

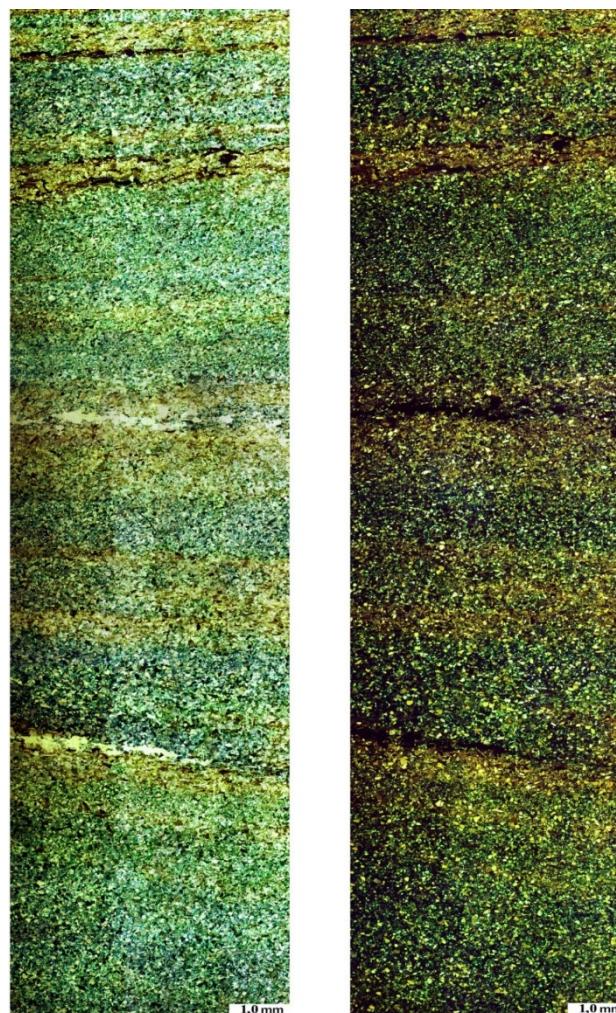


Рис. 3. Зразок розрізу розвідувальної свердловини № 7-Буцівська. Горизонт НД-3

Порода представлена неритмічним хвилястим перешаруванням крупно-дрібноуламкових кварцових алевролітів та аргілітів зі слюдисто-кальцитовим цементом, крапельно-лінзоподібним вмістом бітумоїдів і сульфідів, глауконітом та з яскраво вираженою контрастно-шаруватою міжзерновою проникністю (рис. 4). Деталізовано фрагмент колонки, представленої на (рис. 3), який ілюструє контрастно-пошарове насичення породи і, відповідно, міжзерновий тип пористості, найбільш крупні капілярні і надкапілярні пори у породі відсутні. Показано у паралельних (зліва) і схрещених (справа) ніколях стилізовану мікроколонку породи заввишки 25 мм, яка ілюструє шарувату будову, контрастно-шарувату міжзернову проникність (зелений колір), пошарове насичення лінзоподібними утвореннями бітумоїдів. Піщанистість сягає 80 %, $K_{pr}=5,3$ мД, $K_r=23$ %. Проникність у цій породі забезпечена субкапілярними і частково капілярними порами. Мікротекстура тонкошарувата, зумовлена перешаруванням крупно-дрібноалевритової та алевро-аргілітової відмін. Структура алевроліту неоднорідна крупно-дрібноуламкова. Обканиність уламків відсутня, для частини з них слабка. Розташування уламків невпорядковане і нерівномірне. Сортованість середня. Серед уламкових мінералів домінує кварц, крім нього, в незначній кількості присутні зерна плагіоклазу, мікрокліну, кварцитоподібних порід і грудки пелітоморфного кальциту еліпсоподібної форми. Цемент представлений витягнутими і деформованими лусками

слюди і тонко-дрібнокристалічним кальцитом. У цій масі інколи зустрічаємо шлам і детрит фауни та окремі зерна глауконіту. В алевроаргілітах кількість цементу значно більша, ніж в алевролітах, тут же зростає кількість слюдистих лусок. Тип цементації: в алевролітах поширений плівковий, контактний і дотику, в алевроаргілітах – замкнутий або відкритий поровий.

Серед мінералів діагенетичного етапу слід відзначити пірит, який утворює дрібні вкраплення, слабо видовжені форми і зазвичай асоціює з бітумоїдами. Розташування останніх підпорядковане загальній мікрошаруватості. Вони утворюють вкраплення і частіше хвилеподібні лінзи. Переважно бітумоїди зосереджені на межі двох відмін або ж в межах алевроаргілітів.

Кількісний вміст компонентів у цій породі: уламки кварцу 50 %, цементу 15 %, піриту – 2 %, бітумоїдів – 6 %, відкрита пористість зафікована шляхом насичення барвником 23 %, уламки інших мінералів до 4 %.

Шліф породи (рис. 5) представлений неритмічним хвилястим перешаруванням крупно-дрібноуламкових кварцових алевролітів та алевролітових аргілітів зі слюдисто-кальцитовим цементом, крапельно-лінзоподібним вмістом бітумоїдів і сульфідів, глауконітом та з яскраво вираженою контрастно-шаруватою міжзерновою проникністю. Показано детально суцільний пошарово-контрастний міжзерновий тип проникнення (синій колір). У межах буріх ділянок проникність відсутня.

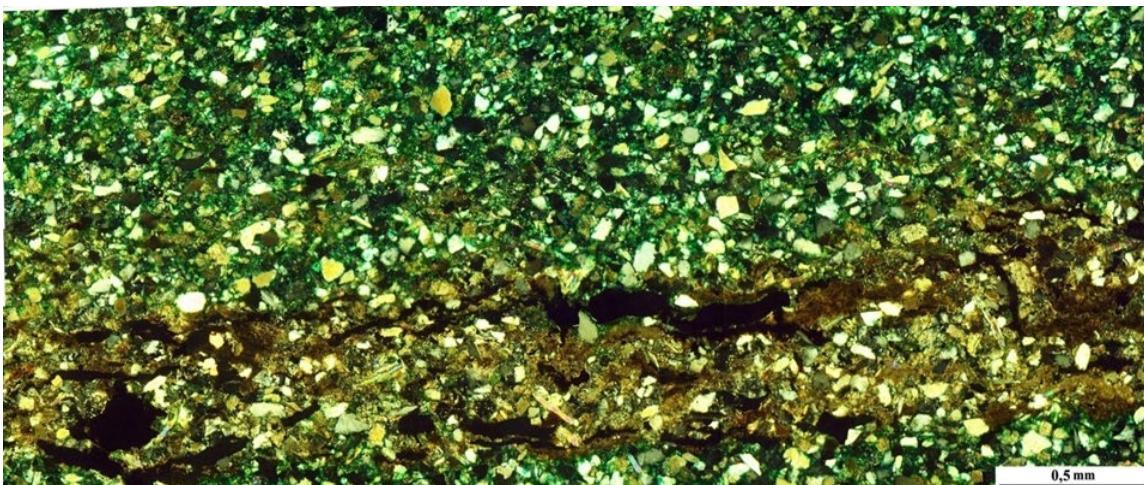


Рис. 4. Зразок розрізу розвідувальної свердловини № 7-Буцівська. Горизонт НД-3. Ніколі X

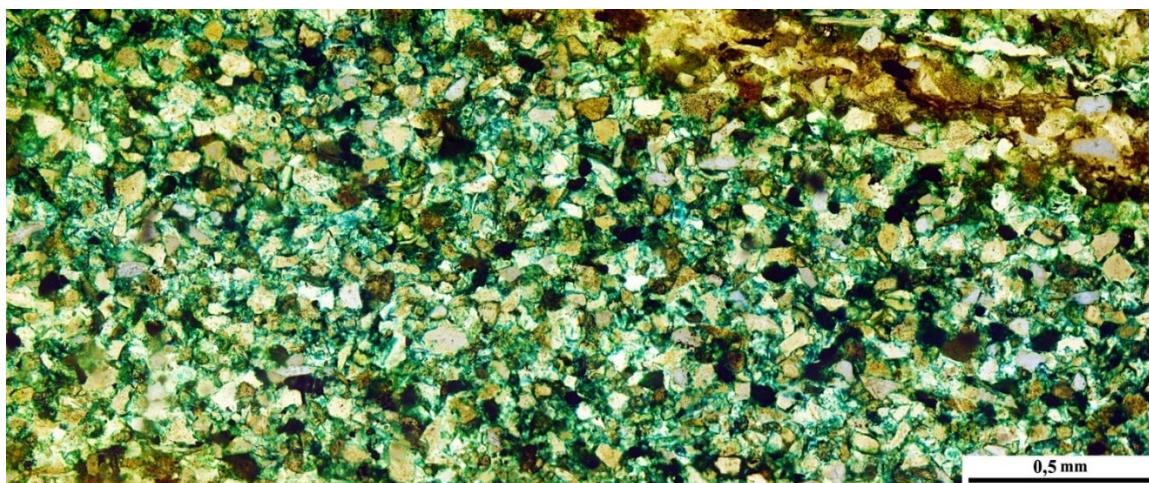


Рис. 5. Зразок розрізу розвідувальної свердловини № 7-Буцівська. Горизонт НД-3. Ніколі II

У горизонті НД-4 керн представлений неправильноритмічним перешаруванням алевропісковиків дрібнозернистих та алевролітических аргілітів, піритизованих, глауконітвмісних слюдисто-карбонатним (кальцитовим) цементом і вкрапленнями та лінзоподібними утвореннями бітумоїдів, з комірчасто-шаруватою проникністю (рис. 6). Сортованість низька, оскільки присутні уламки трьох типів розмірності: до 0,05 мм; 0,05 мм–0,1 мм; 0,1 мм–0,15 мм. Аргілітові прошарки відрізняються зростанням кількості слюди у складі цементу та більшим об'ємом цементу, в них переважають дрібні аргілітові уламки. Тип цементації в таких прошарках відкритий та закрито-пористий. Тріщини та пори візуально не спостерігаються. Відмінність цього типу породи від попередньої полягає в такому: пошарово-контрастний характер

насичення, а відповідно і пористість виявляє перехід до пошарово-комірчастого, де поряд з окремими насиченими фарбником мікрошарі змінюються плямисто-комірчастим рисунком насичення. Це яскраво проілюстровано на стилізованій колонці (рис. 7).

Абсолютна газопроникність $K_{\text{пр}}=0,007$ мД, відкрита пористість $K_{\text{п}}=11,4$ % (Нестеренко, 2010). З огляду на те, що надкапілярні пори (розмір більше 5 мкм) під мікроскопом не виявлені, а $K_{\text{пр}}$ є зникаюче малим, можна вважати, що існуюче пошарово-комірчасте насичення, а відповідно і міжзернова пористість (виявлені шляхом насичення породи барвником) практично у повному об'ємі забезпечується субкапілярними порами. Піщанистість сягає приблизно 60 %.

Рис. 6. Керн розвідувальної свердловини № 7-Буцівська. Горизонт НД-4

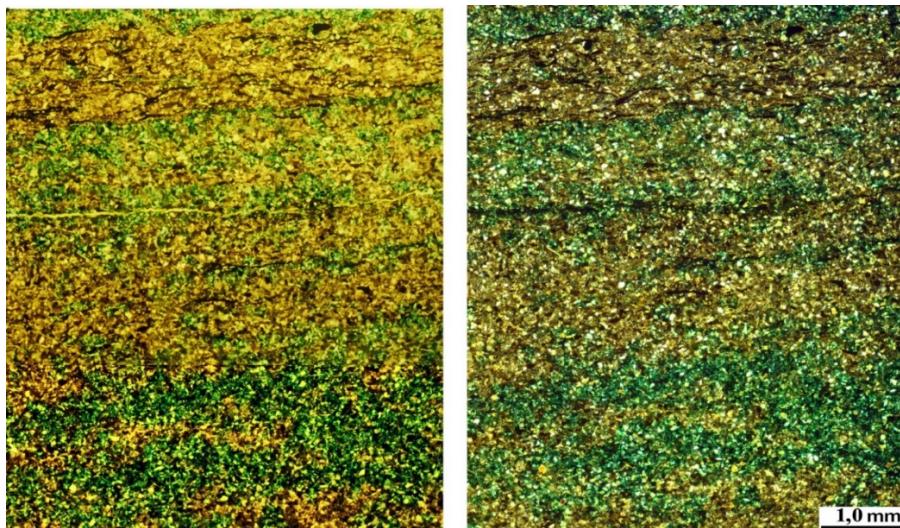


Рис. 7. Розріз керна розвідувальної свердловини № 7-Буцівська. Горизонт НД-4

На рис. 7 у шліфі спостерігаються неправильноритмічні перешарування алевропісковиків дрібнозернистих та алевролітических аргілітів піритизованих глауконітвмісних, зі слюдисто-карбонатним (кальцитовим) цементом і вкрапленнями та лінзоподібними утвореннями бітумоїдів, з комірчасто-шаруватою проникністю. Показано у паралельних (зліва) і схрещених (справа) ніколаях стилізовану мікроколонку породи заввишки 8 мм, яка ілюструє шарувату будову, комірчасто-шарувату міжзернову проникність (зелений колір), пошарове насичення лінзоподібними утвореннями бітумоїдів. Піщанистість сягає 60 %, $K_{\text{пр}}=0,007$ мД, $K_{\text{п}}=11,4$ %. Отже, проникність з

огляду на відсутність надкапілярних пор у цій породі швидше за все забезпечена субкапілярними і лише частково капілярними порами.

У шліфах (рис. 8, 9) спостерігаються неправильноритмічні перешарування алевропісковиків дрібнозернистих та алевролітических аргілітів піритизованих глауконітвмісних, зі слюдисто-карбонатним (кальцитовим) цементом і вкрапленнями та лінзоподібними утвореннями бітумоїдів, з комірчасто-шаруватою проникністю. Особливості внутрішньої будови породи на цьому рисунку показують комірчастий характер насичення і деталізують колонку (рис. 7). Бурі ділянки показують відсутність насичення.

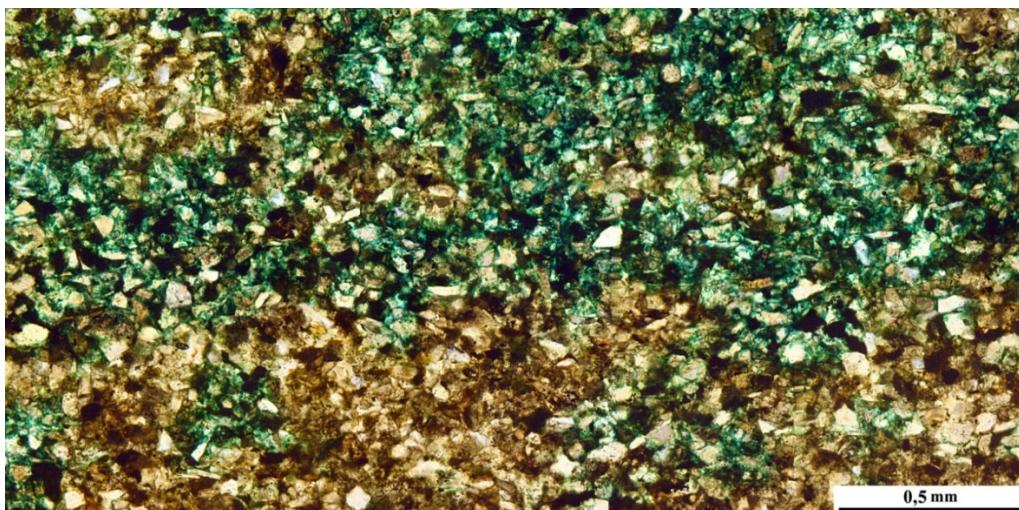


Рис. 8. Розріз розвідувальної свердловини № 7-Буцівська. Горизонт НД-4. Ніколі II

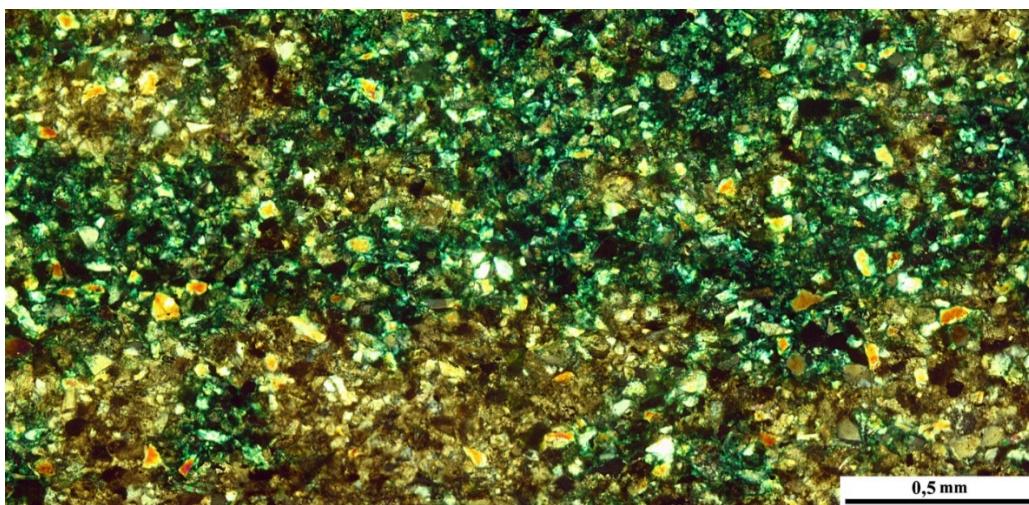


Рис. 9. Розріз розвідувальної свердловини № 7-Буцівська. Горизонт НД-4. Ніколі X

На рис. 10 у шліфі спостерігаються неправильноритмічні перешарування алевропісковиків дрібнозернистих та алевролітистих аргілітів піритизованих глауконітовмісних, зі слюдисто-карбонатним (кальцитовим) цементом і вкрапленнями та лінзоподібними утвореннями бітумоїдів, з комірчасто-шаруватою проникністю. Особливості пошарової вкраплено-лінзоподібної локалізації бітумоїдів, присутність піриту разом з бітумоїдами і характер насичення породи (насичення зеленим барвником) показано у відбитому світлі.

Керн горизонту НД-7 представлений масивним глауконітовмісним алеврітовим середньо-дрібнозернистим пісковиком несортованим з карбонатним плівково-поровим кальцитовим цементом з домішкою слюди та цементацією контактового типу і дотику (рис. 11). Колір породи слабо-зеленувато-сірий, текстура масивна. Структура алевропісамітова, цемент карбонатний (кальцитовий).

Під мікроскопом керн у шліфах (рис. 12–14) має неоднорідну структуру, різноулямкову, алеврітово-середньо-дрібнопісамітovу. Уламки представлених переважно кварцом, кварцитоподібними утвореннями, окремими грудками пелітоморфного кальциту.

Цемент кальцитовий з домішками детриту і шламу фауністичних решток. У складі цементу присутні зерна глауконіту. Пірит присутній у незначній кількості у вигляді дуже дрібних вкраплень. Так само у незначній кількості

присутня органічна речовина бітумоїдного типу. Діагенетичні перетворення проявилися у вигляді слабкої піритизації, утворення глауконіту і загального ущільнення породи. Кількісно-мінеральний склад породи такий: уламки 73 %, цемент 17 %, інша органічна бітумоїдна речовина до 2 %, поровий простір понад 6 %, інші мінерали менше 2 %.

Абсолютна газопроникність $K_{\text{пр}}=0,09 \text{ мД}$, відкрита пористість $K_{\text{п}}=6,4 \%$. З огляду на визначену структуру порового простору (рис. 12) видно, що на частку субкапілярних пор (радіус, менший за 0,2 мкм), які заповнені залишковою водою і участі у фільтрації не беруть, припадає 60 %, частка капілярних пор, які частково беруть участь у фільтрації (радіус 0,2–5 мкм) становить 33 %; решту загального об'єму складають надкапілярні пори з радіусом понад 5 мкм, їхня частка в загальному об'ємі порового простору – 7 %. Піщаністість сягає практично 10 %.

Приймаючи те, що у субкапілярних порах флюїд нерухомий, а фільтрація флюїду може відбуватися лише з участю частки капілярних та всіх надкапілярних пор, доходимо висновку, що частка відкритого (ефективного) порового простору, яка реально бере участь у фільтрації, буде сягати лише 40 % у загальній структурі відкритого порового простору. Звідси, якщо відкрита пористість для даного зразка дорівнює 6,4 %, ефективний поровий простір буде становити не більше як 2,56 %.

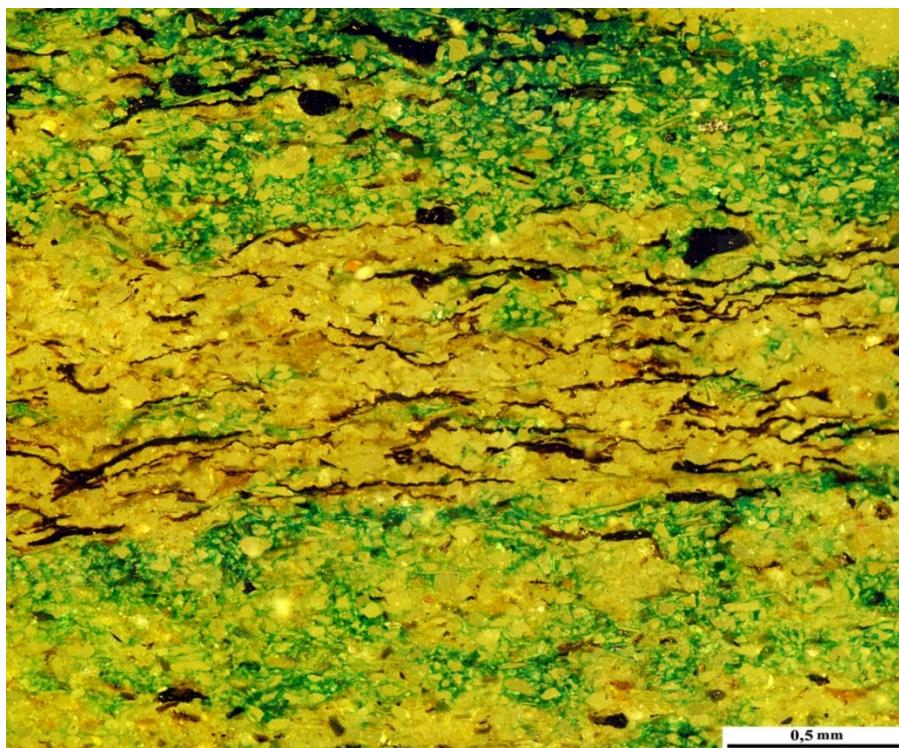


Рис. 10. Розріз розвідувальної свердловини № 7-Буцівська. Горизонт НД-4

Рис. 11. Керн розвідувальної свердловини № 7 -Буцівська. Горизонт НД-7

Абсолютна газопроникність $K_{\text{пр}}=0,09$ мД, відкрита пористість $K_p=6,4$ %. З огляду на визначену структуру порового простору (рис. 12) видно, що на частку субкапілярних пор (радіус, менший за 0,2 мкм), які заповнені залишковою водою і участі у фільтрації не беруть, припадає 60 %, частка капілярних пор, які частково беруть участь у фільтрації (радіус 0,2–5 мкм) становить 33 %; решту загального об'єму складають надкапілярні пори з радіусом понад 5 мкм, їхня частка в загальному об'ємі порового простору – 7 %. Піщанистість сягає практично 10 %.

Приймаючи те, що у субкапілярних порах флюїд нерухомий, а фільтрація флюїду може відбуватися лише з участю частки капілярних та всіх надкапілярних пор, доходимо висновку, що частка відкритого (ефективного) порового простору, яка реально бере участь у фільтрації, буде сягати лише 40 % у загальній структурі відкритого порового простору. Звідси, якщо відкрита пористість для даного зразка дорівнює 6,4 %, ефективний поровий простір буде становити не більш як 2,56 %.

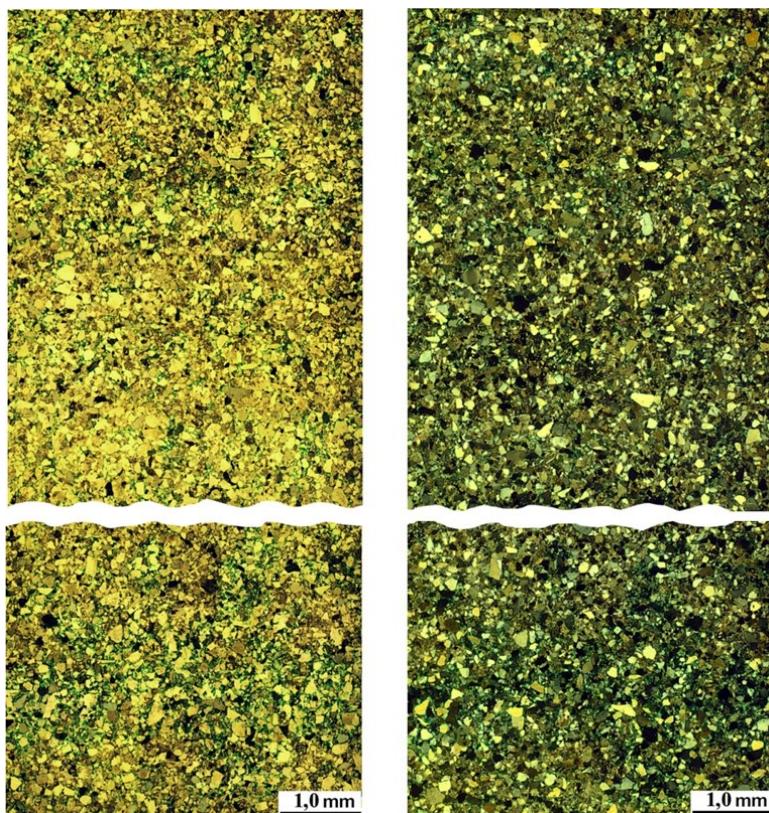


Рис. 12. Розріз розвідувальної свердловини № 7-Буцівська. Горизонт НД-7

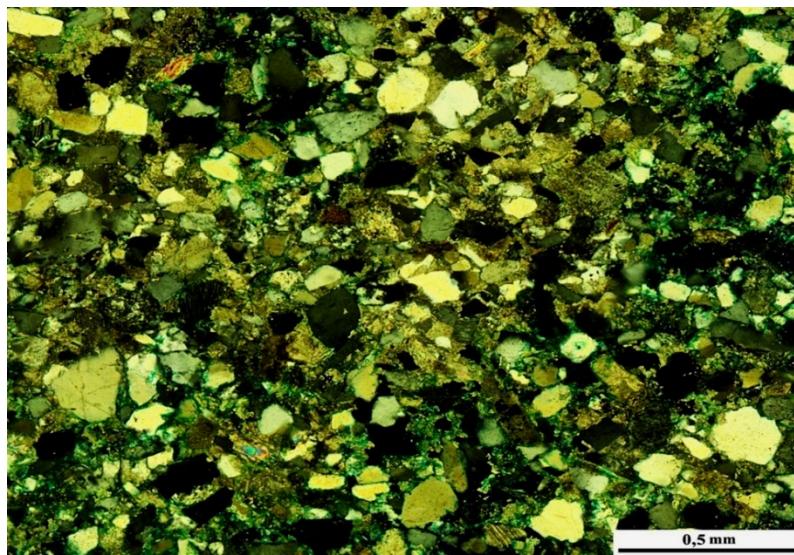


Рис. 13. Розріз розвідувальної свердловини № 7-Буцівська горизонт НД-7. Ніколі X

У розвідувальній свердловині № 8-Буцівська в межах горизонту НД-15 відібрано два зразки керну. Керн представлений хвилястошаруватим неправильноритмічним перешаруванням алевропісковиків дрібнозернистих та алевролістистих аргілітів із кальцитовим цементом (рис. 15). Колір породи сірий зі слабким зеленуватим /відтінком, у разі наявності фрагментів аргіліту більшої товщини колір змінюється на чорний. Текстура неправильноритмічна хвилястошарувата. Зміна текстурного рисунка шаруватості відображає зміну режиму осадконагромадження. Структура неоднорідна, пошарово мінлива у шарах порід відповідного складу: пелітова або алевро-псамітова. Візуально тріщини і пор не

спостерігалися. Не виключено, що чорний колір символізує присутність органічної та глинистої речовин. Піщаність цього зразка керна становить приблизно 50 %.

Зразок керну з горизонту НД-15 (рис. 16), представлений перешаруванням алевролістистих середньо-дрібнозернистих пісковиків та алевролітів з кальцитовим (з домішкою слюди) цементом і з вкрапленнями піриту, глауконіту та вуглефікованих решток в обох відмінах. Колір породи сірий із зеленувато-синюватим слабким відтінком. Текстура неясношарувата, зумовлена неритмічним перешаруванням пісковика і алевроліта. Структура алевро-псамітова. Видимі тріщини та поровий простір не спостерігаються.

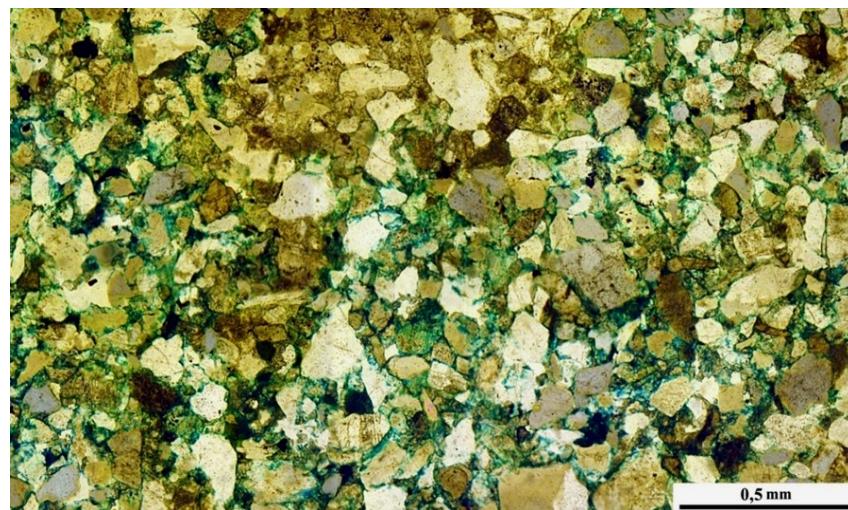


Рис. 14. Розріз розвідувальної свердловини № 7-Буцівська. Горизонт НД-7. Ніколі II

Рис. 15. Керн розвідувальної свердловини № 8-Буцівська. Горизонт НД-15

Під мікроскопом (рис. 17) у шліфі спостерігалася небесна шарувата текстура, зумовлена зміною шарів пісковика та алевроліту. Структура в цих породних відмінах відповідно середньо-дрібнопсамітова та алеврітова. Уламки містять такі мінерали: кварц, халцедон, кварцити, польові шпати. Три останні мінерали присутні в дуже незначній кількості. Цемент поровий, представлений кальцитом (переважає), незначною кількістю слюдин та гідрослюдистими формами, що розвиваються по глинистих мінералах. Кількісно-мінеральний склад: уламки 70 %, цемент 25 %, відкрита пористість 3,6 %, інші мінерали 1,4 % (пірит, вуглефікована органіка тощо). Абсолютна газопроникність $K_{\text{пр}}=0,03$ мД, відкрита пористість $K_{\text{н}}=3,6$ %. З огляду на визначену структуру порового простору видно, що на частку субкапілярних пор (радіус, менший за 0,2 мкм), які заповнені залишковою водою і участі у фільтрації не беруть, припадає 72 %, частка капілярних пор, які частково беруть участь у фільтрації (радіус 0,2–5 мкм) становить 19 %, решту загального об'єму складають надкапілярні пори з радіусом понад 5 мкм,

їхня частка в загальному об'ємі порового простору – 9 %. Піщанистість сягає практично 100 %.

Приймаючи те, що у субкапілярних порах флюїд нерухомий, а фільтрація флюїду може відбуватися лише з участю частки капілярних та всіх надкапілярних пор, доходимо висновку, що частка відкритого (ефективного) порового простору, яка реально бере участь у фільтрації, буде становити лише 28 % у загальній структурі відкритого порового простору. Звідси, якщо відкрита пористість для цього зразка дорівнює 3,6 %, ефективний поровий простір буде становити не більше 1 %. Видимого насичення фарбником породи не відбулося. Це означає, що ефективний поровий простір у цьому зразку практично відсутній.

У шліфі (рис. 18) спостерігаються перешарування алевролітических середньо-дрібнозернистих пісковиків та алевролітів з кальцитовим цементом та з вкрапленнями піриту, глауконіту і вуглефікованих решток в обох відмінах, погану відсортованість та відсутність впорядкованого розташування уламків, суцільну щільність, відсутність ділянок, де міг проникати барвник.



Рис. 16. Керн розвідувальної свердловини № 8-Буцівська. Горизонт НД-15

Рис. 17. Розріз розвідувальної свердловини № 8-Буцівська горизонт НД-15. Ніколі X

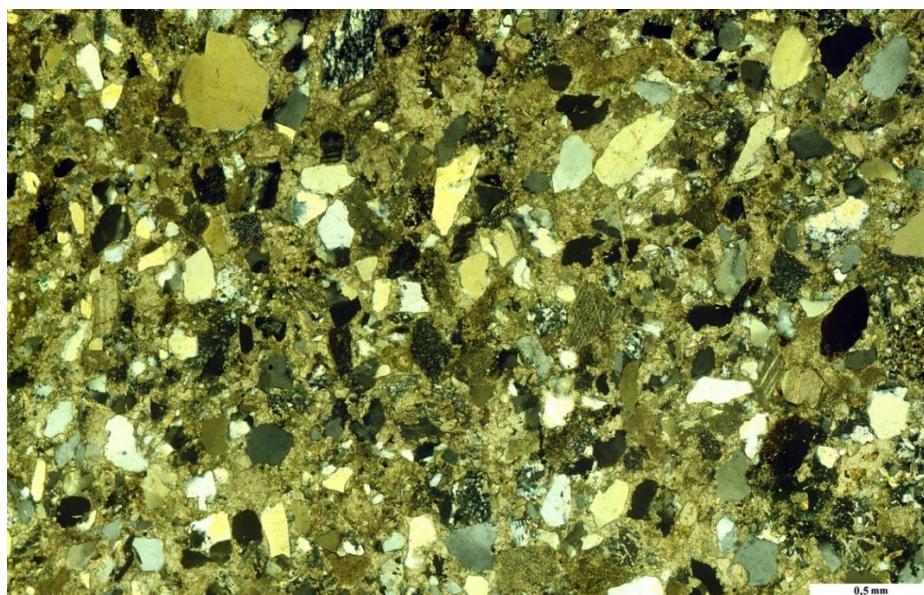


Рис. 18. Розріз розвідувальної свердловини № 8-Буцівська. Горизонт НД-15. Ніколі X

Для інтенсифікації припливів газу з низькопористих піщано-глинистих порід-колекторів потрібно брати до уваги їхню внутрішню будову (структуру та текстуру), мінеральний склад, кількісне співвідношення основних компонентів

породи (уламків та цементу), гранулометричний склад та ступінь сортованості уламків, їхню обкатаність (Нестеренко, 2010). Вказані характеристики більшою або меншою мірою безпосередньо впливають на колекторські

властивості порід та можливість або неможливість покращення цих властивостей. Позитивними факторами, які зумовлюють високі колекторські властивості, є: 1) відсутність мінералів, схильних до набухання (передусім такими є глинисті мінерали, серед них максимальне набухання характерне для мінералів групи монтморилоніту: монтморилоніт, сапоніт, бейделіт); 2) кальцитовий склад цементу і ступінь його кристалічності (пелітоморфні відміни розчиняються важче, ніж кристалічні); 3) високий ступінь сортованості (ідеальний варіант – розмір зерен змінюється в межах одного гранулометричного класу); поровий або базально-поровий тип цементу.

Дискусія і висновки

Зважаючи на вищевказане, слід відзначити, що поліпшення кількісної характеристики припливу газу слід очікувати в тих породах, де зерна мають крацу обкатаність та рівномірне поширення цементу між ними і після дії кислоти можемо отримати рівноспрямований розвиток пустот і сполучних каналів між ними. Дослідження літологічних характеристик низькопроникних порід-колекторів Буцівського газового родовища підтвердило значний вплив текстури, структури та мінерального складу порід на їхні фільтраційно-ємнісні властивості. Встановлено, що газопроникність забезпечується переважно субкапілярними і капілярними порами, а відкрита пористість у більшості досліджених зразків є низькою. Виявлено, що підвищення ефективності видобутку можливе за умови поліпшення фізико-хімічних характеристик цементу і застосування методів кислотного впливу для створення зв'язних каналів у поровому просторі. Отримані результати мають практичну значущість для оптимізації розробки низькопористих газових горизонтів Передкарпатського прогину та можуть бути використані при плануванні розвідувальних і експлуатаційних робіт.

Внесок авторів: Валерій Омельченко – концептуалізація, методологія; Олег Осташ – аналіз і обробка даних, методологія, написання; Тетяна Калиній – концептуалізація, програмне забезпечення, формальний аналіз.

Список використаних джерел

Атлас родовищ нафти і газу України. (1998). В шести томах. УНГА.

Бойко, Г. Ю. & Колодій, В. В. (1995). Проблеми пошуку і розвідки нафтогазоносних покладів у Передкарпатській нафтогазоносній області. *Геологія і геохімія горючих копалин*, 92–93, 3–17.

Гладун, В., Крупський, Ю., Куровець, І. та ін. (2011). Газ ущільнених колекторів у Західному нафтогазоносному регіоні України. *Геологія і геохімія горючих копалин*, 1–2(154–155), 34–36.

Дригант, Д. М. (2001). Геологічний розвиток Волино-Подільської окраїни Східноєвропейської платформи і Передкарпатського прогину у середньому палеозої. *Геологія і геохімія горючих копалин*, 2, 39–50.

Іванюта, М. М. (Гол. ред.). (1998). Атлас родовищ нафти і газу України (Т. 4–5). Центр Європи.

Колодій, В. В. (2004). Карпатська нафтогазоносна провінція. ТОВ "Український Видавничий центр".

Колтун, Ю. В. (2000). Генерація вуглеводнів у філішових відкладах Внутрішньої зони Передкарпатського прогину. *Геологія і геохімія горючих копалин*, 4, 26–33.

Кривуля, С. В., Владика, В. М., Нестеренко, М. Ю., & Балацький, Р. С. (2013). Процес визначення газовіддавальних властивостей порід-колекторів (Патент України № 83619). Державна служба інтелектуальної власності України.

Крупський, Ю. (2011). Геологія і нафтогазоносність Українських Карпат та їхніх прогинів (погляд з початку ХХІ ст.). *Вісник Львівського університету. Серія геологічна*, 25, 3–19.

Крупський, Ю. З. (2001). Геодинамічні умови формування і нафтогазоносність Карпатського та Волино-Подільського регіонів України. Видавничий центр УкрДГРІ.

Крупський, Ю. З. (2014). Нетрадиційні поклади природного газу в Західному нафтогазоносному регіоні. *Вісник ЛГУ. Серія геологічна*, 28, 13–26.

Локтєв, А. А., Локтєв, А. В., & Грицанчук, А. В. (2023). Перспективи нарошення видобування флюїдів з піщано-глинистих товщ у межах Передкарпатського та Закарпатського прогинів. *Розвідка та розробка нафтових і газових родовищ*, 3(88), 79–88.

Михайлов, В. А., Вакарчук, С. Г., Вижва, С. А., Загнітко, В. М., Коваль, А. М., Крупський, Ю. З., Куровець, І. М., & Харченко, М. В. (2021). *Перспективи нарошення ресурсної бази вуглеводнів України за рахунок нетрадиційних джерел*. Київський університет.

Нестеренко, М. Ю. (2010). *Петрофізичні основи обґрунтування флюїдонасичення порід-колекторів*. ЛВУкрДГРІ.

Орлов, О. О., & Локтєв, А. В. (1997). Перспективні ділянки по виявленню нових газових горизонтів на Хідновицькому родовищі. *Тези науково-технічної конф. проф.-викл. складу ун-ту*, 72. ІФНТУНГ.

Орлов, О. О., Омельченко, В. Г., & Локтєв, А. В. (2012). Сланцевий і вугільний газ та інші джерела енергоносіїв майбутнього. *Симфонія* (форма (с. 33–52).

Федишин, В. О. (2005). *Низькопористі породи-колектори газу промислового значення*. УкрДГРІ.

Хомін, В. (2015). Нетрадиційні джерела вуглеводнів західного нафтогазоносного регіону України (рецензія на монографію "Нетрадиційні джерела вуглеводнів України. Книга 2. Західний нафтогазоносний регіон / Ю. З. Крупський, І. М. Куровець, Ю. М. Сенківський, В. А. Михайлов, П. М. Чепіль, Д. М. Дригант, В. Є. Шлапінський, Ю. В. Колтун, В. П. Чепіль, С. С. Куровець, В. П. Бодлак. К. : Ніка-центр, 2014. – 400 с."). *Геологія і геохімія горючих копалин*, 1–2, 174–175.

References

Atlas of Oil and Gas Fields of Ukraine. (1998). In six volumes. UNGA [in Ukrainian].

Boyko, H. Yu., & Kolodiy, V. V. (1995). Problems of Prospecting and Exploration of Oil and Gas Deposits in the Precarpathian Oil and Gas Bearing Region. *Geology and Geochemistry of Minerals*, 92–93, 3–17 [in Ukrainian].

Drygant, D. M. (2001). Geological development of the Volyn-Podilsky outskirts of the East European platform and the Precarpathian trough in the middle Paleozoic. *Geology and Geochemistry of Combustible Minerals*, 2, 39–50 [in Ukrainian].

Fedyshyn, V. O. (2005). *Low-porosity reservoir rocks of industrial gas significance: Monograph*. UkrDGRI [in Ukrainian].

Gladun, V., Krupskyi, Y., Kurovets, I., & others. (2011). Gas of compacted reservoirs in the Western oil and gas region of Ukraine. *Geology and Geochemistry of Combustible Minerals*, 1–2 (154–155), 34–36. [in Ukrainian]

Ivanuia, M. M. (Ed.). (1998). *Atlas of oil and gas fields of Ukraine* (Vols. 4–5). Center of Europe [in Ukrainian].

Khomyn, V. (2015). Unconventional hydrocarbon sources of the western oil and gas region of Ukraine (review of the monograph "Unconventional hydrocarbon sources of Ukraine. Book 2. Western oil and gas region / Yu. Z. Krupskyi, I. M. Kurovets, Yu. M. Senkovskyi, V. A. Mykhaliov, P. M. Chepil, D. M. Dryhant, V. Ye. Shlapinskyi, Yu. V. Koltun, V. P. Chepil, S. S. Kurovets, V. P. Bodlak. Kyiv: Nika-tsentr, 2014. – 400 p."). *Geology and Geochemistry of Combustible Minerals*, 1–2, 174–175 [in Ukrainian].

Kolodiy, V. V. (2004). *Carpathian oil and gas province*. Ukrainian Publishing Center LLC [in Ukrainian].

Koltun, Y. V. (2000). Generation of hydrocarbons in flysch deposits of the Inner zone of the Precarpathian trough. *Geology and Geochemistry of Combustible Minerals*, 4, 26–33 [in Ukrainian].

Krupskyi, Y. (2011). Geology and oil and gas potential of the Ukrainian Carpathians and their foredeeps (a view from the beginning of the XXI century). *Visnyk of Lviv University. Geological Series*, 25, 3–19 [in Ukrainian].

Krupskyi, Y. Z. (2001). *Geodynamic conditions of formation and oil and gas potential of the Carpathian and Volyn-Podillia regions of Ukraine*. UkrDGRI Publishing Center [in Ukrainian].

Krupskyi, Y. Z. (2014). Non-traditional deposits of natural gas in the Western oil and gas region. *Bulletin of Leningrad State University. The series is geological*, 28, 13–26 [in Ukrainian].

Kryvulia, S. V., Vladyka, V. M., Nesterenko, M. Yu., & Balatskyi, R. S. (2013). Process for determining the gas-delivering properties of reservoir rocks (Ukraine Patent No. 83619). State Intellectual Property Service of Ukraine [in Ukrainian].

Loktiev, A. A., Loktiev, A. V., & Hrytsanchuk, A. V. (2023). Prospects for increasing fluid production from sand-clay formations within the Precarpathian and Transcarpathian troughs. *Exploration and Development of Oil and Gas Fields*, 3(88), 79–88 [in Ukrainian].

Mykhaliov, V. A., Vakarchuk, S. H., Vyzhva, S. A., Zagnitko, V. M., Koval, A. M., Krupskyi, Y. Z., Kurovets, I. M., & Kharchenko, M. V. (2021). *Prospects for increasing Ukraine's hydrocarbon resource base through unconventional sources*. Kyiv University [in Ukrainian].

Nesterenko, M. Yu. (2010). *Petrophysical bases for substantiating fluid saturation of reservoir rocks*. LVUkrDGRI [in Ukrainian].

Orlov, O. O., & Loktiev, A. V. (1997). Promising areas for identifying new gas horizons at the Khidnovychi field. In *Abstracts of the scientific and technical conference of the faculty of the university* (p. 72). IFNTUNG [in Ukrainian].

Orlov, O. O., Omelchenko, V. H., & Loktiev, A. V. (2012). Shale and coal gas and other energy sources of the future. *Symphony forte* (pp. 33–52) [in Ukrainian].

Одержано редакцією журналу / Received: 24.04.25
Прорецензовано / Revised: 15.05.25
Схвалено до друку / Accepted: 30.06.25

Oleh OSTASH, PhD Student
e-mail: olehostash7@gmail.com
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Valeriy OMELCHENKO, PhD (Geol.), Assoc. Prof.
ORCID ID: 0000-0002-2939-4088
e-mail: ovgeo@nung.edu.ua
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Tetyana KALYNII, Assist.
ORCID ID: 0009-0001-0902-2981
e-mail: tetiana.kalynii@nung.edu.ua
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

LITHOLOGIC FEATURES OF LOW PERMEABLE OIL AND GAS SATURATED RESERVOIR ROCKS IN THE NEOGENE SEDIMENTS THICKNESS IN BUTSIVSKE GAS FIELD AS AN ANALOG

B a c k g r o u n d . The article investigates the problem of low-porosity and low-permeability reservoir rocks, which are relevant for hydrocarbon deposits in the Neogene sediments of the Outer Zone of the Precarpathian Trough. The low efficiency of traditional methods for assessing the gas saturation and productivity of these rocks creates significant obstacles to their development, which requires the use of new approaches.

M e t h o d s . The study was conducted on the basis of the analysis of core material taken from the productive horizons of the Butsivske gas field. A detailed petrophysical analysis was performed, including the assessment of the textural and structural features of the rocks, their mineral composition, as well as the characteristics of porosity and permeability. The methods of saturation of samples with dyes, microscopy and granulometric analysis were used.

R e s u l t s . It was established that low-porosity reservoir rocks have a significant influence on texture, structure and mineral composition of their filtration and capacity properties. The main type of porosity is subcapillary, which provides limited permeability. Analysis of the samples showed that the proportion of effective pore space involved in filtration is low (less than 40 % in the total open space structure). The main productive horizons are sandy-clayey deposits of the Lower Dashava formation.

C o n c l u s i o n s . The study confirmed that it is necessary to apply chemical treatment methods, such as acid treatments, which contribute to the creation of connected channels in the pore space to intensify gas production from low-porosity rocks. The results obtained have practical significance for optimizing the development of gas horizons in the Precarpathian trough and can be used in planning exploration and exploitation works.

K e y w o r d s : Outer zone of Precarpathian depression, reservoir-rock, core, fractions, psamits, hydrocarbons.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Akbar FEYZULLAYEV, DSc (Geol.), Prof.
ORCID ID: 0000-0002-0766-100
e-mail: fakper@gmail.com

Institute of Geology and Geophysics of the Ministry of Science and
Education of Azerbaijan Republic, Baku, Azerbaijan

Tofiq AHMADOV, DSc (Geol.), Prof.
ORCID ID: 0000-0003-0634-5600
e-mail: akhmedov.tofik@bk.ru

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Arzu MAMMADOVA, Master of Arts (Geol.)
ORCID ID: 0009-0003-5498-0681
e-mail: arzumemmedova908@gmail.com

Azerbaijan State Oil and Industry University, Baku, Azerbaijan

THEORETICAL AND EXPERIMENTAL PREREQUISITES FOR DIRECT FORECAST OF HYDROCARBONS BASED ON SEISMIC EXPLORATION DATA (CASE STUDY THE SOUTH CASPIAN AND OTHER BASINS)

(Представлено членом редакційної колегії д-ром геол. наук Г.Д. Ліснім)

B a c k g r o u n d. The petrophysical properties of the sedimentary rocks (porosity, permeability, elastic-plastic and acoustic properties, etc.) have been well studied and the results have been sufficiently widely used in the interpretation of geophysical data. Experimental studies completed in recent years as well as intensive technology improvements in data processing and interpretation of seismic data allowed us to explore also the problem of fluid control of petrophysical properties of rocks, which serves as a basis for developing a method of directly forecasting oil and gas accumulations in sedimentary basins. It is recommended to use a direct seismic method for predicting the productivity of the section in combination with gas-geochemical survey. The aim is to minimize the risk of hydrocarbon exploration in the deepwater part of the South Caspian.

M e t h o d s. Based on an analysis of worldwide experience and the results of experimental studies in the South Caspian Basin (SCB), the direct seismic methods substantiate the high efficiency of direct forecasting of hydrocarbon accumulations in the sedimentary section.

R e s u l t s. The analysis of direct determination of hydrocarbons using seismic data in other basins, as well as the results of developmental and experimental validation of proposed methodology, allows us to state its sufficient applicability in the geological conditions of SCB.

However, considering high economic and technological risks of drilling in the deep part of SCB (development of abnormally high pressures, high cost of exploration wells, which exceeds \$100 million), and attempting to minimize them, it would be beneficial to integrate the seismic method with other direct methods, especially with gas-geochemical surveying.

C o n c l u s i o n s. The natural exposure of oil and gas on the surface are of great significance to the hydrocarbon exploration since it directly points to the existence of hydrocarbons in sedimentary basins. In the deepwater part of the basin, the presence and nature of oil and gas shows one of the few tools available to assess the prospects of undrilled area. The emergence of new analytical capabilities in recent years allows us to record a very low concentration of migratory gases and increases the efficiency of detection of even low-contrast hydrocarbon anomalies (Elias et al., 2004).

K e y w o r d s : sedimentary section, hydrocarbon accumulations, direct forecast, seismic survey, South Caspian Basin.

Background

The history of development and modern geological position of SCB resulted in the formation of a unique oil and gas basin characterized by intense, still-present physical and chemical processes in the rock-fluid system. Oil and gas presence in SCB is associated mainly with sediments of Lower Pliocene-Productive Suite (PS). Hydrocarbon resources identified here are unevenly distributed and mainly related to anticline structures of flange units of Cheyrankechmez – South Absheron trough located in the northern part of the SCB. The results of integrated geological-geophysical research and exploration data have shown the existence of exceptionally favorable geological conditions for the generation, migration, and formation of hydrocarbon (HC) accumulations in this part of the basin:

- the high rate of subsiding and sedimentation in the Pliocene-Quaternary time, their large thickness;
- presence in the section of sediments rich in organic matter (OM) and favorable temperature conditions for their transformation into hydrocarbons;
- a favorable combination of time of generation, migration and the formation of HC traps;

- existence of geologic conditions for the subvertical migration of HCs;
- presence of intraformational and regional seal.

All these led to commercial oil and gas saturation in almost all structures in this part of the basin. In connection with this, technology to detect these oil and gas accumulations, based solely on the anticline theory of their formation, was very simplified (identification of seismic structures, followed by drilling exploratory wells), but it was also very effective.

Application of this technology in the south and in the deep part of SCB proved to be ineffective due to the change in the geological conditions of generation, migration of hydrocarbons, formation and preservation of their accumulations. Taking into account the high cost of exploration drilling in the deep part of SCB (the cost of one exploration well is more than \$75–100 million dollars), the introduction of technologies that could reduce the economic and technological risk of finding hydrocarbons would be very relevant. One of these ways would be using, along with traditional methods, methods of direct diagnosis of hydrocarbon accumulations based on seismic data (possibly

© Feyzullayev Akbar, Ahmadov Tofiq, Mammadova Arzu, 2025

in combination with direct gas-geochemical methods). An established fact of changing of the phase of hydrocarbon state from the flank to its deep parts and forecast of the existence here of mostly gas/gas-condensate fields is the favorable factor for the direct diagnosis of HCs in the deep part of SCB.

Methods

Seismic methods have played and continue to play a leading role in the search for hydrocarbons in reservoirs. Advances in the past were based on the detection of traps that could contain hydrocarbons (e.g., anticlines, lenses, tectonic disturbances, serving as the screen on the way of hydrocarbons migration, and reefs). The effect of the pore fluids properties in the seismic field was extensively explored only since the era of detection of the "bright spots" in the early 1970s (Sheriff, 1975), reflecting the content of hydrocarbons in the reservoir. For this reason, various research centers around the world have started laboratory and experimental-methodological studies to explore seismic properties of rocks saturated with various fluids (water, oil, gas) (Elliot, & Wiley, 1975; Batzle, & Wang, 1992; Sinartio, 2002, etc.).

For example, a series of laboratory experiments on wave velocities in two different samples of quartz sandstones of Berea formation (Ohio, USA) – saturated with water, air, and light and heavy oil, depending respectively on the pressure and temperature – was conducted by Z. Wang and colleagues (Wang et al., 1990). The experimental results showed that the velocity of wave propagation depending on temperature changes in the rock samples saturated with heavy oil is different from the same sample saturated with water or light oil. However, the most obvious differences between the values of seismic parameters were noted between the rocks saturated with gas and liquid – values of V_p/V_s (the ratio of compressional and shear velocities) and Poisson's ratio in the gas-saturated rocks are always comparatively lower.

A significant decrease in the velocity of seismic waves and change of other seismic parameters in the presence of gas in the rock was observed by other researchers (Batzle et al., 2004; Barton, 2007; Goloshubin et al., 2002).

As suggested by G.J. Blackburn (1986), even a small amount of gas is sufficient to create the necessary contrast

in the value of the impedance in comparison with water- or oil-containing sandstone.

As an example, fig. 1 shows the trend of the change of the reflection coefficient curves for the model of the reservoir saturated with gas and saline water (Batzle et al., 2004). Their difference is obvious. However, it should be noted that sometimes the gas-saturated water can be a false indicator of hydrocarbons (Han, & Batzle, 2004). In general, it is believed that pore fluid affects V_p more than V_s (Mavko et al., 2005; Alvarez, 2007).

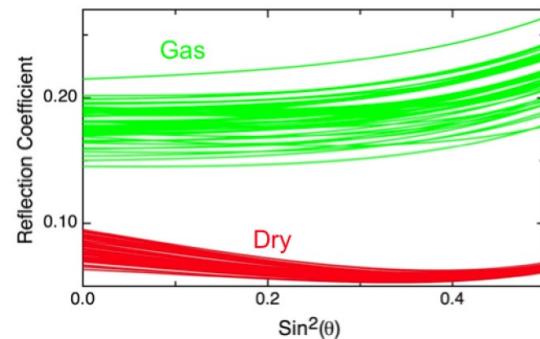


Fig. 1. The reflection coefficients for models of the reservoir containing certain amounts of gas (green), and only saline water (red) (Batzle et al., 2004)

The influence of gas on the seismic parameters was also found during a series of laboratory experiments covering the injection of CO_2 in the rock-reservoirs (Xue, & Ohsumi, 2004), which showed a significant decrease in P-wave velocity (from 6.1 % to 10.6 %) (Harris et al., 2006) and changes in transit time and amplitude of the reflected waves (Daley et al., 2007). The capabilities of seismic data for the diagnosis of gas is illustrated by the results of monitoring CO_2 injection at Weyburn field in Canada (White, 2004) and in an aquifer at the Sleipner area in Norway (Chadwick et al., 2007) (Fig. 2).

The values of V_p impedance measured in a thick soft-sand interval of well in the North Sea, the upper part of which is gas-saturated and the lower – oil- and water-saturated, were examined based on porosity and gas saturation (Fig. 3).

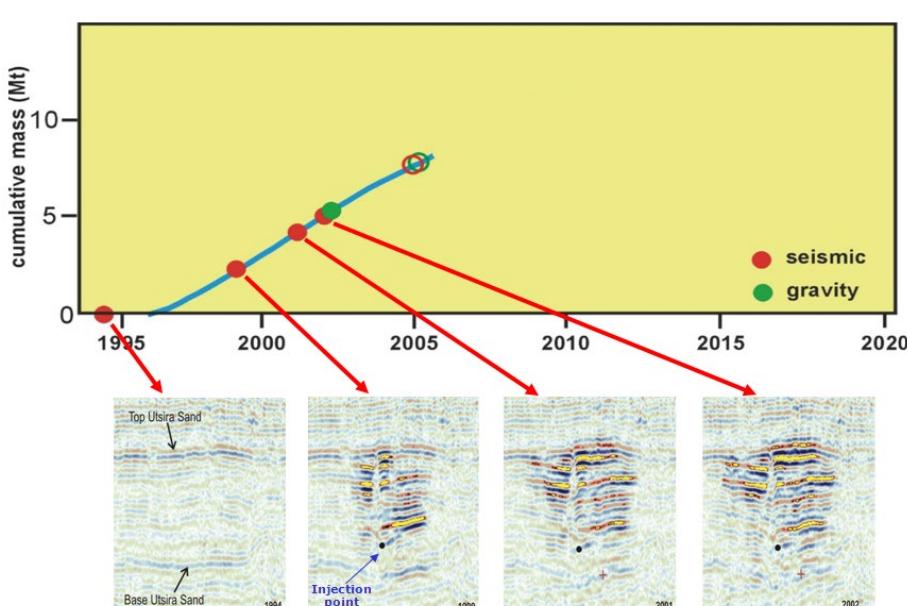


Fig. 2. Seismic monitoring of CO_2 injection in an aquifer at Sleipner storage, the central North Sea (Chadwick et al., 2007)

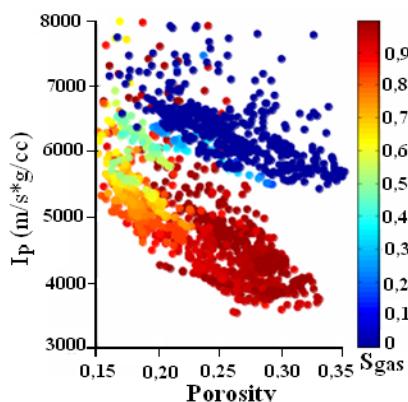


Fig. 3. Impedance versus porosity is a thick soft-sand interval color-coded by gas saturation. The presence of gas in the pore space produces a strong decrease in the impedance. The rest of interval is filled with oil and water (Walls, & Dvorkin, 2005)

The presence of the gas in this well causes dramatic reduction of the impedance due to the strong difference between the bulk modulus of gas (about 0.08 GPa in this example), oil (about 0.8 GPa), and water (about 2.8 GPa) (Walls, & Dvorkin, 2005).

The influence of pore fluids on seismic properties of rocks, identified in laboratory and field experiments, formed the basis for development of methods for direct detection of hydrocarbons from seismic data, which have been tested in various basins of the world (Alvarez, 2007; Shikhaliev, 2005; Blom, & Bacon, 2009 and others). This became technically possible due to progress made in recent years in improving the quality of acquired seismic data and the tremendous progress in their processing and interpretation.

The term of direct diagnosis of hydrocarbons started to be used in seismic exploration more than 50 years ago. In the past 20 years, extensive experiments have been conducted to measure the abnormal attenuation and velocity dispersion (AVD method) of seismic waves in the oil and gas fields, using borehole and surface data. These experiments confirmed the changes in the noted parameters of hydrocarbon-saturated sediments. AVD method was successfully applied in various parts of Russia, China, Vietnam, and Latin America, with the exception of the northern Caucasus, where the abnormal attenuation was caused by the water, heavily saturated with carbon dioxide (Rapoport et al., 2004).

At present, the most widely used method for prediction of gas in the reservoir is AVO method (Amplitude Variation with Offset), which is basically an improved version of the method of "bright spots" (Batzle et al., 2004 and others). At the same time, it's established that the Class 3 AVO anomaly better reflects the gas saturation of sediments (Hilterman, 2003).

However, there is the opinion that the method of AVO is not sufficiently effective at greater depths. For example, many wells drilled offshore Gulf of Mexico in the AVO anomalies detected only non-commercial gas accumulation (the so-called problem of "fizz-water" – gas-saturated water) (Walls et al., 2006).

According to Simmons and Backus (1994), the use of converted waves has the greater potential for differentiating lithology of rocks and fluids saturating them than the method of AVO (Fig. 4).

Application of a universal interpretation system in the offshore hydrocarbon exploration, which combines the methods of determining the amplitudes and spectra of seismic signals (Millahn et al., 1979), has shown the clear

correlation between high-amplitude anomalies and gas zones. The authors believe this can be used in combination with other data, which will reduce the cost of exploration and increase the rate of success.

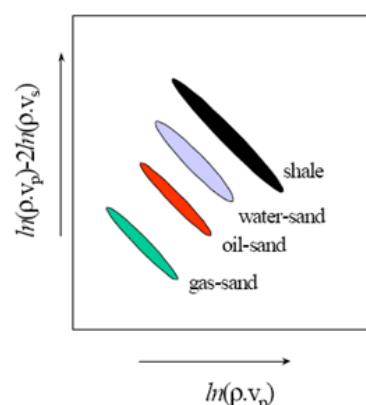


Fig. 4. The combination of shear (pVs) and compressional (pVp) impedances for differentiating lithology of rocks and their saturation with various fluids (Simmons, & Backus, 1994)

An example of seismic data analysis from offshore of the Netherlands (Permian/Triassic deposits) (Blom and Bacon, 2009) shows the presence of clear direct hydrocarbon indicators, which were used to assess the prospects of undrilled areas and forecast the expected type of hydrocarbons. Types of hydrocarbons, expected in each prospective area, were predicted on the basis of comparison of early results of simulation and actual seismic observations. Success of exploratory drilling as a result of this approach has been improved. All three recently drilled exploration wells found hydrocarbons in areas previously assessed as promising.

An example of Ay-Pim oil field in Western Siberia shows that amplitude, which depends on frequency, and phase reflection properties can be used for detection and control of thin layers of oil-saturated beds and delineation of oil-water contact (Goloshubin et al., 2002) (Fig. 5).

The attenuation coefficient of seismic data is a good tool to identify gas reservoirs (Walls et al., 2003, 2006, etc.). The experimental results in the Gulf of Mexico on more than 90 wells drilled in 20 areas, showed the effectiveness of direct prediction of oil and gas reservoirs (tally of seismic data with the results of drilling was more than 90 %) (Walls et al., 2003).

The 3D seismic prediction of potential oil and gas zones with the results of drilling was observed in western China (Hu et al., 2005).

According to statistics based on drilling of 65 wells at 6 oil fields in China with total depth (TD) at depths of more than 5 km, the success of the direct diagnosis from the seismic method was 73 % (Hu et al., 2005).

It's established (Klimentos, 1995) that in the sandstones saturated with liquid fluid attenuation of the S-wave is approximately the same as P-waves, whereas in the gas-saturated intervals the P-wave attenuation is much stronger than the attenuation of the S-wave (Fig. 6).

Methodical basis of research in SCB

In this research a methodology, technology and software package "REZAYR" for integrated data processing and interpretation of seismic and well-log data was used (Shikhaliev et al., 1994; Shikhaliev, 2005).

This technology is based on the implementation of mathematical methods of analysis and interpretation of seismic data executed in an interactive way and enables us, as a result

of an iterative process, to clarify or determine such important geological and geophysical characteristics of the 2D section as: stratigraphic boundaries; values of formation velocities and trace velocities; the values of effective porosity and bulk clay

volume; the average value of grain diameter and the delimitation of lithofacies boundaries; construction of geoacoustic and effective geological models of section; and prediction of reservoir properties and their productivity.

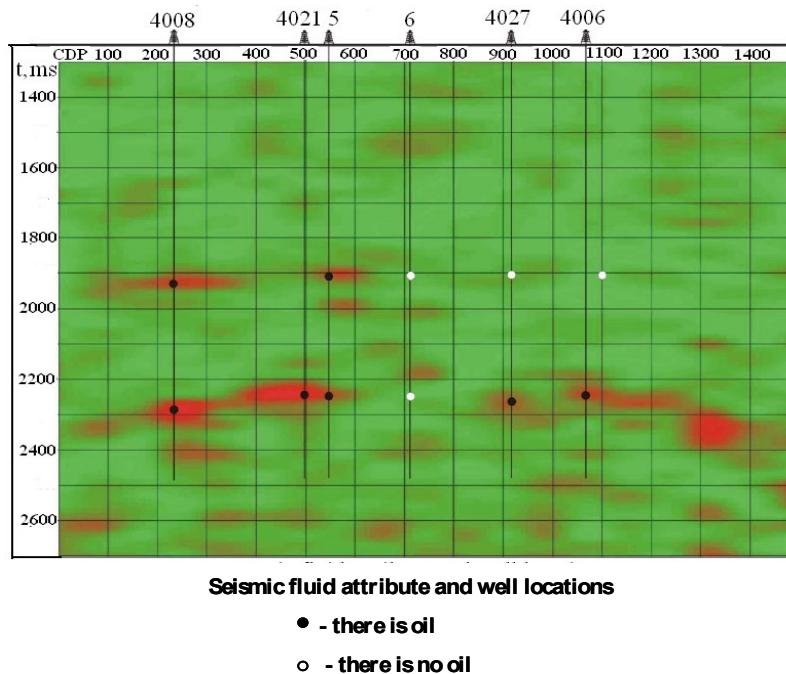


Fig. 5. Low-frequency processed reflection data for Ay-Pim oil field in Western Siberia (Goloshubin et al., 2002)

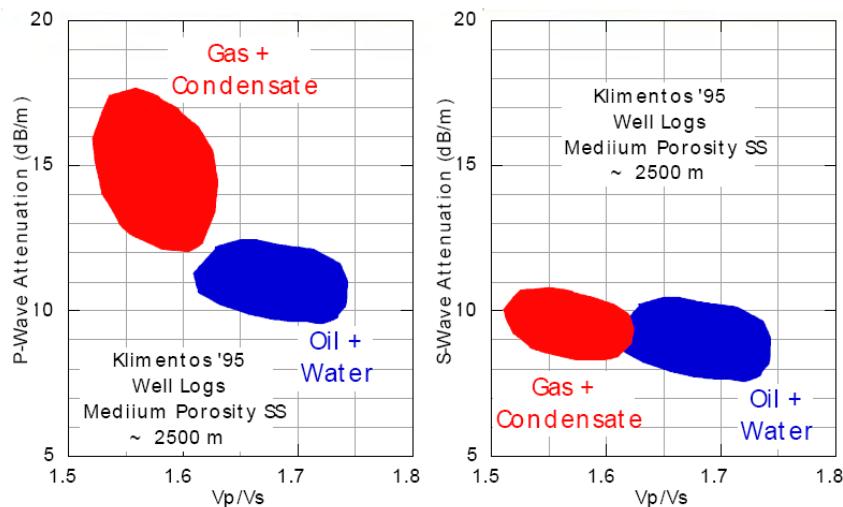


Fig. 6. The P-wave and S-wave attenuation in liquid-saturated sandstone and gas-saturated intervals (Klimentos, 1995)

The method does not require a priori knowledge of the velocity characteristics of the section, but its effectiveness increases significantly when acoustic logging data, vertical seismic profiling, and well-velocity survey data are available.

A synthetic seismogram, built from these data, is compared with the real seismic traces at the stake of the profile, where the well is located (Fig. 7).

The integrated process of tying synthetic and real seismic trace continues until the maximum degree of matching is achieved. Based on similar elements of these seismic traces, velocities are determined and used for depth-time conversion of well-log data and tying them back to seismic section.

After this, we construct an effective model of the section and determine predicted values of formation velocities,

which are based on the correlation of pseudosonic log velocities with the true velocities in the same intervals, i.e. within the effective model (Fig. 8). The values of the pseudosonic log should be defined with maximum reliability.

During the comparison, the differences in the values of velocities are revealed, their natures are determined, and changes are made accordingly.

Subsequently, using a variety of known functional relationships (Wyllie et al., 1958; Dakhnov, 1982) of petrophysical models as well as the instantaneous dynamic parameters of the wave field, seismic sections are transformed into sections with different petrophysical parameters, based on which reservoir properties of formations are predicted and, if possible, their productivity is determined.

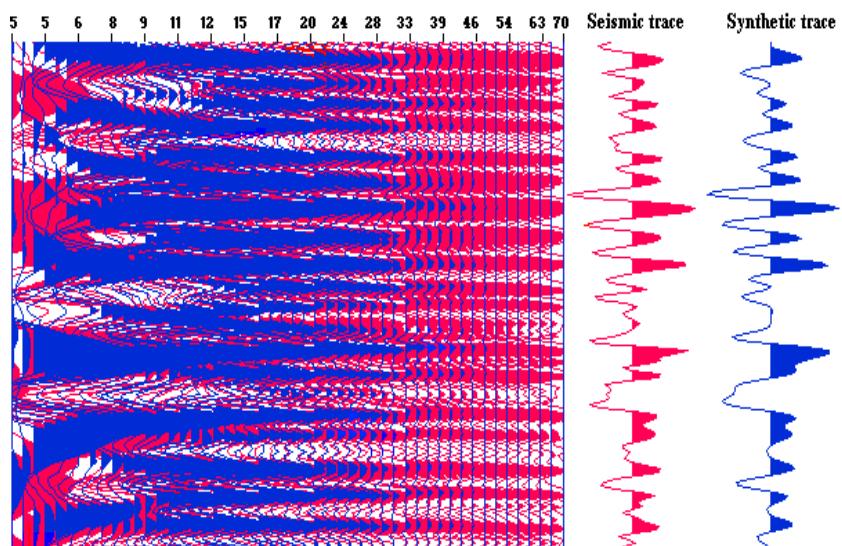
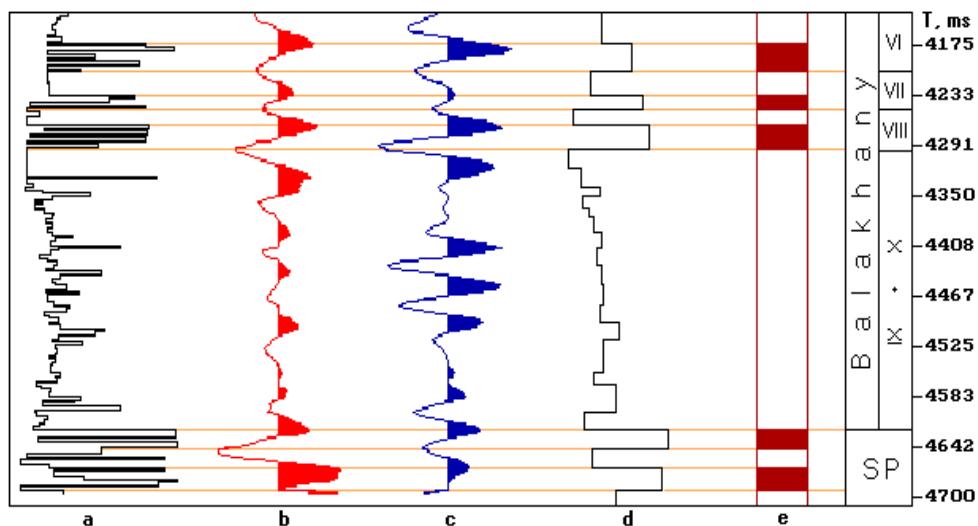



Fig. 7. Spectrum-time analysis

Fig. 8. Building of an effective model from well-log data:

Fig. 3. Building of an effective model from well-log data.

Obtained distribution of petrophysical parameters allows us to estimate the total volume of reservoirs in the section, which, on the one hand, is the necessary information for estimation of volume and hydrocarbon reserves of the reservoir, and, on the other hand, is necessary to assess their productivity.

Productivity prediction is solved by different methods. For example, the usual approach to determine the productivity of reservoir is based on the parameters obtained by data analysis from identical areas or from theoretical considerations taking into account a given petrophysical model of the productive reservoir and aquifer (Dakhnov, 1982). Another approach implements a simplified version of the method of pattern recognition in an n -dimensional space. These two approaches, complementing each other, allow us to estimate a zone of ambiguity in the area of oil-water contact. A feature of the methodology is that the well log and seismic data are not interpreted separately, but in the same interpretational cycle.

Results

Studies on the direct diagnosis of oil and gas in SCB included developing methodology and a software package for seismic data interpretation and its pilot testing on a large

gas-condensate field Shah Deniz, and two prospective offshore structures: Yalama-Samur and Absheron (Fig. 9).

Analyzed seismic profiles were obtained by 2D and 3D seismic surveys. Let's examine the results of this methodology using the example of the Shah-Deniz area (see Fig. 9) with the established commercial oil and gas deposits.

Fig. 3) with the established commercial oil and gas deposits. Shah Deniz is a shelf gas condensate structure discovered in 1999. It is situated in the Azerbaijan sector of the Caspian Sea, 70 km south-east of Baku. The water depth in the field is from 50 to 650 m. The gas-bearing area is about 860 km². Production from the first well, with TD of 6500 m and drilled with a stationary production platform at a water depth of 105 m, started on December 15, 2006, with an output of 5.6 million cubic meters of gas per day from Productive series (PS). PS is the main reservoir in SCB and accounts for more than 90 % of current hydrocarbon production.

To study the Shah-Deniz, we used the time section of one of the 3D profiles. The quality of the section is high enough and reflects well the main elements of the geological elements of the section (Fig. 10). The interpretation of the data included identification of seismic horizons corresponding to various suites of PS.

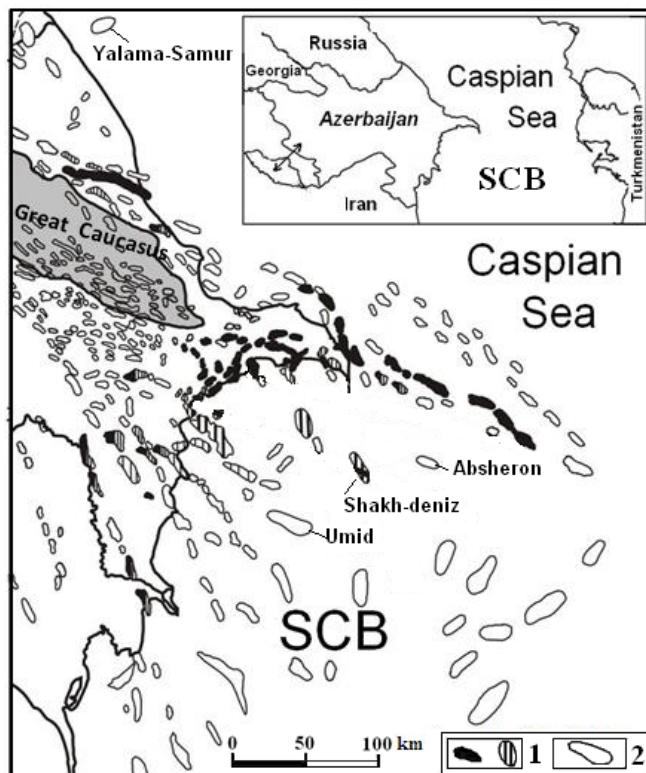


Fig. 9. Scheme of location of SCB and studied fields:
1 – productive structures; 2 – prospective structures

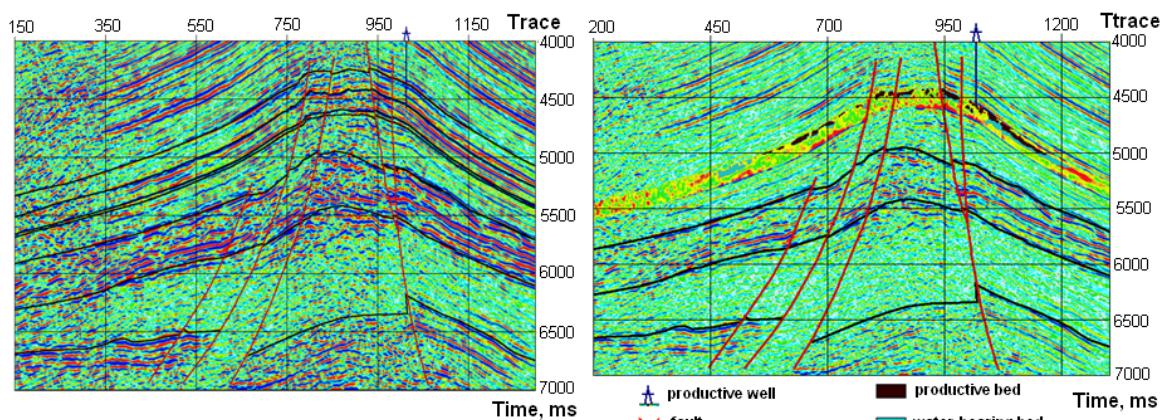


Fig. 10. Shah-Deniz field. A fragment of time section (left) and predict of productivity

An integrated interpretation of seismic and well data using the above methodology has allowed us to get a more detailed estimation of petrophysical parameters (velocity, porosity, sand/clay content, etc.) of deposits and to predict the main productive areas in the studied profile (see Fig. 10). These areas belong to the "Pereriva" suite of the PS. Comparison of the projected areas with the location of actual productive zones, identified by the exploration well, showed their satisfactory agreement (see Fig. 10).

The good correlation of seismic data with data obtained from the drilling of Shah Deniz served as a good precondition for the extensive introduction of the developed methodology for prediction of hydrocarbon zones in SCB structures with not-yet-clarified prospects, such as the Yalama-Samur, Umid, Absheron and et. al.(see Fig. 9). The results of direct diagnosis of the productivity of the Yalama-Samur structure are described below.

The Yalama-Samur structure is located on the border of Russian and Azerbaijan sectors of the Caspian, representing a

geological uplift perspective for oil and gas. The first exploratory appraisal well drilled on this structure (block D-222) was unproductive. Studies on the direct diagnosis of hydrocarbons in this block were conducted on the 2D profile, crossing the area in sublatitudinal direction (Fig. 11).

The peculiarity of the task of evaluating the petrophysical characteristics in this case was the fact that the well was located at a considerable distance from the analyzed section (about 30 km) and, despite the relative calm of the geological environment, its characteristics were difficult to use correctly.

However, available information on the structure was sufficient to assess velocity characteristics of deposits, and some volumetric parameters of rocks. Based on this, the seismic section was transformed into a parametric section of formation velocities (Fig. 11), and then sections of distribution values of the coefficients of effective porosity and sand were compiled.

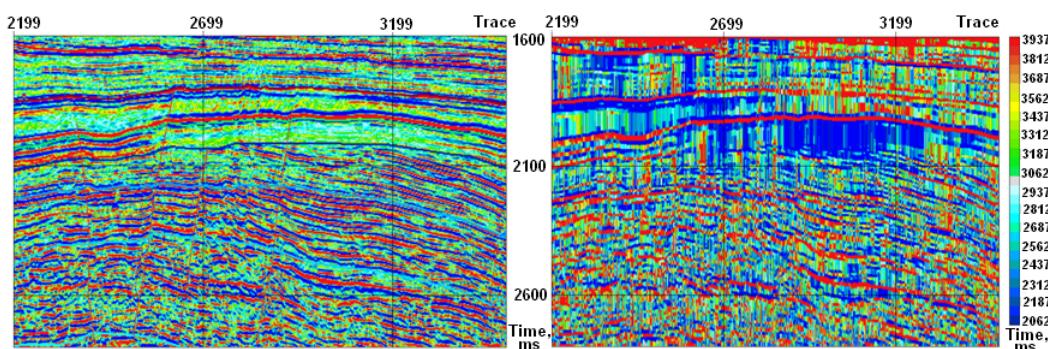


Fig. 11. A fragment of time section (left) and formation velocities of Yalama-Samur structure (right)

Based on comprehensive analysis of seismic data interpretation results, in combination with other geological and geochemical data, the conclusion was made that the structure is not of commercial interest (Guliyev et al., 2007). Nevertheless, the second exploration well was drilled and turned out to be also unproductive, thus confirming results from seismic data prediction.

Discussion and conclusions

It is important to note that there have been attempts to apply this integrated method (Schumaker et al., 1999). Thus the use of geochemical method in integration with the results of 3D seismic in Canada has increased the success rate of drilling to 71 %, while the success of using only seismic data was approximately 34 %. In South America, the integration of the two methods provided a 95 % success rate of drilling and reduced the cost of exploration to 43 % (Schumaker et al., 1999).

V. Gabela et al. also believes that a good precondition for a substantial increase in the success rate of finding hydrocarbons can be achieved through the integration of seismic data with direct near-surface gas-geochemical methods. As a proof, he

presented the analysis of the results from 196 wells drilled within vicinity of the geochemical anomalies. It was found that, in 92 % of cases, the drilling within the positive geochemical anomalies revealed the presence of commercial accumulations of hydrocarbons, while the wells drilled within the limits of negative anomalies turned out to be unproductive in 95 % of cases (Gabela et al., 2003).

It should be noted that in Azerbaijan the surface gas-geochemical exploration have been conducted on the industrial scale, both onshore and offshore. The analysis of the results showed that the effectiveness of positive prediction here is 75–87 %, while the success of negative prediction reaches 95–100 % (Feyzullayev et al., 2008).

An example is a local process of sub-vertical hydrocarbon discharge above the south-eastern subsidence of the Bahar petroleum bearing structure (Bahar-2 area) in the South Caspian, which formed anomalous concentrations of methane and the sum of its homologues in the bottom layers (depths up to 100 m) (Fig. 12).

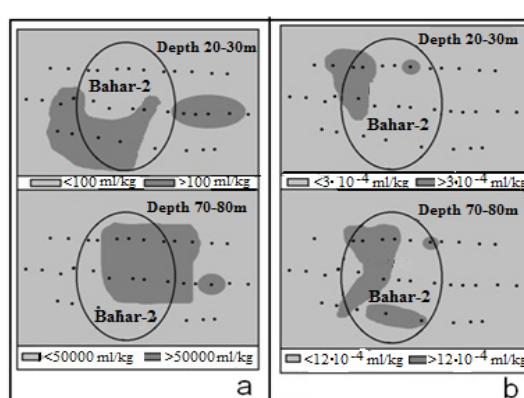


Fig. 12. South Caspian. Distribution of methane (a) and the sum of methane homologues (b) in the bottom layers (to a depth of 100 m) of the Bahar-2 area

The above-mentioned serves as a convincing basis for recommending the combination of direct seismic and gas-geochemical methods for the exploration in the central part of the deep part of SCB.

References

Alvarez, J. P. G. (2007). *Effect of microstructure and pore fluid on the elastic properties of carbonate rocks* [Master's thesis, University of Oklahoma, Graduate College].

Barton, N. (2007). *Rock quality, seismic velocity, attenuation and anisotropy*. Taylor & Francis.

Batzle, M., Han, D., Gibson, R., & James, H. (2004). *Seismic evaluation of hydrocarbon saturation in deep-water reservoirs* (Grant/Cooperative Agreement DE-FC26-02NT1534). Annual report 2003–2004.

Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. *Geophysics*, 57(11), 1396–1408.

Blackburn, G. J. (1986). Direct hydrocarbon detection: Some examples. *Exploration Geophysics*, 17(2), 59–66.

Blom, F., & Bacon, M. (2009). Application of direct hydrocarbon indicators for exploration in a Permian-Triassic play, offshore the Netherlands. *First Break*, 27, 37–44.

Chadwick, A., Arts, R., Bernstone, C., May, F., Thibault, S., & Zweigel, P. (Eds.). (2007). *Best practice for the storage of CO₂ in saline aquifers – Observations and guidelines from the SACS and CO₂STORE projects*. British Geological Survey.

Dakhnov, V. N. (1982). *Interpretation of open-hole log data*. Nedra.

Daley, T. M., Solbau, R. D., Ajo-Franklin, J. B., & Benson, S. M. (2007, May 7–10). *Continuous crosswell seismic during CO₂ injection: A new monitoring technology deployed at the Frio-II experiment*. Sixth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, Pennsylvania.

Eiken, O. (2008, August 6–14). *Surface geophysical monitoring of geological CO₂ storage*. International Geological Congress, Oslo.

Elias, V. O., Mello, M. R., Magalhães, J. M. et al. (2004, October 24–27). *Direct hydrocarbon detection technologies applied to minimize exploration risk in deep water probes*. AAPG International Conference, Cancun, Mexico.

Elliot, S. E., & Wiley, B. F. (1975). Compressional velocities of partially saturated unconsolidated sands. *Geophysics*, 40, 949–954.

Feyzullayev, A. A. (2007, October 1–8). *Hydrocarbon migration and gas survey efficiency in different tectonic settings*. 9th International Conference on Gas Geochemistry, Taipei, Taiwan.

Feyzullayev, A. A., Tagiyev, M. F., & Lerche, I. (2008). Tectonic control on fluid dynamics and efficiency of gas surveys in different tectonic settings. *Energy Exploration & Exploitation*, 26(6), 363–374.

Gabela, V., Phipps, K., Hodny, J. W. et al. (2003, May 11–14). *A case for direct thermogenic hydrocarbon detection and exploration risk reduction*. AAPG Annual Convention, Salt Lake City, Utah.

Goleshubin, G. M., Korneev, V. A., & Vingalov, V. M. (2002, October 6–11). *Seismic low frequency effects from oil-saturated reservoir zones*. SEG 72nd Annual International Exposition & Annual Meeting, Salt Lake City, UT. (LBNL-50638).

Guliev, I. S., Aliyeva, E. G-M., Feyzullayev, A. A., Guseynov, D. A., Shikaliyev, Yu. A., & Kadirov, F. (2007). *Evaluation of hydrocarbon potential of Yalama-Samur structure on the basis of facies, structural and geochemical analysis of onshore and offshore data and their correlation* (Report in 4 volumes). Geology Institute of the Azerbaijan National Academy of Science.

Han, D., & Batzle, M. (2004). *Fizz water and low gas-saturated reservoirs*. SEG meeting.

Harris, J. M., Quan, Y., Xu, C., & Urban, J. (2006). *Seismic monitoring of CO2 sequestration* (GCEP Technical Report).

Hilterman, F. J. (2003). *What's next for pore-fluid estimation?* Invited Talks. GSH Luncheon.

Hu, X., Chen, Y., Liang, X., & Lang, K. (2005). New technology for direct hydrocarbon reservoir detection using seismic information. *SEG/Houston Annual Meeting*, 1735–1739.

Klimentos, T. (1995). Attenuation of P- and S-waves as a method of distinguishing gas and condensate from oil and water. *Geophysics*, 60, 447–458.

Mavko, G., Dvorkin, J., & Walls, J. (2005, November 6–11). *A rock physics and attenuation analysis of a well from the Gulf of Mexico*. Proceedings SEG International Exposition and 75th Annual Meeting, Houston, TX.

Millahn, K. O., Koitka, H., Jurczyk, D., & Jankowsky, W. S. (1979). *Direct detection of hydrocarbons using seismic procedures*. Final Report Prakla-Seismos G.m.b.H.

Rapoport, M. B., Rapoport, L. I., & Ryjkov, V. I. (2004). Direct detection of oil and gas fields based on seismic inelasticity effect. *The Leading Edge*, 23(3), 276–278.

Schumaker, D., Gervitz, J., Rice, G., Harrington, P., & Wyman, R. (1999, February 10). *Surface hydrocarbon detection shows promise*. Workshop sponsored by PTTC's Eastern Gulf Region.

Шакер, С. (2024). *Pore and fracture pressures prediction – A new geomechanic approach in deepwater salt overthrusts: Case histories from the Gulf of Mexico*. *Interpretation*, 12(4), B17–T584.

Sheriff, R. E. (1975). Factors affecting seismic amplitudes. *Geophysical Prospecting*, 23, 125–138.

Shikaliev, Yu. A. (2005). Methodology of integrated analysis of seismic data and open-hole log data; exploration and evaluation of productive reservoirs. *Azerbaijan National Academy of Science, Earth Science*, 2, 82–88.

Shikaliev, Yu. A., Gauzer, H. Y., & Kuteva, N. Y. (1994). *Construction 2D and 3D models of reservoirs structure and their distribution on the seismic prospecting and LOG* 10th Petroleum Congress, Ankara, Turkey.

Simmons, J. L., Jr., & Backus, M. M. (1994). AVO modeling and the locally converted shear wave. *Geophysics*, 59(9), 1237.

Sinartio, F. (2002). *Predicting fluid composition from seismic data: CO2 detection from seismic*. 72nd Annual International Meeting: Society of Exploration Geophysicists, Expanded Abstracts.

Walls, J., & Dvorkin, J. (2004). *Properties of pore fluids at very high pressures from equations of state*. Society of Exploration Geophysics meeting.

Walls, J., Taner, M. T., Dvorkin, J., & Mavko, G. (2003). Recent example of seismic attenuation as a gas indicator. In M. Batzle, D. Han, R. Gibson, & O. Djordjevic, *Seismic evaluation of hydrocarbon saturation in deep-water reservoirs* (Grant/Cooperative Agreement DE-FC26-02NT15342).

Walls, J., Taner, M. T., Uden, R., Singleton, S., Derzh, N., Mavko, G., & Dvorkin, J. (2006). Deep gas exploration using P and S wave seismic attenuation. (Article submitted to Gas Tips, Project # DE-FC26-04NT42243).

Wang, Z., Batzle, M. L., & Nur, A. M. (1990). Effect of different pore fluids on seismic velocities in rocks. *Canadian Journal of Exploration Geophysics*, 26(1 & 2), 104–112.

White, D. J. (2004). Theme 2: Prediction, monitoring and verification of CO2 movements. In *IEA GHG Weyburn CO2 monitoring and storage project summary report 2000–2004* (pp. 73–148). PTRC.

Wyllie, M. R. J., Gregory, A. R., & Gardner, G. H. F. (1958). An experimental investigation of the factors affecting elastic wave velocities in porous media. *Geophysics*, 23(3), 459–493.

Xue, Z., & Ohsumi, T. (2004). Seismic wave monitoring of CO2 migration in water-saturated porous sandstone. *Exploration Geophysics*, 35, 25–32.

Отримано редакцію журналу / Received: 30.01.25
Прорецензовано / Revised: 27.02.25
Схвалено до друку / Accepted: 30.06.25

Акбар ФЕЙЗУЛЛАЕВ, д-р геол. наук, проф.

ORCID ID: 0000-0002-0766-100

e-mail: fakper@gmail.com

Інститут геології та геофізики Міністерства науки та освіти Азербайджанської Республіки, Баку, Азербайджан

Тофіг АХМАДОВ, д-р геол. наук, проф.

ORCID ID: 0000-0003-0634-5600

e-mail: akhmedov.tofik@bk.ru

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Арзу МАМЕДОВА, магістр (геол.)

ORCID ID: 0009-0003-5498-0681

e-mail: arzumemmedova908@gmail.com

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

ТЕОРЕТИЧНІ ТА ЕКСПЕРИМЕНТАЛЬНІ ПЕРЕДУМОВИ ПРЯМОГО ПРОГНОЗУВАННЯ ВУГЛЕВОДНІВ НА ОСНОВІ ДАНИХ СЕЙСМОРОЗВІДКИ (НА ПРИКЛАДІ ПІВДЕННО-КАСПІЙСЬКОГО ТА ІНШИХ БАСЕЙНІВ)

В ступ. Петрофізичні властивості осадових порід (пористість, проникність, пружно-пластичні та акустичні властивості тощо) були добре вивчені, а результати досить широко використовувались при інтерпретації геофізичних даних. Експериментальні дослідження, проведені останніми роками, а також інтенсивне вдосконалення технологій обробки та інтерпретації сейсмічних даних дозволили нам також дослідити проблему контролю флюїдами петрофізичних властивостей порід, що слугує основою для розробки методу прямого прогнозування покладів нафти та газу в осадових басейнах. Рекомендується використовувати прямий сейсмічний метод для прогнозування продуктивності розрізу в поєднанні з газогеохімічною зйомкою.

Мета. Мінімізувати ризик розрізів вуглеводнів у глибоководній частині Південного Каспію.

Методи. На основі аналізу світового досвіду та результатів експериментальних досліджень у Південнокаспійському басейні (ПКБ) обґрунтовано високу ефективність прямого прогнозування покладів вуглеводнів в осадовому розрізі за допомогою прямих сейсмічних методів.

Результати. Аналіз прямого визначення вуглеводнів за допомогою сейсмічних даних в інших басейнах, а також результати розробки та експериментальної перевірки запропонованої методології дозволяють стверджувати про її достатню застосовність у геологічних умовах ПКБ.

Однак, враховуючи високі економічні та технологічні ризики буріння у глибоководній частині ПКБ (розвиток аномально високих тисків, висока варітість розрізувальних свердловин, що перевищує \$100 млн), та намагаючись їх мінімізувати, було б вигідно інтергрувати сейсмічний метод з іншими прямими методами, особливо з газогеохімічною зйомкою.

Висновки. Природні виходи нафти та газу на поверхні мають велике значення для розрізів вуглеводнів, оскільки вони прямо вказують на існування вуглеводнів в осадових басейнах. У глибоководній частині басейну наявність та характер нафтогазопроявів є одним із небагатьох доступних інструментів для оцінки перспектив нерозбуреної ділянки. Поява нових аналітичних можливостей останніми роками дозволяє фіксувати дуже низьку концентрацію міграційних газів та підвищувати ефективність виявлення навіть низькоконтрастних вуглеводнів аномалій (Elias et al., 2004).

Ключові слова: осадовий розріз, вуглеводнів поклади, прямий прогноз, сейсморозвідка, Південнокаспійський басейн.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Murad ABDULLA-ZADA, PhD (Earth sciences)
ORCID ID: 0009-0001-4150-8340
e-mail: murad.abdullazade@asoiu.edu.az
Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Tamella ZAHIDOVА, PhD student
ORCID ID: 0009-0005-9692-1684
e-mail: tamellazahidova@gmail.com
Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Rufat SHAHBAZOV, PhD student
ORCID ID: 0009-0003-6009-3982
e-mail: rufetshaxbazov@gmail.com
Azerbaijan State Oil and Industry University, Baku, Azerbaijan

INTEGRATED REASSESSMENT OF HYDROCARBON POTENTIAL IN THE ABSHERON-BANK AND DARWIN BANK FIELDS, OF THE ABSHERON-PREBALKHAN STRUCTURAL THRESHOLD

(Представлено членом редакційної колегії д-ром геол. наук, доц. О.В. Шабатурою)

B a c k g r o u n d . The South Caspian Basin represents an exceptional geodynamic province distinguished by its extraordinary sedimentary accumulation and active petroleum systems, positioning it among the foremost hydrocarbon-bearing regions globally. Encircled by collisional orogenic belts, the basin has accommodated over 25 kilometers of sedimentary infill, more than 10 kilometers of which have been rapidly deposited within the last six million years. This accelerated subsidence and burial, under anomalously low geothermal gradients, has facilitated ongoing hydrocarbon generation at depths exceeding 8–12 kilometers. Regionally extensive anticlinal structures, interpreted as buckle folds developed above a basal detachment surface, have been delineated through the interpretation of regional-scale 2D seismic datasets. The convergence of an actively generating petroleum system, vast undrilled structural closures, and a regulatory framework conducive to foreign investment has elevated the basin's profile within the global energy sector.

W i t h i n t h i s t e c t o n i c a l l y c o m p l e x s e t t i n g , t h e A b s h e r o n - P r e b a l k h a n s t r u c t u r a l z o n e c o n s t i t u t e s a p r i n c i p a l h y d r o c a r b o n p r o v i n c e , e n c o m p a s s i n g s e v e r a l s t r a t e g i c a l l y s i g n i f i c a n t f i e l d s , n o t a b l y t h e A b s h e r o n - B a n k a n d D a r w i n B a n k f i e l d s . T h i s i n v e s t i g a t i o n o f f e r s a r i g o r o u s , d a t a - i n t e g r a t e d e v a l u a t i o n o f t h e i r h y d r o c a r b o n p r o s p e c t i v i t y , s y n t h e s i z i n g m u l t i - d e c a d a l e x p l o r a t i o n , p r o d u c t i o n r e c o r d s , a n d s u b s u r f a c e g e o s c i e n t i f i c d a t a . T h e A b s h e r o n - B a n k f i e l d , d i s c o v e r e d i n 1951 s o m e 25 k m n o r t h o f P i r a l l a h i I s l a n d i n s h a l l o w C a s p i a n w a t e r s , a n d t h e D a r w i n B a n k f i e l d , d i l e n t i a t e d i n 1950 a n d s h a r i n g s t r u c t u r a l c o n t i n u i t y w i t h n e i g h b o r i n g a n t i c l i n a l t r e n d s , s e r v e a s f o c a l p o i n t s o f t h i s a s s e s s m e n t .

M e t h o d s . Geological and geophysical analyses were conducted to evaluate reservoir properties, including stratigraphic correlations, reservoir pressures, and production performance. Core lithology and seismic data were integrated with petrophysical parameters – such as porosity, permeability, and fluid saturations – to characterize productive horizons (e.g., Kirmaki and Kala suites).

R e s u l t s . The results underscore substantial hydrocarbon accumulations within Lower Pliocene strata of the Productive Series. The Absheron-Bank field possesses estimated initial reserves (B+C1+C2 categories) of 6.3 million tonnes of crude oil and over 2.5 billion cubic meters of both dissolved and free gas. As of January 2022, 74 wells have been drilled, yielding 495.8 thousand tonnes of oil and approximately 1.2 billion cubic meters of gas – representing a 39.4 % recovery of extractable oil reserves.

Conversely, the Darwin Bank field, developed through 776 wells, has produced approximately 17.9 million tonnes of oil and 1.4 billion cubic meters of dissolved gas, with nearly 80 % of extractable reserves already recovered. Current development efforts are situated in the terminal phase of the field's productive lifecycle, where diminishing well productivity and infrastructure obsolescence pose persistent operational challenges.

C o n c l u s i o n s . This study advocates for the continued implementation of reservoir pressure maintenance strategies, enhanced oil recovery (EOR) techniques, and the optimization of water injection regimes to prolong field productivity. Furthermore, it highlights the necessity of sustained geological, petrophysical, and hydrodynamic monitoring to inform adaptive field management strategies – particularly within mature, offshore domains of the South Caspian petroleum province.

K e y w o r d s : South Caspian Basin, Absheron-Prebalkhan tectonic zone, hydrocarbon prospectivity, offshore oil and gas fields, reservoir characterization, Productive Series, enhanced oil recovery (EOR).

Background

The South Caspian Basin is traditionally regarded as one of the deepest sedimentary depressions within the geodynamically active Mediterranean-Alpine mobile belt (Fig. 1). In terms of its fundamental geological attributes, it is comparable to the Black Sea and Aegean Sea basins; however, it exhibits a set of unique features that distinguish it from other analogous tectonic structures (Pogorelova, 2019; Mikhailov, 2017).

Foremost among these is the pronounced thinning of the oceanic-type crust in the central part of the basin. According to geophysical data, the depth to the Mohorovičić discontinuity beneath the South Caspian seafloor does not exceed 22–28 km. In adjacent areas – particularly near the shelf escarpments and the Absheron-Prebalkhan structural

threshold – this boundary plunges to depths of 30–35 km. It is noteworthy, however, that the prevailing view concerning the ubiquitous absence of a "granitic layer" – a seismic velocity layer characterized by values of 6.0–6.3 km/s – is challenged by several researchers, giving rise to ongoing scholarly debate (Khalilova, & Seyidov, 2023).

Secondly, the basin is marked by an extraordinarily thick sedimentary cover, reaching its maximum accumulation in the central sector. Integrated evidence from marine seismic surveys, offshore drilling, and geological mapping of adjacent Azerbaijani and Turkmenian territories suggests that the South Caspian Basin has accumulated high amount of sedimentary influx (Abdulla-Zada, & Vakhably, 2021; Huseynov, 2003). Its exceptional sedimentary thickness, tectonic complexity, and ongoing hydrocarbon generation at

extreme depths render it a subject of continued scientific interest and industrial investment (Kerimov et al., 2015). Surrounded by collisional orogenic belts, the basin has accumulated more than 25 kilometers of sedimentary fill, of which over 10 kilometers were deposited during the last six million years. This rapid subsidence, accompanied by anomalously low geothermal gradients, has created unique conditions wherein hydrocarbons continue to be actively generated at depths exceeding 8–12 kilometers (Alizade et al., 2018; Aliyeva, 2004). Structurally, the basin is defined by large-scale anticlinal folds, interpreted as buckle structures detached from a regional décollement zone, which serve as primary traps for oil and gas accumulations. These geological attributes have collectively positioned the

South Caspian Basin at the forefront of global hydrocarbon exploration (Javanshir et al., 2015; Bagirov, Minzverg, & Kondrushkin, 1975). Within this sequence, stratigraphic units of Paleogene, Neogene, and Quaternary age can be clearly delineated, the specific characteristics of which will be addressed in subsequent sections.

The third defining feature is the remarkable concordance between the present-day bathymetry of the basin and the distribution of sediment thickness. The uppermost boundary of the sedimentary fill is overlain directly by a water column exceeding 1 km in depth, thereby creating a unique, uninterrupted stratigraphic-hydrological continuum (Kerimova, 2023; Abbasov, & Guliyev, 2003).

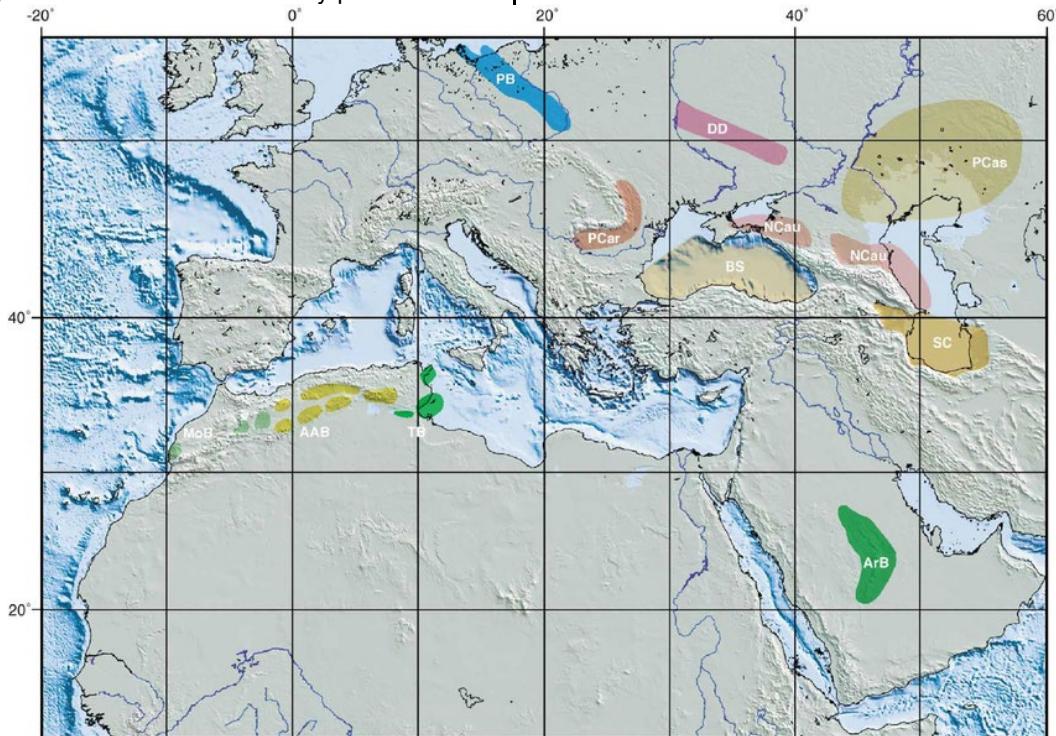


Fig. 1. Location map of the SCB within the central segment of Mediterranean-Alpine mobile belt.
 PB: Polish Basin; PCar: Pre-Carpathian basins; BS: Black Sea; DD: Dniepr-Donets basin; PCas: Precaspian basin;
 Ncau: North Caucasus basins; SC: South Caspian basin; MoB: Moroccan basins;
 AAB: Algerian Atlas basins; TB: Tunisian basins; ArB: Arabian basin

Nevertheless, the South Caspian Basin is not solely defined by these primary attributes. It also exhibits a range of tectonic and morphostructural peculiarities that set it apart from other basins within the Alpine-Mediterranean orogenic system. Of particular significance is the dominance of meridionally oriented structural elements formed during the most recent tectonic phase of basin evolution. These features stand in stark contrast – both spatially and morphologically – to the older, longitudinal tectonic frameworks aligned with the Caucasian trend. Notably, Pliocene deposits within the basin and adjacent regions rest unconformably – with pronounced angular and azimuthal discordance – upon stratigraphically older formations of various ages associated with the Alpine fold belt as well as the younger Scythian and Turan platforms (Abdulla-zada, & Vakhably, 2021; Pogorelova, 2019).

In addition to this distinctly superimposed tectonic architecture, the South Caspian Basin displays a zone-like, concentric structural pattern, most vividly expressed in the regional gravitational field. This pattern is traceable at multiple depth levels through the configuration of seismic

discontinuities and the behavior of reflection boundaries (Menshov, 2021; Kerimov et al., 2015).

Situated within this exceptional basin, the Absheron-Prebalkhan tectonic zone forms a prominent structural corridor extending across the western margin of the Caspian Sea. This zone hosts several offshore fields of strategic significance, with the Absheron-Bank and Darwin Bank fields representing two of the most productive and extensively studied accumulations (Fig. 2). The tectonic architecture of this region is dominated by NW-SE-trending brachyanticlinal folds, often complicated by faulting, and lateral facies variability – factors which have played a crucial role in the entrapment and preservation of hydrocarbons.

The Absheron-Bank field was discovered in 1951 during exploratory operations aimed at delineating structural highs in the shallow marine shelf zone north of Pirallahi Island. Located at the intersection of multiple anticlinal trends – including the Goshadash, Gilavar, and Darwin structures – the field has since become a benchmark for evaluating Neogene petroleum systems in the region. Early production commenced following the discovery of natural gas in 1954 from the Kala formation, followed

by the identification of oil-bearing intervals in 1965 within the Kirmaki suite. Detailed stratigraphic and structural studies have demonstrated that the productive intervals in Absheron-Bank are mainly confined to the lower subdivisions of the Productive Series, characterized by alternating sandstone, siltstone, and claystone units, which exhibit favorable reservoir properties and are closely associated with active source rocks (Aliyeva, 2004).

In parallel, the Darwin Bank field, discovered in 1950 and fully located offshore, lies approximately 6 kilometers northeast of Pirallahi Island and is considered a structural and genetic continuation of the Absheron-Bank – Pirallahi – Gurgan-Deniz trend. Geological exploration has shown that the Darwin structure is underlain by a thick accumulation of Pliocene sediments of the Productive Series, within which the Kirmaki and underlying Prekirmaki formations form the principal reservoir units (Abdulla-zada, & Vakhably, 2021; Aliyeva, 2021). These formations, with total thicknesses exceeding 1900 meters, have been penetrated by hundreds of wells, enabling comprehensive characterization of their porosity, permeability, and saturation regimes (Kerimov, Sharifov, & Zeynalova, 2023). The field has undergone multiple stages of development, including secondary recovery efforts such as water injection, and is currently in

the late phase of production, with diminishing returns due to reservoir depletion and declining pressure support.

Despite decades of production, substantial hydrocarbon volumes remain unrecovered in both fields, necessitating a re-evaluation of their potential using updated geological, geophysical, and engineering methodologies. Reservoir modeling, petrophysical reinterpretation, and field performance analyses are essential to understanding the remaining reserves and optimizing recovery. Moreover, the operational challenges posed by offshore infrastructure degradation, complex well conditions, and fluctuating water cuts require adaptive strategies grounded in high-resolution subsurface data.

This study aims to deliver a comprehensive reassessment of the hydrocarbon potential of the Absheron-Bank and Darwin Bank fields through the integration of historical production data, reserve audits, reservoir characteristics, and development dynamics. By correlating geological structures with production history and petrophysical parameters, the research seeks to identify untapped potential within mature zones and guide future field development strategies. The findings are not only relevant for enhancing recovery in these specific fields but also offer valuable insights applicable to other structurally analogous accumulations across the South Caspian offshore region.

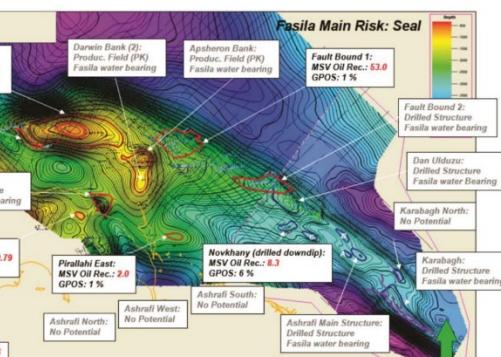


Fig. 2. Location map of Absheron-Bank and Darwin bank fields (Javadova, 2024)

Relevance of the study

The South Caspian Basin, as one of the most actively subsiding sedimentary basins globally, continues to serve as a natural laboratory for investigating complex petroleum systems. The Absheron-Prebalkhan tectonic zone, hosting the Absheron-Bank and Darwin Bank fields, offers a rare opportunity to examine reservoir behavior within mature offshore fields undergoing advanced depletion stages. This study is particularly relevant in the context of transitioning legacy fields into modern production systems by integrating geological, petrophysical, and engineering data.

Moreover, the methodological framework employed – comprising stratigraphic correlation, volumetric reserve reassessment, and performance diagnostics – serves as a model applicable to other geologically analogous offshore fields undergoing late-stage development.

Scientific novelty

1. The study introduces an advanced integrative methodology for re-evaluating mature offshore fields by synthesizing over seven decades of geological, petrophysical, seismic, and production data – constituting the most comprehensive reassessment to date of the Absheron-Bank and Darwin Bank fields.

2. The application of comparative basin analysis with analogs such as the Nile Delta and Gulf of Suez demonstrates the geodynamic and operational transferability of the workflow, affirming its relevance for petroleum provinces sharing characteristics such as rapid burial, overpressure, and structural compartmentalization.

3. The study advances a predictive conceptual framework that integrates legacy EOR interventions (e.g., pressure maintenance, dual-lateral drilling) with

modern reservoir management strategies, offering replicable guidelines for field redevelopment across analogous tectono-stratigraphic settings.

Methods

The present study is based on a comprehensive analysis of geological, geophysical, and production datasets collected from the Absheron-Bank and Darwin Bank oil and gas fields, both located within the Absheron-Prebalkhan tectonic zone of the South Caspian Basin. The methodological approach integrates historical exploration results with modern reservoir evaluation techniques to provide a refined assessment of hydrocarbon potential, reserve dynamics, and field performance.

A total of 74 wells from the Absheron-Bank field and 776 wells from the Darwin Bank field were analyzed to assess spatial distribution of hydrocarbon-bearing horizons, reservoir continuity, and production performance. These wells include exploration, development, and injection wells drilled over several decades. Structural maps, cross-sections, and borehole stratigraphic logs were used to define reservoir geometry and structural closure. The primary productive intervals include the Kirmaki suite and Kala suite in the Absheron-Bank field, and the Kirmaki, Prekirmaki, and Lower Productive Series' suites in the Darwin Bank field (Yolchuyeva et al., 2024).

Hydrocarbon reserves were assessed using volumetric methods and categorized in accordance with the B+C1+C2 classification system for the Absheron-Bank field, and A+B+C1+C2 for the Darwin Bank field. Initial balance reserves and recoverable reserves were calculated for both oil and gas phases. Residual reserves and cumulative production were also evaluated to assess the degree of resource depletion.

Field production history was reviewed through the analysis of cumulative oil, gas, and water production data. Time series analysis of annual production rates was performed to evaluate field performance, productivity decline trends, and reservoir drive mechanisms. Current recovery factors, water cut levels, and well performance indicators were compared across development stages and geological blocks.

By combining multidisciplinary datasets and long-term operational experience, this study applies a systems-based approach to reassess the hydrocarbon potential and remaining productive life of two mature yet strategically important offshore fields in the South Caspian Basin.

Structural-tectonic setting and Stratigraphy

The Absheron-Bank field is situated on a well-defined anticlinal structure measuring approximately 10 km in length and 2.5 km in width. It lies within the convergence zone of several significant structural axes, including the Gosha-Dash, Gilavar, and Darwin anticlines. The field's geometry reflects a combination of tectonic folding and localized faulting, forming effective traps for both oil and gas (Kerimov et al., 2015; Khalilov, 2012). The shallow water depth of 2–20 meters across the field area has facilitated exploration and early-stage development.

The Darwin Bank field is located northeast of Pirallahi Island, in the shallow offshore zone of the Caspian Sea, at water depths ranging from 10 to 25 meters. It forms a structural continuation of the Absheron-Bank – Pirallahi – Gurgan-Deniz anticlinal system and shares a similar tectonic evolution. The Darwin Bank fold represents a brachyanticline trending in a submeridional direction, characterized in its southern sector by a markedly steep south-southwestern limb and a comparatively gentle north-northeastern flank. Within the northern segment of the structure, both limbs and the northern pericline exhibit a

discernible flattening, resulting in a meridionally oriented, arcuate uplift whose convexity is directed westward. The structure is complicated by local tectonic disturbances, particularly in the crestal zones, which have influenced fluid migration and reservoir compartmentalization. This intricate fold morphology is indicative of the evolving geodynamic regime within the paraxial zone of the eastern-southeastern plunge of the Greater Caucasus. It further reflects the influence of pronounced tectonic stresses, predominantly of a compressional nature (Pogorelova, 2019).

The regional tectonic evolution of the area, driven by compressional stresses associated with the collision of the Arabian and Eurasian plates, has promoted vertical and lateral movements that shaped the present-day fold-and-thrust architecture.

The Darwin Bank and Absheron-Bank fields, located within the shallow-water sector of the South Caspian Basin, are typified by a thick succession of Cenozoic sediments, reflecting the region's complex tectonostratigraphic evolution. These fields lie within a zone of intense Neogene–Quaternary sedimentation and tectonic deformation, where hydrocarbon entrapment is predominantly controlled by anticlinal folding and fault-related structures. Stratigraphically, the sedimentary cover encompasses a complete section from the Paleogene–Neogene transition to the Quaternary, with the Pliocene Productive Series serving as the principal reservoir unit.

Results

The analysis of production data, geological structure, and reservoir properties from the Absheron-Bank and Darwin Bank fields provides critical insight into their current status, untapped potential, and broader relevance to hydrocarbon systems in the South Caspian Basin.

According to the B+C1+C2 classification system, the initial balance reserves of the Absheron-Bank field are estimated at 6.291 million tons of oil, 240 million m³ of dissolved gas, and 2,327 million m³ of free gas (Fig. 3). Of these, the recoverable reserves (Fig. 4) comprise 1.258 million tons of oil, 177 million m³ of dissolved gas, and 2,013 million m³ of free gas, primarily associated with the Kirmaki suite (oil-bearing) and the Gala suite (gas-bearing) (Abbasov, & Guliyev, 2003; Bagirov, Minzverg, & Kondrushkin, 1975).

Production of crude oil and liquid began to rise steadily in the early 1970s, with notable fluctuations in the 1980s and 1990s. A sharp increase is observed post-2000, peaking between 2005 and 2008, after which oil output gradually declines. The total produced liquid exhibits a similar trend, with a prominent peak slightly above 50 million m³ around 2007.

Free gas production shows a continuous upward trend starting from the mid-1980s, with a pronounced surge after 1998, reaching its maximum between 2007 and 2012. Following this period, free gas output demonstrates a consistent decline. In contrast, associated gas volumes (green line) remain comparatively low throughout the entire operational history, with minimal contribution to the overall gas output.

Overall, the production profile reflects a typical life cycle trend: an initial build-up phase, a plateau of maximum output during the 2000s, followed by a decline phase likely due to reservoir depletion and reduced well productivity (Fig. 5).

By January 1, 2022, 74 wells had been drilled, yielding 495.8 thousand tons of oil, 1,195.2 million m³ of gas, and 239.3 thousand m³ of formation water, amounting to 39.4 % depletion of recoverable oil reserves (Fig. 6).

Remaining reserves stand at 5.795 million tons of oil and 219.6 million m³ of dissolved gas, with recoverable

quantities at 762.2 thousand tons of oil and 156.6 million m³ of dissolved gas (Fig. 7).

Despite the field's strategic location and early promise, it currently operates only five production wells, with much of its infrastructure either decommissioned or inactive. Geological and technical complications have resulted in the abandonment of 40 wells, and others are categorized as preserved, damaged, or under monitoring.

Petrophysical analysis reveals the Kirmaki suite has porosity values between 10.5 % and 33.5 %, permeability of 0.086 mD, and oil saturation up to 80 %. The Gala suite, although gas-prone, also demonstrates good porosity (~22–23 %) but slightly lower permeability. These reservoir attributes, combined with significant residual reserves, underscore the field's potential for recovery enhancement (Table 1).

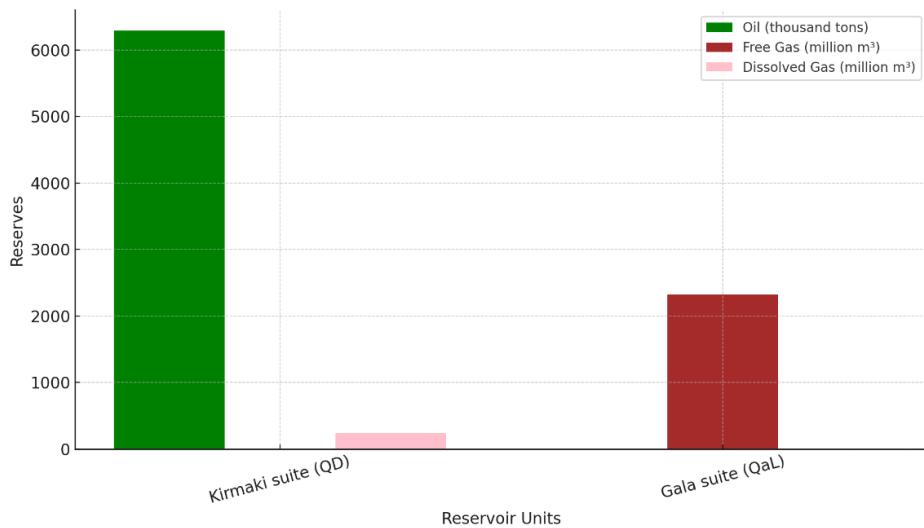


Fig. 3. Initial balance reserves of the Absheron-Bank field (B+C1+C2 category)

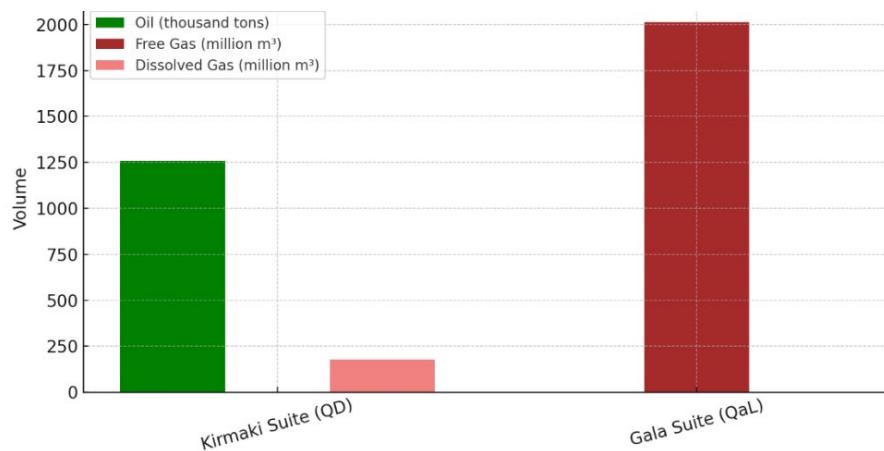


Fig. 4. Recoverable reserves of the Absheron-Bank field (B+C1+C2 category)

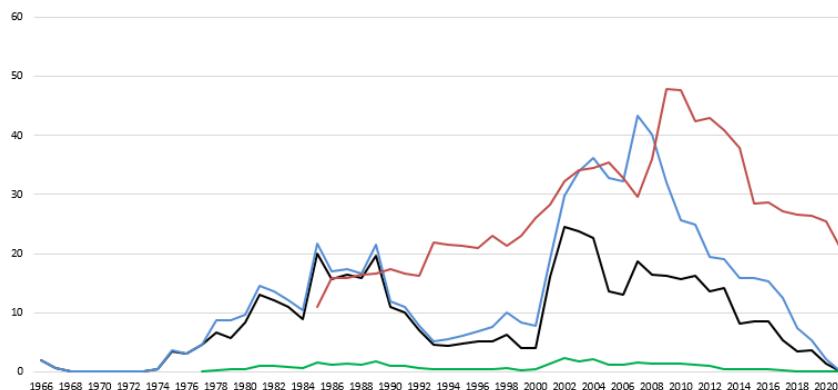


Fig. 5. Annual production indicators of the Absheron-Bank field

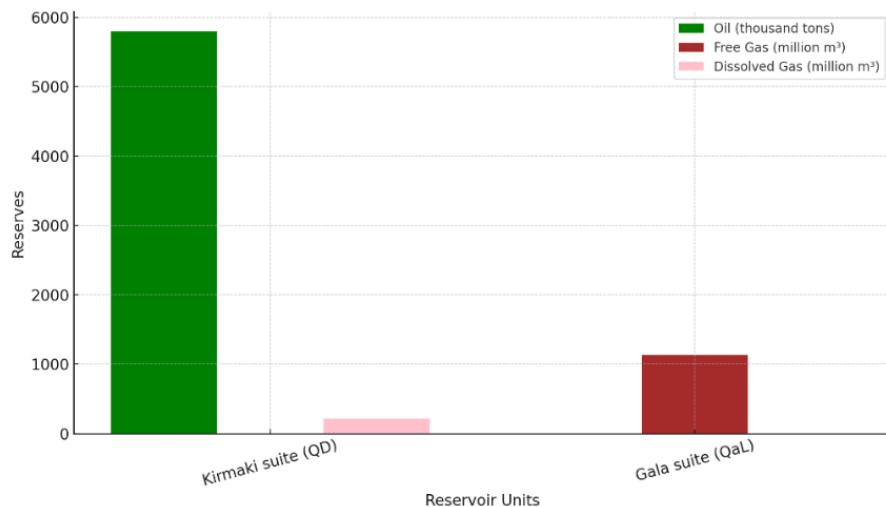


Fig. 6. Remaining balance reserves of the Absheron-Bank field (B+C1+C2 category)

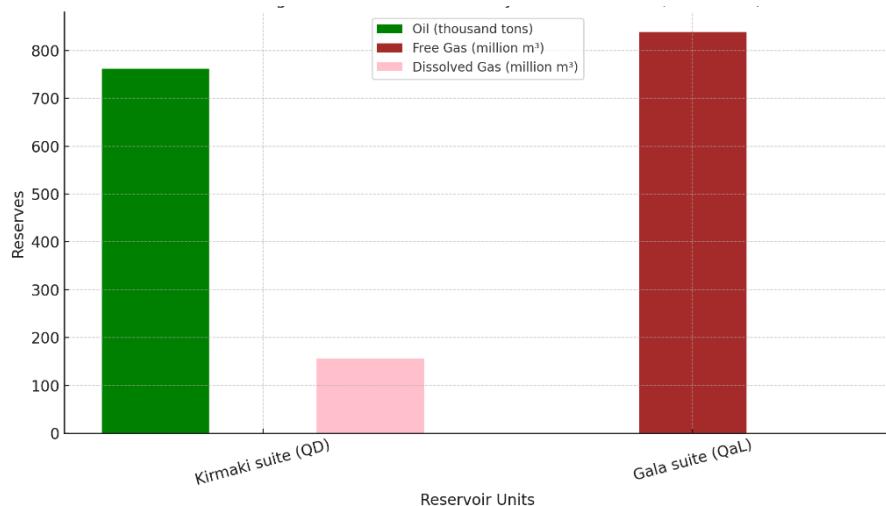


Fig. 7. Remaining recoverable reserves of the Absheron-Bank field (B+C1+C2 category)

Table 1
Summarized the geological and physical parameters of the main production zones of the Absheron-Bank field

Reservoir Suite	Clay Content (%)	Carbonate Content (%)	Porosity (%)	Permeability (mkm²)	Oil Saturation (%)	Effective Thickness (m)	Reservoir Temperature (°C)	Reservoir Pressure (MPa)
Kirmaki suite	48	28	10.5–33.5	0.086	64–80	16.7	25–32	5.5–9.4
Gala suite	48	28	22–23	0.052	67–80	19.7	45.5	19.7

The production decline and infrastructural degradation reflect both reservoir complexity and operational limitations. Structurally, the field occupies a brachyanticlinal fold intersected by faults and characterized by lateral facies variability, which introduces compartmentalization and challenges efficient drainage. The shallow offshore setting facilitated early development, but the aging infrastructure and low productivity of remaining wells now demand a transition to selective well re-entry and enhanced oil recovery (EOR) strategies.

Discovered in 1950, the Darwin Bank field has undergone extensive drilling, with 776 wells having been completed as of 2022. Cumulative production has reached 17.93 million tons of oil and 1.43 billion m³ of dissolved gas. Water injection totaling 18.74 million m³ was carried out until 1984 to support pressure maintenance.

The principal productive intervals include the Upper and Lower Kirmaki suites (KS_{upper} subdivided into KS-1, KS-2, KS-3, KS_{lower} – KS-4, KS-5) and the Prekirmaki suite, all of

which demonstrate favorable reservoir properties. Porosity values range from 24 % to 28 %, with permeability up to 300 mD – particularly in the Prekirmaki unit. Oil saturation exceeds 75 % in some horizons, confirming the reservoir's high-quality characteristics. These formations collectively represent over 5.948 million tons of remaining recoverable oil reserves under categories A+B+C1+C2 (Fig. 8, 9).

As of January 1, 2022, a total of 776 wells had been drilled in the Darwin Bank field. These wells have cumulatively produced approximately 17,934.7 thousand tons of oil and 1,426.7 million cubic meters of dissolved gas. Additionally, 7,281.3 thousand cubic meters of water have been produced, while 18,738.2 thousand cubic meters of water have been injected into the reservoir for pressure maintenance.

Despite the field's mature status, 79.8 % of the recoverable reserves under A+B+C1 have already been extracted, with current production sustained by 167 active wells. Average daily oil production per well is 2.7 tons, with a water cut of 17.5 %. The current recovery factor is 0.26,

compared to an estimated ultimate recovery of 0.33, indicating potential for further exploitation through modernized development strategies (Fig. 10).

The remaining balance reserves of the field, under categories A+B+C1+C2, are currently estimated at 55,371.3

thousand tons of oil and 1,363.7 million cubic meters of dissolved gas (Fig. 12). The remaining recoverable reserves are assessed at 5,948.3 thousand tons of oil and 353.5 million cubic meters of dissolved gas (Fig. 11).

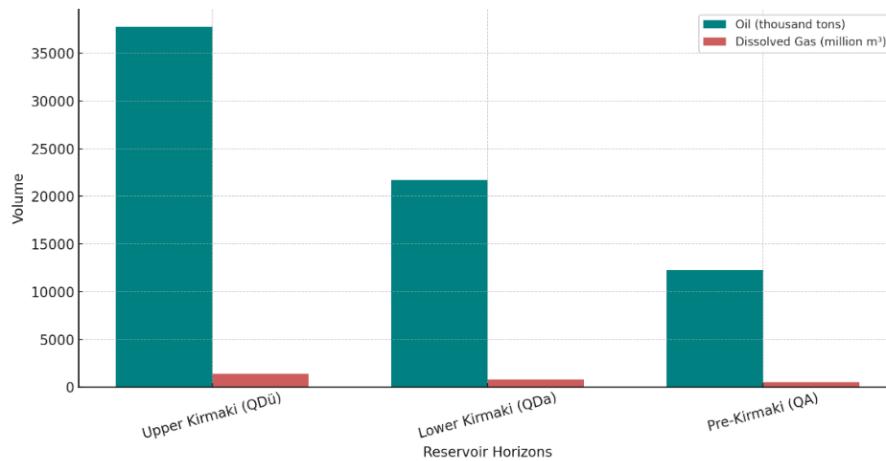


Fig. 8. The initial balance reserves in the Darwin Bank field under categories A+B+C1+C2

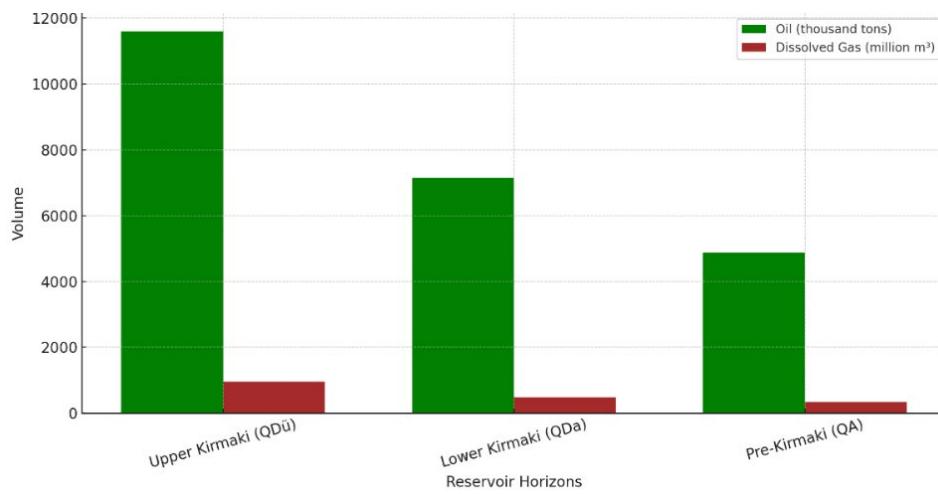


Fig. 9. The initial recoverable reserves in the Darwin Bank field under categories A+B+C1+C2

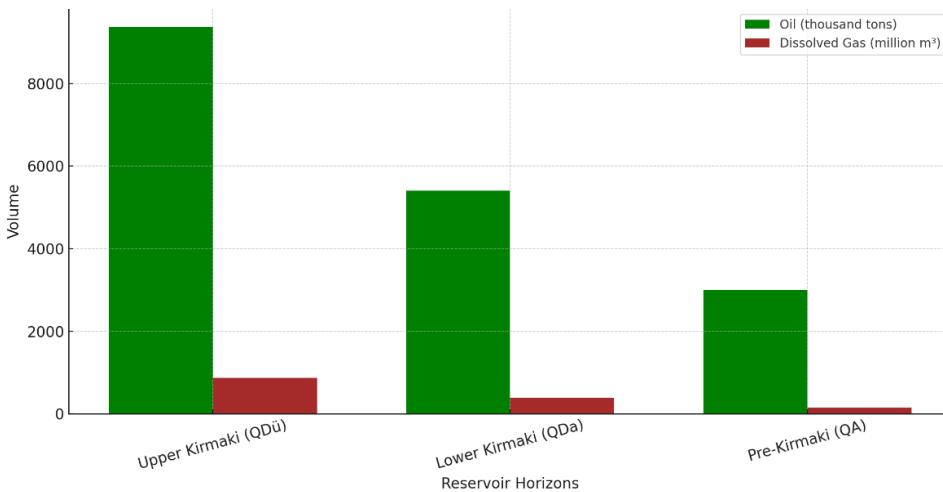


Fig. 10. Cumulative Production by Horizon in the Darwin Bank Field

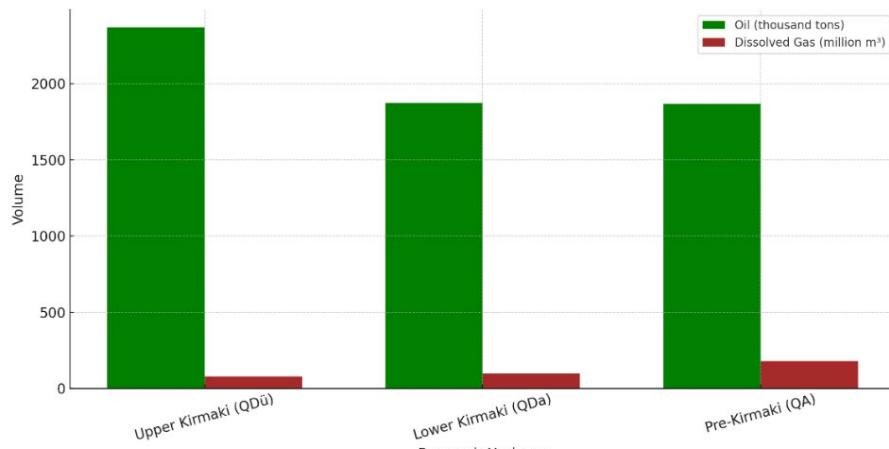


Fig. 11. Remaining Recoverable Reserves by Horizon in the Darwin Bank Field (Categories A+B+C1+C2)

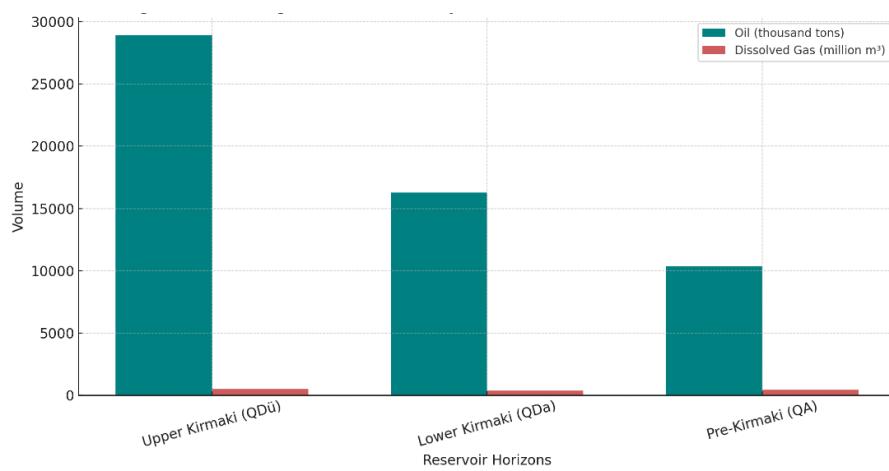


Fig. 12. Remaining Balance Reserves by Horizon in the Darwin Bank Field (Categories A+B+C1+C2)

As of 2022, the Darwin Bank field maintained an operational well stock comprising 182 wells, of which 167 wells were actively producing, while 15 wells were classified as inactive. A total of 517 wells have been decommissioned over the field's operational history due to a combination of geological and technical factors: 35 wells were abandoned for unfavorable geological conditions, 439 wells due to technical failures, and 43 wells were cancelled following post-drilling evaluations. In addition, 3 wells are currently under conservation, 20 wells are being monitored for integrity or potential re-entry, and 52 wells remain out of service due to extensive damage to hydro-technical infrastructure.

Field-level data indicate that the average daily oil production per well is approximately 2.7 tons, with an average liquid production rate of 4.0 tons per well. These relatively modest values are indicative of the field's advanced production maturity and reservoir energy depletion, further compounded by infrastructure aging.

The development of the Darwin Bank field commenced in 1950, reaching peak performance metrics by 1964, after which production entered a phase of gradual decline. Currently, the field is considered to be in Stage IV of development, characteristic of late-life fields with declining production rates and increasing operational challenges. A notable rejuvenation phase began in 2009, marked by the commissioning of new offshore platforms (Nos. 660, 670, 720, 740, and 620). This initiative led to the drilling and completion of 90 additional wells, significantly improving production efficiency and extending the field's productive capacity.

Nevertheless, deterioration of offshore platforms and associated hydro-technical infrastructure has periodically disrupted field operations. In response, a series of major repair and rehabilitation efforts have been undertaken. Since 2014, 12 wells previously rendered non-operational due to structural damage have been successfully restored, while in 2020, three wells were reactivated using dual-lateral drilling techniques, reflecting the application of modern well engineering to improve reservoir access and drainage efficiency.

Despite ongoing operational constraints related to marine logistics and seasonal weather conditions, hydrodynamic and geophysical monitoring programs remain active, facilitating real-time assessment of reservoir conditions and supporting informed decision-making for field management.

To mitigate declining reservoir pressure, a water injection program was initiated in 1955 using wells Nos. 37, 38, 39, and 41. Over the course of the program, 56 injection wells were drilled and operated, targeting multiple reservoir intervals. However, declining injection efficiency led to the program's suspension in 1984. During its active period, a total of approximately 18.74 million cubic meters of water were injected into the reservoir system (Fig. 13), contributing to improved displacement efficiency and temporary stabilization of oil output.

To identify the causes of production decline and enhance oil recovery in the Darwin Bank oil field, a series of geological interventions are being carried out. These efforts require a comprehensive understanding of the physical properties of the reservoir, including porosity, permeability, and hydrocarbon saturation, as well as the physicochemical characteristics of the reservoir fluids and gases (Table 2).



Fig. 13. Total volume of water injected into the individual horizons of the Darwin Bank field

Table 2
Summarized the geological and physical parameters of the main production zones of the Darwin Bank field

Reservoir Horizon	Clay Content (%)	Carbonate Content (%)	Porosity (%)	Permeability (mD)	Oil Saturation (%)	Effective Thickness (m)	Reservoir Temperature (°C)	Reservoir Pressure (MPa)
Upper Kirmaki (KS _{upper})	30.7	10.3	24–26	240	72–75	16.3	32	9
Lower Kirmaki (KS _{lower})	31.3	8.8	26	235	75	10.3	34	9.5
Pre-Kirmaki (PKS)	24.6	9.0	26–28	300	75–78	13.7	36	11

The Darwin Bank structure forms part of a meridionally aligned, arcuate uplift, with a steeply dipping southern limb and a gently inclined northern flank. This geometry reflects the impact of compressional stresses associated with the broader Arabian – Eurasian collision zone. Local tectonic disturbances, especially in crestal zones, have created reservoir compartmentalization, influencing pressure regimes and recovery efficiency.

Since 2009, new offshore platforms and 90 additional wells have significantly enhanced field performance. Dual – lateral drilling and the rehabilitation of wells with previously damaged infrastructure have restored production capacity. Nevertheless, logistical limitations, aging platforms, and diminishing pressure support highlight the need for a systematic redevelopment strategy focused on targeted EOR, structural modeling, and real-time reservoir monitoring.

The results from both fields underscore the importance of structural configuration and facies architecture in controlling hydrocarbon entrapment and recovery in the South Caspian Basin. The influence of fold-thrust tectonics, inherited structural trends, and meridional reactivation patterns have resulted in reservoirs with variable compartmentalization and uneven saturation distribution.

The continued existence of significant remaining reserves, particularly in the Darwin Bank field, highlights the limitations of traditional development practices and the need for updated approaches. This includes the application of reservoir simulation, 3D seismic reinterpretation, and modern EOR methods tailored to specific reservoir conditions.

These fields serve as valuable analogs for structurally similar accumulations in the region. Their production history and evolving development challenges offer important lessons for the management of mature fields across the Caspian Sea and other tectonically active offshore basins.

In conclusion, the combined results and interpretation of this study reaffirm the strategic relevance of both the Absheron-Bank and Darwin Bank fields. Through integrated geological reassessment, reservoir modeling, and infrastructure modernization, their productive life can be extended, and recovery maximized in alignment with contemporary energy strategies.

Comparative basin analysis

The hydrocarbon systems of the Absheron-Bank and Darwin Bank fields share several geological and operational characteristics with other mature offshore accumulations, both within the South Caspian Basin and in structurally and tectonically analogous basins globally. Comparative analysis enhances the broader applicability of this study and supports the refinement of development strategies in similar geological settings.

Within the South Caspian Basin, the Gunesli and Bulla-Deniz fields serve as prominent analogs. Like Absheron-Bank and Darwin Bank, these fields are located on compressional anticlinal structures formed during the Neogene-Quaternary tectonic phase and are associated with the prolific Productive Series (Middle Pliocene). The Gunesli field, Azerbaijan's most productive offshore field, exhibits similar challenges, including heterogeneous reservoirs, declining pressure, high water cuts, and aging infrastructure (Alizade et al., 2018). Secondary recovery methods such as water and gas injection, coupled with horizontal well drilling, have been applied with mixed success – lessons directly transferable to the continued development of the Darwin Bank field.

The Bulla-Deniz field, predominantly gas-bearing and also hosted within a brachyanticlinal structure, further reinforces the value of tectonically controlled traps and overpressured clay sequences as key elements of South Caspian petroleum systems (Khalilov, 2012). Reservoir

compartmentalization and crestal faulting observed at Bulla-Deniz mirror structural complications are documented at Darwin Bank, emphasizing the need for high-resolution seismic imaging and stratigraphic modeling to inform well placement and pressure management.

Beyond the Caspian region, structural and stratigraphic parallels can be drawn with the Nile Delta Basin (Eastern Mediterranean) and the Gulf of Suez (northeast Africa). In the Nile Delta (Fig. 14), Neogene deltaic sequences deposited in rapidly subsiding settings overlie mobile shale

and salt layers, forming anticlinal and faulted traps with strong stratigraphic control (Dolson et al., 2001). The combination of overpressured systems, complex sediment architecture, and compartmentalized reservoirs resembles the geological configuration of the South Caspian's offshore fields. Technological applications such as 3D seismic inversion, dynamic reservoir modeling, and geosteering in the Nile Delta have enabled more effective exploitation of deep and compartmentalized reservoirs, offering a model for potential adoption in Azerbaijan's offshore sector.

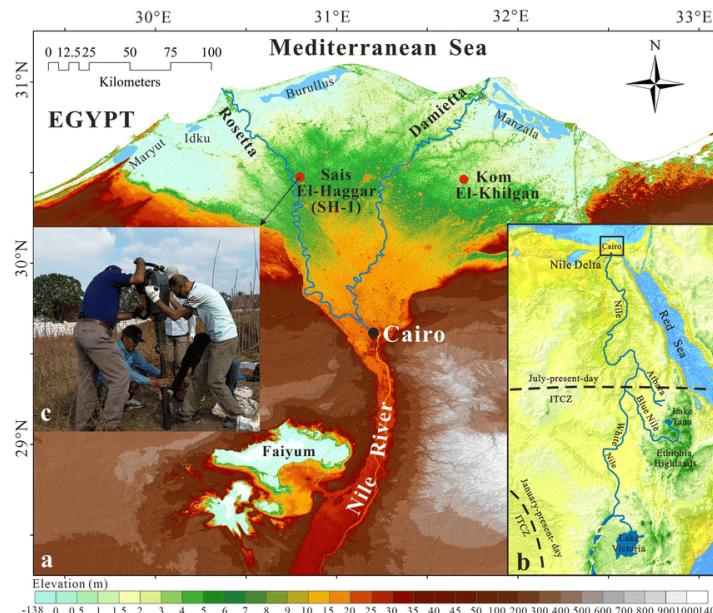


Fig. 14. Map of the Nile Delta and the Nile River Basin (delta images were formed by authors with SRTM open source at: <https://srtm.csi.cgiar.org/>)

Similarly, the Gulf of Suez (Fig. 15), a mature rift basin, exhibits a long production history from faulted anticlinal traps formed by extensional tectonics, with Miocene and pre-Miocene reservoirs. Despite tectonic divergence in origin, the Suez Basin shares operational challenges with the South Caspian, including mature infrastructure, water

encroachment, and enhanced oil recovery demands. EOR practices employed in the Gulf of Suez – such as steam flooding, surfactant-polymer injection, and infill horizontal drilling – can inform potential interventions in the late-stage development of the Absheron-Bank and Darwin Bank fields (Said et al., 2014; El Diasty, & El Beialy, 2015).

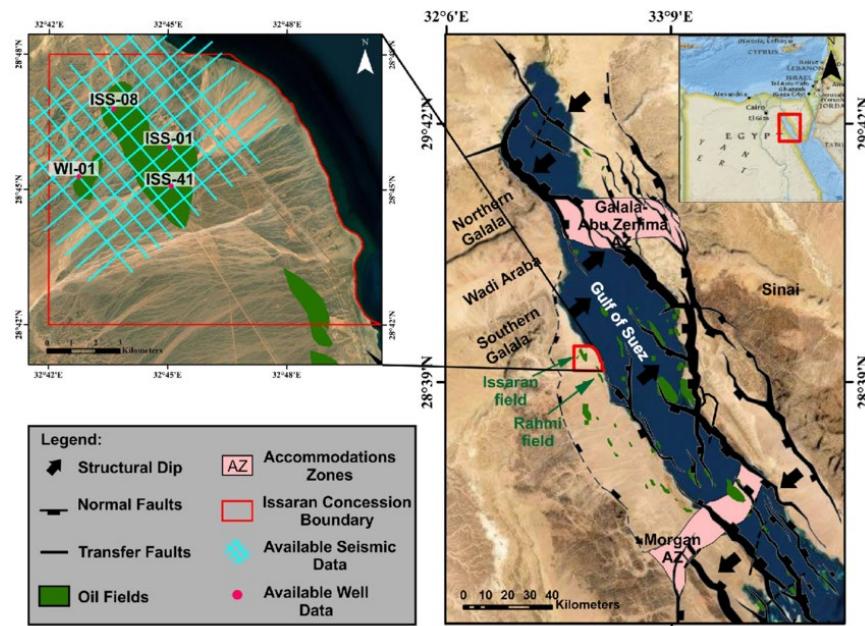


Fig. 15. A generalized structural map of the Gulf of Suez rift (Isaac, & Abu El Ata, 2023)

Overall, the comparative analysis underscores the value of cross-basin knowledge transfer. Lessons from analogous fields – both regional and global – highlight the importance of adaptive field management strategies grounded in integrated geoscientific and engineering approaches.

Discussion and conclusions

This comprehensive reassessment of the Absheron-Bank and Darwin Bank oil fields within the South Caspian Basin highlights the complex interplay of tectonic structure, stratigraphy, and reservoir dynamics that govern hydrocarbon accumulation and recovery in this geologically unique region. Both fields, situated within the Absheron-Prebalkhan tectonic corridor, are characterized by thick Neogene successions, well-developed brachyanticlinal structures, and highly heterogeneous reservoir properties shaped by prolonged compressional tectonics and rapid sedimentation.

The Absheron-Bank field, with its relatively modest scale and limited drilling infrastructure, has yielded a total of 495.8 thousand tons of oil and 1,195.2 million cubic meters of natural gas since discovery. Approximately 39.4 % of the recoverable oil reserves have been produced, with current field operations constrained by aging infrastructure and limited active well stock. The Kirmaki and Gala suites remain the principal productive units, characterized by moderate porosity and permeability, and still contain significant residual reserves that may be amenable to enhanced recovery techniques.

In contrast, the Darwin Bank field exhibits a substantially larger resource base and development history, with cumulative production reaching nearly 18 million tons of oil and over 1.4 billion cubic meters of dissolved gas. Despite entering the final stage of its production life cycle, the field retains approximately 5.95 million tons of recoverable oil and over 353 million cubic meters of dissolved gas. The primary productive horizons – Prekirmaki, Kirmaki (upper and lower), and Gala suites – demonstrate favorable reservoir parameters, including high porosity (up to 28 %) and permeability (up to 300 mD), particularly in the Prekirmaki unit. However, field performance continues to be challenged by structural compartmentalization, water encroachment, and infrastructure degradation.

The methodology and interpretative framework developed in this study extend beyond the immediate scope of the South Caspian region. The integration of historical production records, reservoir diagnostics, and tectono-stratigraphic interpretation can be adapted for other mature offshore fields located in structurally complex and tectonically active basins. Examples include the Nile Delta, Gulf of Suez, and parts of the Gulf of Mexico, where analogous compressional regimes, rapid sedimentation, and compartmentalized reservoirs exist. Therefore, the results of this study can contribute to broader global practices in revitalizing mature hydrocarbon assets under similar geological and operational constraints.

In conclusion, the combined results and interpretation of this study reaffirm the strategic relevance of both the Absheron-Bank and Darwin Bank fields. Through integrated geological reassessment, reservoir modeling, and infrastructure modernization, their productive life can be extended, and recovery maximized in alignment with contemporary energy strategies.

Authors' contribution: Murad Abdulla-zada – writing, investigation, methodology, formal analysis, conceptualization; Tamella Zahidova: data curation, investigation; formal analysis,

visualization. Rufat Shahbazov: investigation, visualization, data curation, supervision.

References

Abbasov, Z. Y., & Guliyev, A. M. (2003). Recalculation of hydrocarbon reserves in the Bulla-sea gas condensate oil field. *Elm* (pp. 3–8) [in Russian]. [Аббасов, З. Ю., Гулиев, А. М. (2003). Пересчет запасов углеводородов на газоконденсатном месторождении Булла-море. Элм (с. 3–8)].

Abdulla-zade, M. Ch., & Vakhably, N. F. (2021). About the petrofacial analysis of sediments of the Productive serie's lower section of Absheron-Balkhan uplift zone based on geophysical and core studies. *Geologist of Azerbaijan. Scientific Bulletin* (pp. 112–117).

Alizade, A. A., Guliyev, I. S., Mamedov, P. Z., Alieva, E. G., Feyzullaev, A. A., & Huseynov, D. A. (2018). *Productive series of Azerbaijan* (Vol. 1). Nedra [in Russian]. [Ализаде, А. А., Гулиев, И. С., Мамедов, П. З., Алиева, Э. Г., Фейзуллаев, А. А., Гусейнов, Д. А. (2018). Продуктивная серия Азербайджана, (Т. 1). Недра].

Aliyeva, E. G. (2004). Depositional environment and reservoir architecture of the Productive Series VII-V horizons in the Alyat ridge offshore part (Alyat-deniz, Bulla-deniz fields). In *Baku* (pp. 41–49).

Aliyeva, S. A. (2021). Methods of predicting lithological-facial characterization of deeply buried prospective oil and gas bearing sediments. *Bulletin of Taras Shevchenko National University of Kyiv. Geology*, 1(92), 88–92.

Bagirov, B. A., Minzverg, L. V., & Kondruskin, Y. T. (1975). Generalization of the results of prospecting and exploration studies for the purpose of calculating gas and condensate reserves along the VIII horizon of the Duvannaya-Sea and Bulla-sea. In *Baku* (pp. 36–44).

Dolson, J., Shann, M., Matbouly, S., Harwood, A., Rashed, M., Gabr, M., Salah, M., & Faulkner, J. (2001). The petroleum potential of Egypt. *American Association of Petroleum Geologists Bulletin*, 85(4), 687–707.

El Diasty, M. E., & El Beialy, S. Y. (2015). Hydrocarbon potential and exploration strategies in the Gulf of Suez Basin, Egypt. *Marine and Petroleum Geology*, 65, 145–160. <https://doi.org/10.1016/j.marpgeo.2015.03.021>

Huseynov, D. A. (2003, October). New data on oil source-rocks in Pliocene sediments of the South Caspian petroleum system. In *1st EAGE North African/Mediterranean Petroleum & Geosciences Conference & Exhibition* (pp. cp-8). European Association of Geoscientists & Engineers. <https://doi.org/10.3997/2214-4609-pdb.8.P042>

Isaac, D. B., & Abu El Ata, A. S. (2023). RETRACTED ARTICLE: Improvement of seismic data quality and recognition of fault discontinuities through seismic data conditioning applications: a case study of Issaran oil field, Gulf of Suez, Egypt. *Journal of Petroleum Exploration and Production Technology*, 13(2), 591–607.

Javadova, A. (2024). Geology and prospects of hydrocarbons in the transition zone of the shallow water of the Apsheron field. *Geodynamics*, 1, 27–45. <https://doi.org/10.23939/jgd2024.01.027>

Javanshir, R. J., Riley, G. W., Duppenbecker, S. J., & Abdullayev, N. R. (2015). Validation of lateral fluid flow in an overpressured sand-shale sequence during development of Azeri-Chirag-Gunashli oil field and Shah-Deniz gas field: South Caspian Basin, Azerbaijan. *Marine and Petroleum Geology*, 59, 593–610. <https://doi.org/10.1016/j.marpgeo.2014.07.019>

Kerimov, V. M., Sharifov, J. J., & Zeynalova, S. A. (2023). Intensification of oil production in long-term developed offshore fields. *Journal of Geology, Geography and Geocology, Dnepr*, 31(2), 59–66.

Kerimov, V. Yu., Guliyev, I. S., Guseinov, D. A., Lavrenova, E. A., Mustayev, R. N., Osipov, R. N., & Serikova, U. S. (2015). *Forecasting of Oil and Gas Potential in Regions with Complex Geological Structure*. Nedra [in Russian]. [Керимов, В. Ю., Гулиев, И. С., Гусейнов, Д. А., Лавренова, Е. А., Мустаев, Р. Н., Осипов, Р. Н., Серикова, У. С. (2015). Прогнозирование нефтегазоносности регионов со сложным геологическим строением. Недра].

Kerimova, K. A. (2023). Study of petrophysical parameters of productive series by use of well data. *Geophysical Journal*, 45(3), 135–142.

Khalilov, E. N. (2012). Geological and geophysical characteristics of Bulla-Deniz gas field and its development history. *Azerbaijan Oil Industry Journal*, 7(3), 16–23.

Khalilova, L. N., & Seyidov, V. M. (2023). Evolution of hydrocarbon deposits in the South Caspian Basin. *Geofizicheskiy Zhurnal*, 45(3), 126–134.

Menshov, O. (2025). The role of magnetic methods in the study of areas of the tight oil and gas: introduction. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 1(92), 42–49. [in Ukrainian]. [Меньшов, О. (2025). Роль магнітних методів при дослідженні територій ущільнених порід-колекторів нафти і газу: постановка завдання. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 1(92), 42–49]. <https://doi.org/10.17721/1728-2713.92.06>

Mikhailov, V. (2025). Comparative characteristics of Maikop series of Caspian-Black Sea region. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 2(77), 59–71 [in Ukrainian]. [Михайлів, В. (2025). Порівняльна характеристика Майкопської серії Каспійсько-Чорноморського регіону. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 2(77), 59–71]. <https://doi.org/10.17721/1728-2713.77.07>

Pogorelova, Ye. Yu. (2019). Geotectonic aspects of oil and gas potential of the intermountain segment of the Black Sea-Caspian Sea region. *Naukovyi Visnyk NNU*, 1, 5–12.

Said, A. M., El Barkooky, A. A., Geriesh, M. H., & El Kammar, A. M. (2014). Structural evolution and petroleum systems of the Gulf of Suez Basin, Egypt. *Journal of African Earth Sciences*, 95, 28–47. <https://doi.org/10.1016/j.jafrearsci.2014.03.003>

Yolchuyeva, U. J., Abbasov, V. M., Jafarova, R., Mammadov, A., Ahmadbayova, S., Rahimov, R. A., & Alizadeh, F. (2024). Chemical

composition and molecular structure of asphaltene in Azerbaijani crude oil: A case study of the Zagli field. *Fuel*, 373, 132084. <https://doi.org/10.1016/j.fuel.2024.132084>

Отримано редакцію журналу / Received: 12.03.25

Прорецензовано / Revised: 23.04.25

Схвалено до друку / Accepted: 30.06.25

Мурад АБДУЛЛА-ЗАДА, д-р філософії (науки про Землю)

ORCID ID: 0009-0001-4150-8340

e-mail: murad.abdullazade@asoiu.edu.az

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Тамелла ЗАГІДОВА, асп.

ORCID ID: 0009-0005-9692-1684

e-mail: tamellazahidova@gmail.com

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Руфат ШАХБАЗОВ, асп.

ORCID ID: 0009-0003-6009-3982

e-mail: rufetshaxbazov@gmail.com

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

КОМПЛЕКСНА ПЕРЕОЦІНКА ВУГЛЕВОДНЕВОГО ПОТЕНЦІАЛУ РОДОВИЩ АПШЕРОН БАНКА ТА ДАРВІН БАНКА НА АПШЕРОНСЬКО-ПРИБАЛХАНСЬКОМУ СТРУКТУРНОМУ ПОРОЗІ

В ступ. Південнокаспійський басейн є винятковою геодинамічною провінцією, що вирізняється надзвичайною потужністю осадового чохла та активними нафтогазоносними системами, що дає змогу віднести його до провідних нафтогазоносних регіонів світу. Оточений колізійними орогенними поясами, басейн акумулював понад 25 км осадових порід, з яких понад 10 км було відкладено протягом останніх шести мільйонів років. Така інтенсивна субсіданція й занурення відбувається за умов аномально низького геотермічного градієнта, що сприяло триваючому формуванню вуглеводнів на глибинах понад 8–12 км. Регіонально поширені антиклінальні структури, інтерпретовані як складчасті згни, утворені над базальною площиною відриву, виявлено завдяки регіональній 2D-сейсморозівді. Посedання активної генерації вуглеводнів, наявності великих неосвоєних структурних пасток і сприятливого інвестиційного середовища підвищує стратегічне значення басейну в глобальному енергетичному секторі.

У межах цієї тектонічно складної зони Апшеронсько-Предбалханський структурний порів є однією з ключових нафтогазоносних провінцій, що охоплює низку стратегічно важливих родовищ, зокрема родовища Апшеронського банку та Банку Дарвіна. Це дослідження представляє цілісну, інтегровану з даними оцінку їхнього вуглеводневого потенціалу на основі багаторічних розвідок, історичних показників видобутку та геонаукових даних про надра. Родовище Апшеронського банку відкрито у 1951 р. за 25 км на північ від острова Піраллахи, а родовище Банку Дарвіна – у 1950 р.; обидва мають тектонічну спорідненість з присеглими антиклінальними структурами та є центральними об'єктами цього аналізу.

Методи. Для оцінки характеристик колекторів проведено геолого-геофізичні дослідження, що включають стратиграфічну кореляцію, аналіз пластових тисків та продуктивності. Дані кернового матеріалу та сейсморозівдік інтегрувалися з петрофізичними параметрами – пористістю, проникністю, насыченням флюїдами – з метою характеристики продуктивних горизонтів (зокрема, кірмакинського та калинського ярусів).

Результати. Результатами вказують на наявність значних скупчень вуглеводнів у нижньоплюоценових відкладах Продуктивної серії. Початкові запаси родовища Апшеронського банку за категоріями В+С1+С2 оцінюються у 6,3 млн т нафти та понад 2,5 млрд м³ розчиненого й вільного газу. Станом на січень 2022 р. пробурено 74 свердловини, які забезпечили видобуток 495,8 тис. т нафти та близько 1,2 млрд м³ газу, що становить 39,4 % від оцінених випущених запасів нафти.

Родовище Банку Дарвіна, розробка якого здійснювалася через 776 свердловин, дало близько 17,9 млн т нафти та 1,4 млрд м³ розчиненого газу, при цьому було випущено майже 80 % прогнозованих вилучених запасів. Поточні роботи зосереджено на завершальному етапі продуктивного циклу родовища, коли спостерігається зниження дебітів та зношеність інфраструктури, що створює експлуатаційні труднощі.

Висновки. Дослідження підкреслює необхідність подальшого впровадження заходів підтримки пластового тиску, застосування методів підвищення нафтогазу (EOR) та оптимізації режимів закачування води з метою продовження терміну ефективної експлуатації родовищ. Також наголошується на важливості безперервного геологічного, петрофізичного та гідродинамічного моніторингу для реалізації адаптивного управління розробкою, особливо в умовах зрілих шельфових об'єктів Південнокаспійської нафтогазоносної провінції.

Ключові слова: Південнокаспійський басейн, Апшеронсько-Предбалханська тектонічна зона, нафтогазовий потенціал, шельфові родовища, характеристика колекторів, Продуктивна серія, підвищення нафтогазу (EOR).

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

HYDROCARBON PATTERNS ACROSS TIME AND STRUCTURE: A MULTI-METHOD STUDY OF THE BAKU ARCHIPELAGO PETROLEUM SYSTEMS

(Представлено членом редакційної колегії д-ром геол. наук, проф. В.А. Михайлівим)

B a c k g r o u n d . The Baku Archipelago, situated within the western offshore margin of the South Caspian Basin, represents one of the most prolific hydrocarbon-bearing regions in Azerbaijan. Its tectonic continuity with the Southern Gobustan and Lower Kura Depression zones, coupled with the unique geological evolution of the South Caspian megadepression, has led to the formation of complex oil, gas, and gas-condensate systems within the Lower Pliocene Productive Series (PS). Despite decades of exploration and development, the mechanisms controlling the spatial distribution, migration pathways, and compositional variations of hydrocarbons across this region remain the subject of scientific debate.

M e t h o d s . This study integrates a comprehensive suite of geological, geochemical, and geophysical data from multiple fields, including Duvanni-deniz, Sangachal-deniz, Bulla Island, Bulla-deniz, and Garasu. Analytical methods included gas chromatography for light and heavy hydrocarbon fractions, elemental analysis, hydrochemical classification of formation waters, and the calculation of geochemical indices such as *n*/isoalkane ratios, $\Sigma(nC_{13}-nC_{25})/\Sigma(nC_{12}-nC_{30})$, and $\Sigma(iC_{13}-iC_{16})/\Sigma(iC_{18}-iC_{23})$. Structural and stratigraphic interpretations were supported by seismic data and well logs.

R e s u l t s . The study identifies two distinct genetic groups of oils within the archipelago, corresponding to the southwestern and northeastern limbs of major structures. Hydrocarbon composition is shown to correlate with burial depth, structural position, and the mineralogical characteristics of surrounding formations. Vertical hydrochemical inversions, characterized by ultra-alkaline, low-mineralized waters underlying more mineralized strata, suggest significant upward migration of deep fluids. Increasing methane content and decreasing concentrations of methane homologs with depth, combined with rising gas dryness, support the concept of thermally driven compositional differentiation. Additionally, biodegradation signatures in high-molecular-weight fractions provide evidence of post-accumulation alteration.

C o n c l u s i o n s . The findings highlight the dominant role of vertical migration and secondary geochemical processes – including catagenesis, phase separation, and biodegradation – in shaping the present-day distribution and composition of hydrocarbon fluids in the Baku Archipelago. The strong alignment between fluid composition, structural setting, and reservoir properties underscores the necessity of integrated basin modeling approaches for future exploration. These insights offer a refined framework for predicting hydrocarbon type and quality in untested segments of the Productive Series and deeper stratigraphic units of the South Caspian Basin.

K e y w o r d s : South Caspian Basin, Baku Archipelago, hydrocarbon migration, gas-condensate systems, geochemistry, *n*-alkanes, isoprenoids, catagenesis, biodegradation, vertical transport, Productive Series.

Background

The South Caspian Basin (SCB) is one of the world's most geodynamically active and hydrocarbon-rich regions. As the deepest and most sediment-filled segment of the broader Caspian depression, it forms a major petroleum province within the Alpine-Himalayan orogenic belt (Pogorelova, 2019; Mikhailov, 2017; Glumov et al., 2004). The basin's unique geotectonic evolution – characterized by rapid subsidence, overpressured clay sequences, and salt tectonics – has resulted in the accumulation of exceptionally thick sedimentary sequences, primarily of Neogene – Quaternary age, and the development of prolific petroleum systems (Javanshir et al., 2015).

Situated along the western margin of the SCB, the Baku Archipelago represents a southeastern offshore extension of the tectonic zones of Southern Gobustan and the Lower Kura Depression. This structural ensemble consists of a chain of submerged and partially emergent anticlines, fault blocks, and mud volcano systems, forming one of the most intensively explored oil- and gas-producing areas in Azerbaijan and the entire Caspian region (Aliyeva, 2021; Kerimov et al., 2015). Fields such as Duvanni-deniz, Sangachal-deniz, Bulla Island, Bulla-deniz, and Garasu Island have been the focus of sustained hydrocarbon exploration and production since the mid-20th century (Kerimov, Sharifov, & Zeynalova, 2023).

The principal petroleum-bearing interval in the Baku Archipelago is the Lower Pliocene Productive Series (PS), a thick sedimentary succession composed of alternating sandstones, siltstones, and claystones (Aliyeva, 2004). Reservoir quality is variable across the V, VII, and VIII horizons, which host most of the discovered accumulations (Katz et al., 2000). These strata are overlain and interbedded with regionally extensive sealing clay-rich intervals, creating favorable conditions for stratigraphic and structural entrapment. The underlying Prekirmaki (PK) Suite also contributes to the vertical fluid system, influencing migration and pressure regimes (Pashayev, Shahbazov, & Karimzada, 2024; Kerimova, 2023).

Hydrocarbon accumulations within the archipelago display significant lateral and vertical heterogeneity in terms of fluid composition, saturation, and phase behavior. This variability reflects a complex interplay between structural evolution, burial history, and secondary alteration processes such as catagenesis, biodegradation, and phase separation (Mammadov, 2010). Of particular interest are the geochemical signatures preserved in gas, oil, and condensate samples, including variations in *n*-alkane and isoprenoid distributions, carbon number profiles, and molecular markers indicative of source rock maturity and migration pathways (Petrov, 1974).

In recent years, increased attention has been devoted to deciphering the mechanisms of hydrocarbon migration in the

Baku Archipelago, particularly the relative roles of vertical versus lateral transport and the influence of abnormal pressure regimes and hydrochemical inversions (Mustaev, 2017; Abrams, & Narimanov, 1997). Understanding these processes is critical for reliable prediction of fluid phase, composition, and distribution in both existing and unexplored structures.

This study aims to characterize the geochemical and phase behavior of hydrocarbon systems across the Baku Archipelago

through an integrated analysis of fluid composition, stratigraphy, and structural framework. The findings offer new insights into the genetic classification of hydrocarbons, the evolution of petroleum systems, and the mechanisms that control the spatial architecture of oil and gas accumulations in the South Caspian Basin (Javanshir et al., 2015) (Fig. 1).

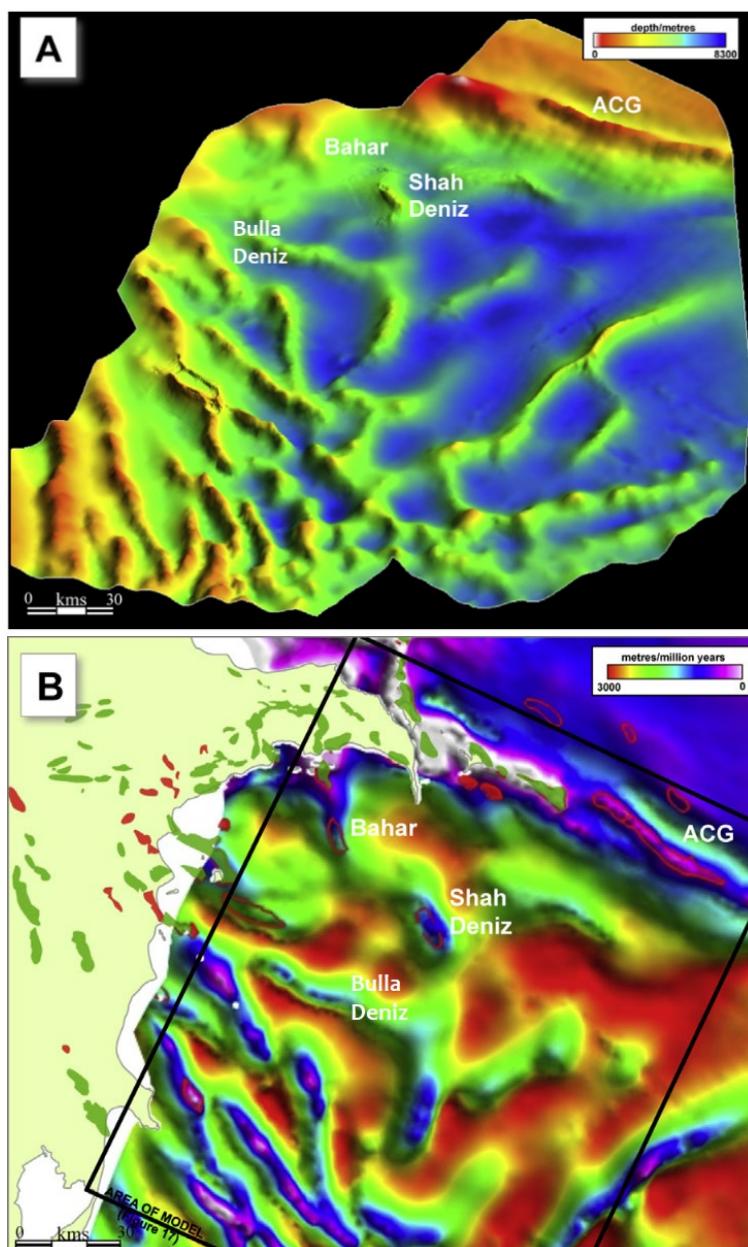


Fig. 1. A. The structural map of the Fasila suite within the South Caspian Basin (SCB) illustrates the pronounced relief of SCB anticlines, with the elevation change from syncline to the crest of the structure exceeding 3 kilometers. B. The sedimentation rate from the Pleistocene epoch to the present is depicted in meters per million years within the SCB, highlighting significant disparities in sedimentation rates between synclines and the crests of structures (According to Javanshir et al., 2015)

In Baku Archipelago industrial deposits were discovered in the VIII horizon of the Balakhkhany suite, the Fasila suite, and the Postkirmaky sandy suite. Deposits of the stratal type are associated mainly with crestral tectonically shielded deposits. A characteristic feature of the oil and gas content of the Productive Serie section is the regular replacement of oil deposits with gas and gas condensate deposits in the direction of the regional immersion of layers.

The Sangachal-deniz – Duvanny-deniz – Khara-Zira – Bulla-deniz anticline belt is located within the northern part of the Baku Archipelago oil and gas region. A characteristic feature of the tectonic structure of the anticline belt is the presence of large longitudinal faults in the axial parts of the structures. Foci of mud volcanic activity are often associated with longitudinal faults. Numerous transverse faults divide the structures into separate tectonic blocks (Alizade et al., 2018).

Methods

This study integrates geological, geochemical, and geophysical datasets obtained from multiple hydrocarbon fields within the Baku Archipelago, a region located on the western flank of the South Caspian Basin. The investigation focused primarily on the Lower Pliocene interval of the Productive Series (PS), including the V, VII, and VIII stratigraphic horizons, as well as the underlying Prekirmaki (PK) Suite.

Field data were derived from exploratory and production wells at Duvanni-deniz, Sangachal-deniz, Bulla Island, Bulla-deniz, and Garasu Island, covering both the northeastern and southwestern flanks of key structural features (Alizade et al., 2018). Core samples, fluid inclusions, and well logs were utilized for lithostratigraphic correlation and the delineation of reservoir and seal facies (Yusubov, & Guliev, 2015).

Formation waters were analyzed from multiple stratigraphic levels to determine their ionic composition and total salinity. Classification into Ca-Cl, Mg-Cl, Na-Cl-Ca, Na-SO₄, and Na-HCO₃ types was based on standard hydrochemical ratios, with measurements expressed in milliequivalents per 100 grams of water).

Gas samples were collected from V, VII, and VIII horizons as well as from the PK Suite. Gas composition was determined using gas chromatography, focusing on methane, methane homologs (C₂-C₄), nitrogen, carbon dioxide, and helium. Dryness coefficients and pressure gradients (P_{res}) were calculated to assess vertical and lateral migration trends (Mammadov, 2010; 2015).

Oil and condensate samples were subjected to detailed compositional analysis. Light hydrocarbon fractions (C₅-C₈) were separated by fractional distillation and analyzed by gas chromatography. Ratios of *n*-alkanes to isoalkanes,

cyclohexanes to cyclopentanes, and mono-/di-/tri-substituted isoalkanes were determined following the methodology of Chakhmakhchev (1979). Elemental analyses (C, H, S, N, O) were conducted according to ASTM standards, and nickel-porphyrin complexes were quantified spectrophotometrically (Ashumov, 1961).

Heavier hydrocarbon fractions (C₁₂-C₃₀) were analyzed for *n*-alkane distribution, odd/even carbon number ratios, and isoprenoid content. The geochemical indices $\Sigma(nC_{13}-nC_{25})/\Sigma(nC_{12}-nC_{30})$, $\Sigma(iC_{13}-iC_{25})/\Sigma(nC_{12}-nC_{30})$, and $\Sigma(iC_{13}-iC_{16})/\Sigma(iC_{18}-iC_{23})$ were used to infer thermal maturity, catagenetic alteration, and migration pathways. Biodegradation patterns were evaluated by identifying selective depletion of low-boiling *n*-alkanes and isoprenoids.

Structural and hydrodynamic features were interpreted using seismic data and well correlations (Ganbarova et al., 2024). Particular attention was paid to hypsometric changes in structural elements over time, regional folding trends, and the presence of abnormally high formation pressures (AHFP), which were inferred from well test data and mud volcano activity (Nasibova et al., 2024; Mustaev, 2017).

Characteristics of formation waters. A downward decrease in mineralization is observed across the stratigraphic column. Formation waters of the Surakhany Suite are classified as belonging to the chlorocalcium (Ca-Cl) and chloromagnesium (Mg-Cl) types, characterized by elevated mineralization levels (137–165 mgeq/L per 100 g of water).

Waters of the V horizon are transitional – from alkaline to hard types – and correspond to a mixed chlorosodium-calcium (Na-Cl-Ca) type, with total mineralization ranging from 48.4 to 82.6 mgeq/L per 100 g of water.

Table 1

Chemical Composition of Formation Waters in Lower Pliocene Deposits

Parameter	Prekirmaki suite	Postkirmaki sandy suite	VII horizon	V horizon
Number of analyses	18	35	380	70
Total mineralization, g/dm ³	16.5	18.8	19.7	20.1
Specific gravity at 20°C	1.0127	1.0136	1.0148	1.0156
Cl ⁻ , mgeq/L per 100 g water	18.1	23.7	27.04	30.66
SO ₄ ²⁻ , mgeq/L per 100 g water	4.67	3.66	1.50	2.35
HSO ₃ ⁻ , mgeq/L per 100 g water	1.94	1.41	2.40	0.45
CO ₃ ²⁻ , mgeq/L per 100 g water	0.40	0.47	0.72	0.10
RCOO ⁻ , mgeq/L per 100 g water	1.30	1.11	0.50	0.30
Ca ²⁺ , mgeq/L per 100 g water	0.19	0.80	0.40	2.31
Mg ²⁺ , mgeq/L per 100 g water	0.14	0.34	0.29	0.82
Na ⁺ +K ⁺ , mgeq/L per 100 g water	24.96	29.30	31.90	30.65
$\Sigma(A+K)$, mequiv per 100 g water	51.70	60.79	64.75	67.64
Palmer water classes – S ₁ , %	88.08	90.02	88.16	90.63
S ₂ , %	–	–	–	6.96
A ₂ , %	8.48	6.38	10.38	–
A ₁ , %	3.44	3.60	1.46	2.41
rNa ⁺ /rCl ⁻	1.38	1.24	1.18	1.00
(rNa ⁺ -rCl ⁻)/rSO ₄ ²⁻	1.47	1.53	3.24	0.00
rSO ₄ ²⁻ /(rCl ⁻ +rSO ₄ ²⁻)	0.20	0.13	0.05	0.07

Waters from the VII horizon, on the southwestern limbs of the Sangachal-deniz, Duvanni-deniz, and Bulla structures, are of the Mg-Cl, Ca-Cl, and bicarbonate-sodium (Na-HCO₃) types. On the northeastern limbs of these same uplifts, a clear trend is observed: chloride and alkali-metal-rich waters show decreasing mineralization in the southeastward direction, while bicarbonate concentrations increase. This pattern reflects a gradual transition in water types from Ca-Cl and sulfate-sodium (Na-SO₄) to predominantly bicarbonate-sodium (Na-HCO₃). Overall, within the northeastern limbs of the VII horizon,

formation waters are predominantly of the Na-HCO₃ type, with mineralization in the range of 60–65 mgeq/L per 100 g of water.

Formation waters of the VIII horizon are also classified primarily as Na-HCO₃ type, with mineralization varying between 35.9 and 89.8 mgeq/L per 100 g of water, though instances of Na-SO₄ water types are also recorded. Formation waters of the Prekirmaki (PK) Suite are classified as belonging to the bicarbonate-sodium (Na-HCO₃) type, yet exhibit even lower mineralization levels, ranging between 35.6 and 48.0 mgeq/L per 100 g of water.

Across the Baku Archipelago fields – and likewise in other accumulations situated along the western and eastern flanks of the South Caspian Basin – a consistent vertical trend is observed: formation water salinity systematically decreases downward through the stratigraphic succession of Lower Pliocene deposits (Table 1).

Gas composition and zoning

The gaseous phase of hydrocarbon accumulations in the Baku Archipelago is composed almost entirely (97–99 %) of hydrocarbons.

In gases from the V horizon, methane content varies between 91.56 % and 96.51 %, showing a general increase from Duvanni-deniz towards Bulla Island.

The gases of the VII horizon display a wider range of compositional variability: methane ranges from 91.84 % to 94.06 %, methane homologs from 5.10 % to 7.50 %, nitrogen from 0.36 % to 2.11 %, carbon dioxide from 0.38 % to 1.20 %, and helium from 0.00050 % to 0.00056 %. As a rule, the abundance of individual hydrocarbons declines with increasing molecular weight. Within the Sangachal-deniz and Duvanni-deniz fields, a decrease in methane content is observed down the dip of the reservoir (Johnson et al., 2010). Regionally, in the southeastward direction, methane content decreases from Sangachal-deniz to Duvanni-deniz, then increases again toward Bulla Island. In contrast, the concentration of methane homologs declines from Duvanni-deniz both northwestward (toward Sangachal-deniz) and southeastward (toward Bulla).

In the VIII horizon, compositional fluctuations are relatively minor: methane ranges from 93.28 % to 95.28 %, methane homologs from 4.10 % to 5.70 %, and CO₂ from 0.16 % to 0.60 %.

Gases of the PK Suite in the Duvanni-deniz area consist predominantly of methane (97.62 %), with homologs comprising 2.18 % and carbon dioxide 0.20 %. In contrast, gases from the Bulla-deniz field contain 91.63 % to 93.11 % methane, 4.04 % to 5.85 % ethane, and 0.16 % to 0.48 % carbon dioxide. With increasing reservoir depth, there is a consistent rise in the proportion of higher molecular weight liquid hydrocarbon vapors, ranging from pentane to heptane. This stratigraphic deepening – along with a trend toward increased gas saturation – correlates with a progressive rise in methane concentration, accompanied by a steady decline in both methane homologs and CO₂ content.

Gases released by hydrocarbon-bearing mud volcanoes on Duvanni and Bulla Islands exhibit methane concentrations between 93.35 % and 94.11 %, with methane homologs comprising 4.19 % to 5.01 %.

Chemical and physical properties of oils and condensates

The oils of the Baku Archipelago are compositionally diverse, reflecting their varied reservoir settings, structural positions, and burial depths. These oils also demonstrate significant differences associated with specific tectonic blocks.

According to their molecular composition, the oils and condensates of the archipelago can be categorized into Type A¹ and A² (Petrov, 1974), corresponding to the methanic and naphtheno-methanic types, respectively.

Overall, two principal oil groups are distinguished across the studied fields:

Group I includes oils from the southwestern limb of the Bulla and Garasu structures. These oils are characterized by relatively high densities (0.935–0.961 g/cm³) and elevated concentrations of high-molecular-weight heteroatomic compounds – namely resins (22–28 %) and asphaltenes (14–

17 %) – a pattern attributed to the relative accumulation of these heavy fractions following the loss of lighter hydrocarbons.

Group II comprises oils from the northeastern limbs of the Sangachal-deniz, Duvanni-deniz, Bulla Island, and Bulla-deniz structures.

It has been established that within the northeastern limbs of the Sangachal-deniz and Bulla structures, the density of VII-horizon oils increases from the crest and flanks of the folds toward their periclines. This pattern of gravitational differentiation – though varying in clarity – is also observed within most tectonic blocks of the Duvanni-deniz area.

Regionally, oil density first increases from Sangachal-deniz (0.870 g/cm³) to Duvanni-deniz (0.882 g/cm³), then decreases toward Bulla Island (0.871 g/cm³). Along with the direction of regional structural deepening, a general decrease is observed in the concentrations of paraffins, resins, and asphaltenes, although the trends exhibit local irregularities and are not always directly tied to changes in density. Resin content varies within a broad range (6 % to 18–25%), while asphaltene content fluctuates from 0.2–0.7 % up to 1.4–4.6 %.

It is suggested that the absence of consistent compositional trends in oils is primarily governed by the properties of the Upper Pliocene–Quaternary regional fluid seal during the primary and secondary stages of reservoir formation and reformation.

The studied oils are generally low in sulfur, with contents ranging from 0.124 % to 0.270 %. Ash content varies from 0.0032 % to 0.3624 %, while the concentration of nickel-porphyrin complexes ranges from 0.33 to 1.09 mg per 100 g of oil.

The elemental composition of oils from the VII horizon is characterized by the following average contents (wt. %): carbon – 86.80 %, hydrogen – 12.45 %, sulfur – 0.25 %, nitrogen – 0.15 %, and oxygen – 0.30 % (Ashumov, 1961).

The light fraction of these oils (initial boiling point: 150 °C) is distinguished by a low content of aromatic hydrocarbons (ranging from 11.37 % to 17.32 %), while the relative abundance of naphthenic (34.92–47.84 %) and methanic (40.56–49.35 %) hydrocarbons is nearly equivalent.

In the deasphalting fractions of oils from the VII horizon at the Sangachal-deniz field, a down-dip decrease in the number of naphthenic cycles (Kn/Ko ratio dropping from 0.93 to 0.70) is observed, accompanied by an increase in the proportion of aromatic rings (Ka/Ko increasing from 0.07 to 0.30). The aliphaticity index (Cm/Ca+Cn) also rises from the structurally elevated part of the reservoir to its deeper segments, ranging from 1.12 to 1.54. A similar trend is noted in the Duvanni-deniz field, where increasing burial depth within the VII horizon corresponds to a reduction in the Kn/Ko ratio (from 0.86 to 0.74), a growth in the Ka/Ko ratio (from 0.14 to 0.26), and an enhancement in aliphaticity (Cm/Ca+Cn rising from 1.10 to 1.21). Along the regional structural plunge traced by the profile Kyanyazdag – Sangachal-deniz – Duvanni-deniz – Bulla Island, the number of naphthenic rings varies as follows: 1.48 → 1.36 → 1.42 → 0.74, while the corresponding aromatic ring indices are: 0.42 → 0.49 → 0.44 → 0.58.

It has been firmly established that oil density, molecular weight, and condensate yield exhibit a direct correlation with burial depth. As stratigraphic depth increases, so do both density and the extent of the boiling range. These trends are interpreted as a consequence of rising reservoir temperatures and pressures at greater depths, leading to the dissolution of increasingly heavier hydrocarbon molecules in

the gas phase. Consequently, deeper-sourced condensates tend to display higher densities and broader boiling intervals.

Geochemical indicators: alkanes, isoprenoids, maturity indices

The distribution of *n*-alkanes in the C_{12} – C_{30} fraction provides further insight into the classification of oils across the studied areas. Two principal groups are identified:

Group I – Oils from the southwestern limbs of the Bulla and Garasu structures (e.g., well 542 and well 25), where the peak concentrations of individual hydrocarbons are shifted toward the mid- and high-molecular-weight range (Fig. 2).

Group II – Oils from the northeastern limbs of the Sangachal-deniz, Duvanni-deniz, Bulla Island, and Bulla-deniz structures.

With increasing burial depth of the VII horizon – and accordingly, with stratigraphic deepening – the total content of *n*-alkanes rises. In the Duvanni-deniz area, marked differences are observed in the distribution pattern and peak position of *n*-alkane concentrations, along with a progressive southeastward decline in the odd-to-even carbon number ratios. The observed leveling of odd/even ratios in high-

molecular-weight *n*-alkanes within VII-horizon oils has been attributed to the onset of destructive transformation reactions during migration (Mekhtiev, & Mamedov, 1977). Across the studied oils and condensates, odd/even ratios vary within a narrow range of 1.01–1.10.

The distribution of isoprenoid hydrocarbons in oils and condensates of the Baku Archipelago is predominantly unimodal in character (Fig. 3). All studied samples exhibit a well-defined maximum at pristane (iC_{16}), while a minimum is consistently observed in the iC_{12} component (C_{12} , 6,10-trimethylundecane).

The total content of isoprenoid hydrocarbons in the C_{13} – C_{16} range within oils and condensates varies between 1.43 % and 5.39 % across the examined areas.

With increasing burial depth of the VII horizon, a distinct geochemical trend is observed: the overall concentration of isoprenoid hydrocarbons, as well as the ratio $\Sigma(iC_{13} - iC_{25})/\Sigma(nC_{12} - nC_{30})$, systematically decreases. In contrast, the ratio $\Sigma(iC_{13} - iC_{16})/\Sigma(iC_{18} - iC_{23})$ exhibits a marked increase (Mekhtiev, & Mamedov, 1978).

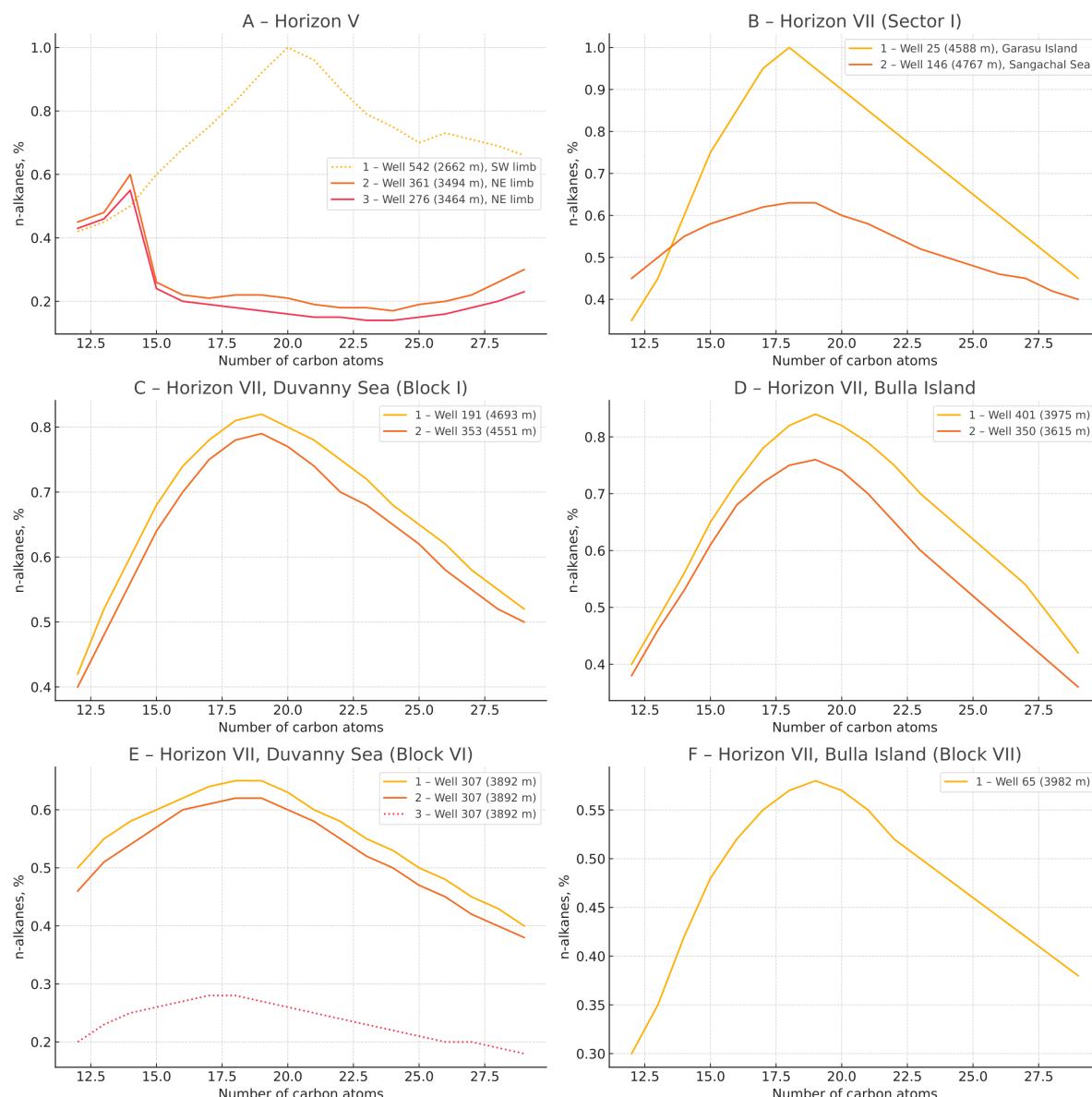


Fig. 2. Distribution diagram of *n*-alkanes in crude oils

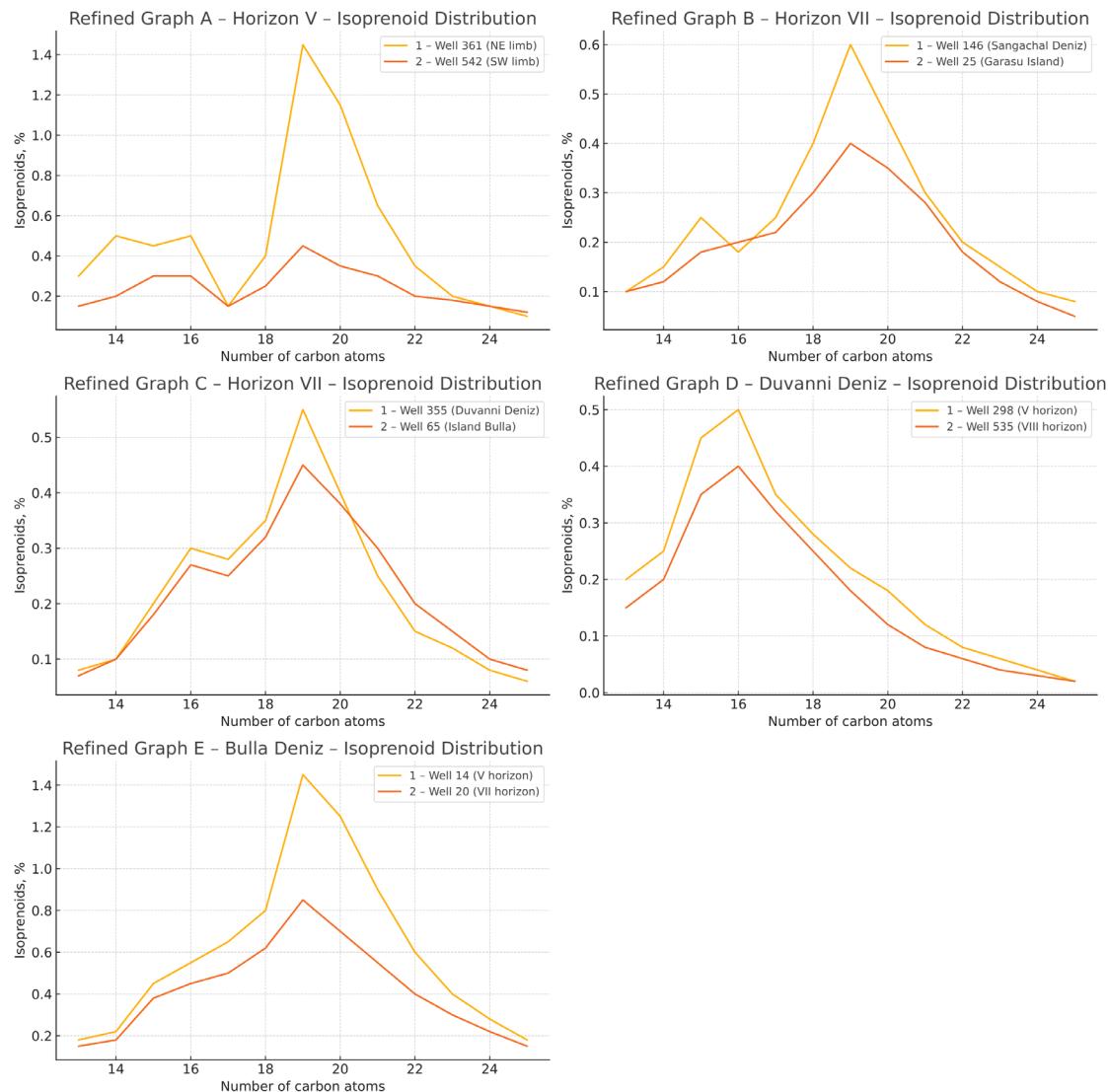


Fig. 3. Distribution diagram of isoprenoid hydrocarbons in crude oils (A, B, C) and condensates (D, E)

Gasoline fractions and isomeric composition

Within the gasoline fractions (initial boiling point: 150 °C), the relative contents of methanic and naphthenic hydrocarbons vary within the ranges of 48.13–52.70 % and 47.30–51.87 %, respectively. These proportions result in a narrowly constrained alkane/naphthene ratio, fluctuating between 0.92 and 1.11.

Methanic hydrocarbons are notably dominated by isoalkanes. The *n*-alkane/isoalkane ratio remains below unity (0.56–0.60); however, a distinct upward trend in this ratio is observed with increasing stratigraphic depth, progressing from the V to the VIII horizon.

Naphthenic hydrocarbons are composed primarily of cyclohexane derivatives (33.46–36.46 %) and cyclopentane derivatives (11.88–16.41 %).

The structural composition of the gasoline fractions also reveals a consistent predominance of isomers bearing a methyl group at the second carbon atom in hydrocarbons with even-numbered chains – notably C₆ and C₈ (i.e., 2MP>3MP; 2MNP>3MNP). Conversely, for odd-numbered hydrocarbons such as C₇, the reverse relationship holds (2MP<3MP).

Across the Sangachal-deniz, Duvanni-deniz, Bulla Island, and Bulla-deniz fields, a pronounced enrichment of

gasoline fractions (boiling points 150–200 °C) in methanic hydrocarbons and arenes is observed, correlating with increasing hypsometric and stratigraphic depth of the V and VII horizon reservoirs. This enrichment is attributed to thermocatalytic transformation of high-molecular-weight naphthenic, aromatic, and naphtheno-aromatic hydrocarbons (Duppenbecker et al., 2009).

The influence of catagenesis on the hydrocarbon composition of the de-gasoline oil fractions was evaluated based on changes in the total content of *n*-alkanes and isoprenoid hydrocarbons within individual accumulations (V, VII, and VIII horizons), as well as along the stratigraphic column. Special attention was given to variations in the geochemical indices $\Sigma(nC_{13}-nC_{25})/\Sigma(nC_{12}-nC_{30})$ and $\Sigma(iC_{13}-iC_{16})/\Sigma(iC_{18}-iC_{23})$. In all cases, increasing burial depth (and associated temperatures) is accompanied by a systematic rise in the overall content of *n*-alkanes and the $\Sigma(iC_{13}-iC_{16})/\Sigma(iC_{18}-iC_{23})$ ratio, along with a concurrent decline in the abundance of isoprenoids and the $\Sigma(iC_{13}-iC_{25})/\Sigma(nC_{12}-nC_{30})$ ratio.

Evidence of biodegradation is discernible within the high-molecular-weight fraction (C₁₂–C₃₀) of oils from the southwestern limbs of the Bulla and Garasu structures. This process appears to primarily target the destruction of low-

boiling *n*-alkanes, followed – though to a lesser extent – by the alteration of isoprenoid hydrocarbons (Fig. 2, 3).

The observed patterns in the variation of several parameters within the de-gasoline fractions of crude oils and condensates provide additional insight into the processes of hydrocarbon migration and accumulation. It has been

established that, across the studied areas, there is a consistent upward increase in the ratio of low-molecular-weight *n*-alkanes and isoprenoid hydrocarbons to higher-molecular-weight compounds along the direction of hydrocarbon migration (Table 2).

Table 2
Specific features of the individual composition of the non-gasoline fraction of crude oils and condensates from hydrocarbon accumulations in the Baku Archipelago across different horizons

Indicators	Duvanny-deniz – Bulla Island				Bulla-deniz	
	V (Oil)	V (Condensate)	VII (Oil)	VIII (Condensate)	V (Condensate)	VII (Condensate)
$\Sigma(nC_{12}-nC_{15})/\Sigma(nC_{16}-nC_{19})$	1.69–1.76	3.20	0.56–1.14	1.14–1.54	1.50	1.25
$\Sigma(nC_{16}-nC_{19})/\Sigma(nC_{20}-nC_{23})$	1.01–1.19	2.95	0.85–1.07	1.34–1.95	1.90	1.26
$\Sigma(iC_{13}-iC_{15})/\Sigma(iC_{21}-iC_{25})$	1.69–2.45	5.37	1.02–1.34	2.95–4.13	2.72	1.12

These transformations are most likely the result of compositional differentiation occurring during the vertical migration of gas-oil (GNS) and gas-condensate (GCS) systems. This differentiation arises from a combination of chromatographic effects and the progressive reduction of pressure and temperature along the migration pathway.

From these observations, several key conclusions can be drawn:

1. The hydrochemical inversion identified in formation waters is interpreted as the result of mixing between sedimentary waters and deeply sourced, ultra-alkaline waters. The latter ascend through faults and eruptive conduits associated with mud volcanoes, and are geochemically foreign to the productive reservoir sequence.
2. The composition and physical properties of gases vary both vertically within individual petroleum systems and laterally along the regional structural plunge of equivalent stratigraphic units.
3. The observed variability in oil characteristics across the region is attributed primarily to secondary natural processes, including catagenesis, hypergenesis, and compositional differentiation during migration.

Results

The formation of hydrocarbon accumulations in the Baku Archipelago is characterized by a strong influence of vertical migration processes, which is supported by the presence of hydrochemical inversion. Oil accumulations are generally confined to strongly deformed anticlines, while gas-condensate accumulations are located in deeper, less deformed structural blocks. This spatial distribution reflects not only tectonic control but also the role of regional clay seals, pressure, and temperature gradients.

Overpressures and the injection of ultrabasic waters into the productive formation suggest a significant vertical fluid flow. The alignment between water chemistry and accumulation zones (e.g., alkaline waters in Horizons VII and VIII) further confirms the migration pattern.

Comparative analyses of hydrocarbon composition – particularly light hydrocarbon fractions and biomarker distributions – indicate a unified genetic type of oils and condensates across fields. Ratios of *n*/isoalkanes and cyclohexanes/cyclopentanes, as well as methyl-branched isomer distributions, show consistent patterns supporting a common origin.

Catagenetic trends, such as increasing *n*-alkanes, decreasing isoprenoids, and increasing maturity indices with depth, reveal the thermal evolution of hydrocarbons and support regional maturation models. Biodegradation effects, especially in high-molecular-weight fractions, are observed in southwest structures and appear to have selectively impacted low-boiling *n*-alkanes and isoprenoids.

Vertical and lateral facies transitions, tectonic compartmentalization, and cap rock integrity appear to control hydrocarbon phase differentiation – i.e., the shift from oil to gas-condensate systems with increasing burial depth. Regional zoning within Horizon VII from Kyanazdag to Bulla Island supports this trend, which cannot be fully explained by differential entrapment alone.

Geochemical markers, including dry gas ratios and formation pressure data, exhibit bidirectional trends away from the Duvanny-deniz area, implying possible upward migration from deeper Meso-Cenozoic sources. The similarity between gases in mud volcanoes and adjacent reservoirs supports deep vertical migration as the dominant process.

Genetic analysis and comparative characteristics

The study also touches briefly on the comparative characterization of oils and condensates, as well as possible causes of secondary compositional alterations.

To evaluate compositional variability in oils and condensates from the V and VII horizons, we employed a set of parameters related to light hydrocarbons as proposed by Chakhmakhchyan (1979):

1. The ratio of *n*-alkanes to isoalkanes in the C5, C6, C7, and C8 fractions.
2. The ratio of cyclohexanes to cyclopentanes in the C6, C7, and C8 fractions.
3. The relative abundance of tri-, di-, and mono-substituted isoalkanes.
4. Homologous concentration series of cyclanes and alkanes with equivalent molecular weights.

The comparative values derived from these indicators are presented in Fig. 4.

It is well established that structurally and genetically similar oils exhibit a consistent order of decreasing abundance among individual hydrocarbons (Petrov et al., 1967). Our samples also follow this pattern. For instance, in the hexane series: $n\text{-}C_6 > 2\text{MP} > 3\text{MP} > 2,3\text{DMB}$; in the heptane series: $n\text{-}C_7 > 3\text{MP} > 2\text{MP} > 2,3\text{DMB} > 2,4\text{DMP} > 3,3\text{P} > 2,2\text{DMP} > 3,3\text{DMP}$; and in the cyclopentane series (C7): $1,2\text{DMCP(trans)} > 1,3\text{DMCP(cis)} \geq 1,1\text{DMCP} > 3\text{CP} > 1,3\text{DMCP(trans)} > 1,2\text{DMCP(trans)}$.

The studied hydrocarbons are represented by mono-, di- and tri-substituted isomers. Among them, mono-substituted isomers dominate, followed by di-substituted and then tri- and poly-substituted alkanes. The mono-/di-substituted ratio ranges from 1.91 to 2.81 and shows a clear increasing trend with stratigraphic depth.

These findings support the conclusion that the oils and condensates from the studied areas share a common genetic origin. This inference is further corroborated by the congruent curve shapes in the graphical representations of

n/isoalkane and cyclohexane/cyclopentane ratios across the C5–C8 hydrocarbon fractions (Fig. 4). The close similarity in

calculated values between oils and condensates (1.4–1.6) reinforces this conclusion.

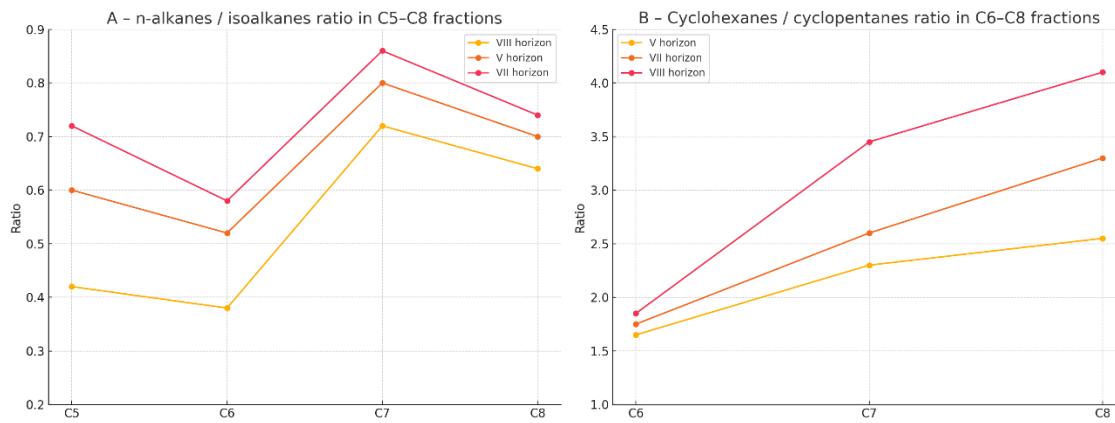


Fig. 4. Graphs showing the ratios of *n*-alkanes to isoalkanes (a) and cyclohexanes to cyclopentanes (b) in hydrocarbon fractions C₅, C₆, C₇, and C₈

Discussion and conclusions

The comprehensive geological and geochemical study of hydrocarbon accumulations in the Baku Archipelago reveals that their formation and spatial distribution are governed by a combination of tectonic architecture, lithological heterogeneity, vertical fluid migration, and the maturity of organic matter. Hydrocarbon fluids found in various fields and stratigraphic levels exhibit distinct yet genetically related compositions, indicating a common source and similar thermal evolution.

Key findings include the vertical geochemical zoning of reservoir fluids, evident transitions from oil to gas-condensate systems with increasing depth, and hydrochemical inversion patterns in formation waters that support the model of upward hydrocarbon migration. The correlation between the chemical composition of gases, oils, and waters, alongside the presence of ultrabasic waters and overpressures in deeper intervals, further confirms the dominant role of vertical migration processes.

Analyses of light hydrocarbon fractions, biomarker indices, and alkane/isoprenoid ratios show consistent catagenetic trends and minimal lateral compositional variability, indicating basin-scale controls on hydrocarbon generation and accumulation. The observed biodegradation effects are spatially restricted and primarily impact low-molecular-weight components.

These results not only enhance the understanding of petroleum systems in the Baku Archipelago but also provide predictive tools for identifying new prospective zones within the South Caspian Basin. Integration of tectonic, stratigraphic, and geochemical data is essential for optimizing exploration and development strategies in this structurally complex and hydrocarbon-rich offshore region.

Authors' contribution: Huseynaga Mammadov – writing, investigation, methodology, formal analysis, conceptualization, data curation, supervision; Murad Abdulla-zada – investigation, writing.

References

Abrams, M. A., & Narimanov, A. A. (1997). Geochemical evaluation of hydrocarbons and their potential sources in the western South Caspian depression, Republic of Azerbaijan. *Marine and Petroleum Geology*, 14(4), 451–468. [https://doi.org/10.1016/S0264-8172\(97\)00011-1](https://doi.org/10.1016/S0264-8172(97)00011-1)

Alizade, A. A., Guliyev, I. S., Mamedov, P. Z., Aleeva, E. G., Feyzullaev, A. A., & Huseynov, D. A. (2018). *Productive series of Azerbaijan (Vol. 1)*. Nedra [in Russian]. [Ализаде А. А., Гулиев И. С., Мамедов П. З., Алиева Э. Г., Фейзуллаев А. А., Гусейнов Д. А. (2018). *Продуктивная серия Азербайджана (Т. 1)*. Недра].

Aliyeva, E. G. (2004). Depositional environment and reservoir architecture of the Productive Series VII–V horizons in the Alyat ridge

calculated values between oils and condensates (1.4–1.6) reinforces this conclusion.

offshore part (Alyat-deniz, Bulla-deniz fields). Baku, 41–49. <https://doi.org/10.13140/RG.2.1.4290.6006>

Aliyeva, S. (2021). Methods for predicting the lithological and facies characterization of deeply submerged prospective oil and gas deposits. *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 1(92), 88–92 [in Russian]. [Алиєва, С. (2021). Методи прогнозу літолого-фациальних характеристики глибоко погруженних перспективно-нефтегазоносних отложень]. *Вісник Київського національного університету імені Тараса Шевченка. Геологія*, 1(92), 88–92]. <https://doi.org/10.17721/1728-2713.92.12>

Duppenbecker, S. J., Riley, G. W., Abdullaev, N. R., Green, T. J., & Doran, H. (2009). Petroleum systems dynamics of the South Caspian Basin. *AAPG Hedberg Research Conference, May 3–7, 2009, Napa, California, U.S.A.* (abs.). <https://doi.org/10.3997/2214-4609.20146084>

Ganbarova, S., Zeynalova, S., & Zahidova, T. (2024). The risk of change in the thickness, sand and oil-gas content of the productive series sediments on the Northern slope of the South Caspian depression. *Reliability: Theory & Applications*, 19(SI 6 (81)), 1501–1512.

Glumov, I. F., Malovitsky, Ya. P., Novikov, A. A., & Senin, B. V. (2004). *Regional geology and oil and gas potential of the Caspian Sea*. Nedra-Business Center [in Russian]. [Глумов И. Ф., Маловицкий Я. П., Новиков А. А., Сенин Б. В. (2004). *Региональная геология и нефтегазоносность Каспийского моря*. Недра-Бизнес-Центр, с. 342]. <https://doi.org/10.15593/2712-8008/2025.2.5>

Javanshir, R. J., Riley, G. W., Duppenbecker, S. J., & Abdullaev, N. R. (2015). Validation of lateral fluid flow in an overpressured sand-shale sequence during development of Azeri-Chirag-Gunashli oil field and Shah-Deniz gas field: South Caspian Basin, Azerbaijan. *Marine and Petroleum Geology*, 59, 593–610. <https://doi.org/10.1016/j.marpetgeo.2014.07.019>

Johnson, C. L., Hudson, S. M., Rowe, H. D., & Efendiyeva, M. A. (2010). Geochemical constraints on the Palaeocene–Miocene evolution of eastern Azerbaijan, with implications for the South Caspian Basin and eastern Paratethys. *Basin Research*, 22(5), 733–750. <https://doi.org/10.1111/j.1365-2117.2009.00427.x>

Katz, B., Richards, D., Long, D., & Lawrence, W. (2000). A new look at the components of the petroleum system of the South Caspian Basin. *Journal of Petroleum Science and Engineering*, 28(4), 161–182. [https://doi.org/10.1016/S0920-4105\(00\)00076-0](https://doi.org/10.1016/S0920-4105(00)00076-0)

Kerimov, V. M., Sharifov, J. J., & Zeynalova, S. A. (2023). Intensification of oil production in long-term developed offshore fields. *Journal of Geology, Geography and Geocology, Dnepr*, 31(2), 59–66. <https://doi.org/10.15421/112326>

Kerimov, V. Yu., Guliyev, I. S., Guseinov, D. A., Lavrenova, E. A., Mustayev, R. N., Osipov, R. N., & Serikova, U. S. (2015). *Forecasting of Oil and Gas Potential in Regions with Complex Geological Structure*. Nedra [in Russian]. [Керимов В. Ю., Гулиев И. С., Гусейнов Д. А., Лавренова Е. А., Мустаев Р. Н., Осипов Р. Н., Серикова У. С. (2015). *Прогнозування нефтегазоносності регіонів со складним геологічним строєнням*. Недра].

Kerimova, K. A. (2023). Study of petrophysical parameters of productive series by use of well data. *Geophysical Journal*, 45(3), 135–142. <https://doi.org/10.24028/gj.v45i3.282421>

Khalilova, L. N., & Seyidov, V. M. (2023). Evolution of hydrocarbon deposits in the South Caspian Basin. *Geofizicheskiy Zhurnal*, 45(3), 126–134. <https://doi.org/10.24028/gj.v45i3.282420>

Mammadov, G. A. (2010). On the natural factors influencing the composition of gas condensates. *Proceedings of the Higher Educational Institutions of Azerbaijan*, 3, 16–21.

Mammadov, G. A. (2015). On the role and genetic significance of biomarkers in oil geochemistry. *Proceedings of the Higher Educational Institutions of Azerbaijan*, Baku, 4, 7–12.

Mykhailov, V. (2017). Comparative characteristics of Maikop series of Caspian-Black Sea region. *Visnyk of Taras Shevchenko National University*

of Kyiv. Geology, 2(77), 59–71 [in Russian]. [Михайлов, В. (2017). Сопоставительная характеристика майкопской серии Каспийско-Черноморского региона. Вісник Київського національного університету імені Тараса Шевченка. Геологія, 2(77), 59-71]. <https://doi.org/10.17721/1728-2713.77.07>

Mustaev, R. N. (2017). Geochemical environment of oil and gas occurrences in the South-Caspian basin based on the results of the study of Mud Volcano Ejecta. Oriental Journal of Chemistry, 33(4), 2036–2044. <http://dx.doi.org/10.13005/ojc/330452>

Nasibova, G. J., Mukhtarova, K. Z., & Ganbarova, S. A. (2024). Modelling of geochemical properties of mud volcano eruption products and relationship with oil and gas prospects within the South Caspian megadepression of Lower Kura region. Journal of Geology, Geography and Geoecology, 33(2), 329–339. <https://doi.org/10.15421/112431>

Гусейнага МАМЕДОВ, канд. геол. наук, доц.

ORCID ID: 0000-0001-6199-3892

e-mail: hsmpr@rambler.ru

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Мурад АБДУЛЛА-ЗАДЕ, д-р філософії (науки про Землю)

ORCID ID: 0009-0001-4150-8340

e-mail: murad.abdullazade@asoiu.edu.az

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

Pashayev, N., Shahbazov, R., & Karimzada, F. (2024). Modeling structural-tectonic characteristics of eastern fields of Absheron peninsula and the risk of tectonic impact on oil-gas bearing. Reliability: Theory & Applications, 19(SI 6 (81)), 1430–1438.

Pogorelova, Ye. Yu. (2019). Geotectonic aspects of oil and gas potential of the intermountain segment of the Black Sea-Caspian Sea region. Naukovyi Visnyk NNU, 1, 5–12. <https://doi.org/10.29202/nvngu/2019-1/1>

Yusubov, N. P., & Guliev, I. S. (2015). The lithological-facies models of the Garadag, March 8, Sangachaly-deniz, Duvani-deniz, Bulla-adasy and Bulladeniz fields, dated to the "interval break" according to GIS data. Azerbaijan oil industry, 5, 3–8.

Отримано редакцією журналу / Received: 21.04.25

Прореценовано / Revised: 15.05.25

Схвалено до друку / Accepted: 30.06.25

ГІДРОУГЛЕЦЕВІ ПАРАДИГМИ ЧАСУ ТА СТРУКТУРИ: БАГАТОМЕТОДНЕ ДОСЛІДЖЕННЯ НАФТОГАЗОВИХ СИСТЕМ БАКИНСЬКОГО АРХІПЕЛАГУ

Вступ. Бакинський архіпелаг, розташований у західній шельфовій зоні Південнокаспійського басейну, є одним із найпродуктивніших нафтогазоносних регіонів Азербайджану. Його тектонічна безперервність із зонами Південного Гобустану та Нижньої Кюрінської западини, а також унікальна геологічна еволюція Південнокаспійської мегавпадини зумовили формування складних нафтових, газових та газоконденсатних систем у межах Нижньоплющенової Продуктивної товщі. Незважаючи на десятиліття досліджень і розробки, механізми просторового розподілу, міграційних шляхів і еврації складу вуглеводнів у цьому регіоні досі залишаються предметом наукової дискусії.

Методи. У дослідженні поєднано широкомасштабні геологічні, геохімічні та геофізичні дані з ряду родовищ, включаючи Дуванні-деніз, Санчачал-деніз, острів Булла, Булла-деніз та Гарасу. Аналітичні методи охоплюють газову хроматографію для легких і важких фракцій вуглеводнів, елементний аналіз, гідрохімічну класифікацію пластових вод і обчислення геохімічних індексів, зокрема співвідношення п/ізоалканів, $\Sigma(nC_{13}-nC_{25})/\Sigma(nC_{12}-nC_{30})$ та $\Sigma(iC_{13}-iC_{16})/\Sigma(iC_{18}-iC_{23})$. Структурно-стратиграфічні інтерпретації базувались на сейсмічних даних і каротажних дослідженнях свердловин.

Результати. У межах архіпелагу виокремлено дві генетично відмінні групи нафт, пов'язані з південно-західним і північно-східним крилами головних структур. Склад вуглеводнів виявляє кореляцію з глибиною занурення, структурним положенням та мінералогічними особливостями нафкоплишніх порід. Вертикальні гідрохімічні інверсії, що характеризуються ультралужними слабомінералізованими водами під більш мінералізованими шарами, свідчать про значну висхідну міграцію глибинних флюїдів. Зростання вмісту метану і зниження концентрації його гомологів із глибиною, поряд зі зростанням газової сухості, підтверджують концепцію термічно зумовленого фракційного розділення. Крім того, ознаки біодеградації у важких фракціях вуглеводнів свідчать про постакумуляційні зміни.

Висновки. Отримані результати підкреслюють переважну роль вертикальної міграції та вторинних геохімічних процесів – катагенезу, фазового розділення та біодеградації – у формуванні сучасного розподілу й складу вуглеводневих флюїдів Бакинського архіпелагу. Чітка відповідність між складом флюїдів, структурними умовами та еластичними колекторами вказує на необхідність інтегрованого басейнового моделювання для майбутніх пошукових робіт. Отримані дані дають змогу уточнити прогнози щодо типу і якості вуглеводнів у неоцінених ділянках Продуктивної товщі та глибших стратиграфічних комплексів Південнокаспійського басейну.

Ключові слова: Південнокаспійський басейн; Бакинський архіпелаг; міграція вуглеводнів; газоконденсатні системи; геохімія; *n*-алкані; ізопреноїди; катагенез; біодеградація; вертикальний транспорт; Продуктивна товща.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

APPLICATION OF A NEW CLASS OF NANOCOMPOSITES IN THE ECOLOGICAL MANAGEMENT OF FORMATION WATERS AT THE BIBIHEYBAT OIL AND GAS FIELD

(Представлено членом редакційної колегії д-ром геол. наук, ст. наук. співроб. О.Л. Шевченком)

Background. A new utilization technology has been developed to ensure the rational reuse of toxic formation waters extracted from the oil fields of Bibiheybat OGPD in secondary technological processes and to restore ecological balance. The study presents a comparative analysis of the environmental impact mechanisms of nanocomposites N-1, N-2, and N-4.

Methods. Formation water samples collected from the receiving reservoirs of the Bibiheybat OGPD oil fields were treated with various nanocomposites to evaluate their effects. Additionally, oil samples taken from the surface of formation water were analyzed for changes in rheological parameters, and the primary contaminant-mechanical impurities were treated using nanocomposites from the N-series.

Results. The proposed new utilization technology has proven to be both ecologically and economically efficient in increasing the effectiveness of reusing formation water in secondary technological processes and minimizing its environmental impact. Without requiring the installation of new facilities in old oil fields, a closed-loop water supply system can be established using either N-2 or N-4 nanocomposites, depending on geological conditions.

Conclusions. According to the research findings, nanocomposites N-2 and N-4 alter the type of formation water, converting it from "acidic" to "alkaline". These composites also enhance the rheological properties of oil. Within the framework of environmental safety standards, a closed-loop, zero-waste water supply system utilizing nanocomposites N-2 or N-4 is proposed as an eco-technological scheme for preparing formation water to meet required conditions.

Keywords: formation water, toxic components, environment, utilization technology, nanocomposite.

Background

Purpose of the Work. The purpose of this work is to substantiate the development of environmentally safe technologies to optimize the disposal of formation waters that are harmful to environmental objects and unsuitable for use in technological processes.

Global climate change has made environmental protection and pollution control measures a primary focus worldwide in recent years. It is no coincidence that the President of the Republic of Azerbaijan declared 2024 as the "Year of Solidarity for a Green World", bringing to the forefront the implementation of environmental remediation measures across various sectors in the country. Since the oil industry remains a priority in our current stage of economic development, adherence to environmental norms and rules in the improvement of technological approaches plays a crucial role in forming a healthy lifestyle and living environment.

Produced waters affect all environmental objects – hydrosphere, atmosphere, and lithosphere through technophysical impacts (Lee et al., 2005; Mammadova, 2022; Neff, 2002; Steinar, al., 2017; Sunda, 2012). Globally, the demand for oil and gas production increases the harmful environmental impacts of formation waters. Industries generating large volumes of waste should be replaced by "green" technologies that reduce the impact of pollutants arising from the use of technologies not meeting environmental safety standards. By using the environmentally safe potential of innovative technologies for neutralizing waste, complex-action chemical reagents, sorbents, membranes, and catalysts can be employed (Mammadova, 2023; Boysen, Boysen, & Larson, 2011; Al-Mohammad, Al-Kaabi, & Mohammad, 2019).

The volume and chemical composition of formation waters produced from oil fields vary both between different fields and over different stages of exploitation of the same field (Al-Mohammad, Al-Kaabi, & Mohammad, 2019; Mehmood, Khan, & Muneer, R. 2016). According to

projections, this ratio will increase by 2025, raising the demand for new technologies in the reuse of produced water (Fig. 1) (Al-Mohammad, Al-Kaabi, & Mohammad, 2019; Boysen, Boysen, & Larson, 2011; Mammadova, 2023; Miller, 2006).

The composition of formation waters includes dangerous pollutants such as oil and oil products, chemicals, acids, alkalis, surfactants, as well as solid mineral (Mammadova, 2022; 2023; Murvatov, Mammadov, & Mammadov, 2014). Formation waters affect all areas of the environment – including the hydrosphere, atmosphere, and lithosphere – through technophysical impact. They degrade the qualitative characteristics of natural components. During operations on offshore oil and gas platforms, formation water discharged into the aquatic environment becomes a source of polycyclic aromatic hydrocarbons. Hazardous substances such as alkylphenols and aromatic hydrocarbons accumulate in benthic communities and are toxic to aquatic organisms, potentially entering and circulating through the food chain. These toxic components also impair the reproductive functions of marine microfauna. Additionally, they can destroy genetic biomarkers in benthic communities and significantly affect oxygen consumption in water (Beyer et al., 2020).

Formation waters are adsorbed by soil infiltrate into groundwater and alter its physicochemical properties – including salinity, alkalinity, water-air balance, and the carbon-nitrogen ratio. The negative impact of mineralized water on soil cover is more intense than that of oil and petroleum products. As a result of technogenic processes, elemental migration occurs in the soil (Kovaleva, Trofimov, & Cheng, 2020; Mengxue, 2020).

Thus, formation water alters the state of ecosystems it enters and leads to the degradation of biocenoses. Formation waters with high salt concentrations have adverse effects on soil and vegetation. Due to the high concentrations of dissolved salts (primarily sodium chloride, NaCl), the soil becomes saline. The chloride content is toxic to many biological species. Sodium

acts as a natural dispersant, affecting the swelling and absorption capacity of the soil, contributing to salinization, and ultimately causing the destruction of vegetation. Although swollen soil may retain its natural structure, once disintegration occurs, its structure is lost. This loss of structure impedes the

infiltration and movement of water through the soil, increasing the potential for erosion. Furthermore, the salts in formation waters disrupt the ability of plants to absorb water and nutrients (Kovaleva, Trofimov, & Cheng, 2020; Mengxue, 2020).

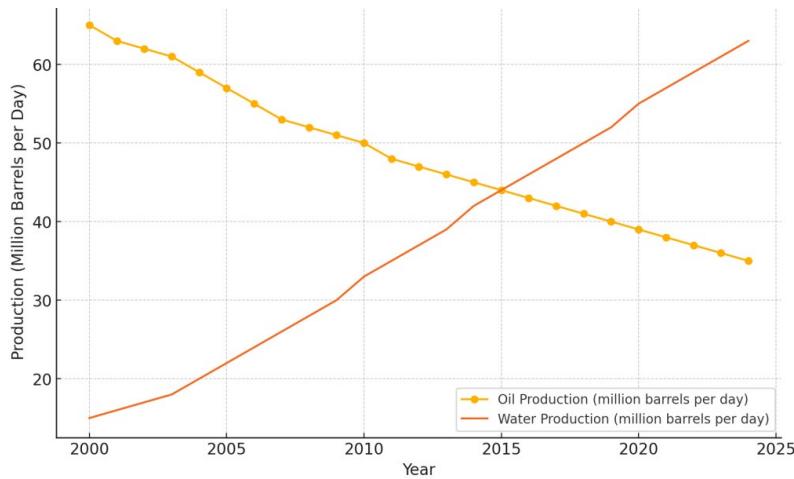


Fig. 1. Global oil and water production

Formation water disposal is carried out in very limited cases (Andreev, 2003). In the Bibiheybat OGP, there is no special procedure for treating formation waters. After basic preliminary treatment, these waters can be used to restore reservoir pressure in oil field water-flooding systems or as a source for washing out underground salt layers (Sunda, 2012; Steinar, et al., 2017). Depending on the intended use, formation waters must be treated to meet the required standards (Abdulaziz, Hatem, & Mahdi, 2021; Al-Mohammad, Al-Kaabi, & Mohammad, 2019). Currently, for water injected to maintain reservoir pressure, the technical and environmental requirements are as follows (Ganotskaya, 2015):

- the water should not contain large amounts of mechanical impurities, iron, oil or oil products;
- to prevent corrosion, it should not contain H_2S or carbonic acid;
- it should not contain organic pollutants (bacteria and algae);
- it should be chemically inert with respect to the formation fluids.

In secondary technological processes, the water is used to displace oil from reservoir collectors to the bottom of the well. For this purpose, the water must be purified from insoluble salts and other compounds such as algae and microorganisms that may form under reservoir conditions, in order to prevent a reduction in the injectivity of injection wells. (Mammadova, 2024; Murvatov, Usubaliyev, & Mammadova, 2022). Additionally, the water used in technological processes should not produce foam, should not cause scale formation in pump-compressor pipes and equipment, and should not corrode metal. Given that the development of a new "zero-waste" civilization involves highly multifunctional nanotechnology, the application of nanostructured systems in preparing the composition of formation waters to required conditions in closed water supply systems is of great theoretical and practical interest.

In general, the inability to condition formation waters to the required standards means that as the pressure of the water injected into injection and disposal wells increases, those waters – harmful to the natural environment around the wells come to the surface around the wells. Fig. 2 shows

that the extremely old state of the existing communication lines and inadequate treatment of the formation water cause major problems in water injection and acceptance (Ilchenko, 2000; Silin, & Magadova, 2013). For example, various geo-ecological risks can arise during the water-flooding process, so the utilization wells technology must be designed taking into account the geotechnical conditions of the field (Murvatov, Mammadov, & Mammadov, 2014; Murvatov, Usubaliyev, & Mammadova, 2022).

Fig. 2. Griffon formation in layer water utilization wells

Because the utilization of formation waters containing toxic components is not universally achievable, their treatment requires substantial capital and specific technological conditions (Abdulaziz, Hatem, & Mahdi, 2021; Ganotskaya, 2015; Igundu, & Chen, 2012; Mammadova, 2023; Munirasu, Abu, & Banat, 2016). Waters used for restoring reservoir pressure in oil fields are disposed of using open and closed treatment facilities. In open-type water treatment technology, regardless of the water's content, pressure, or gas saturation, formation waters and atmospheric runoff waters are treated in a single stream and then injected together into water injection wells. However, contact of these waters with atmospheric oxygen increases the corrosive activity of the water.

Methods

Study Area

One of the oil-gas-condensate fields on the Absheron Peninsula is the Bibiheybat field. The field is located on the coast of the Caspian Sea, 3–4 km south of the capital (Baku). Its geological structure includes the Absheron, Akchagil, and Productive Series deposits. In some parts of the field, the deposits are transgressively overlain by Ancient Caspian and Modern epoch sediments consisting of carbonate sandy clays and pebbly conglomerates. The Productive Series sediments consist of a highly irregular alternation of clay and sand layers, with a total thickness of about 1950 m. The Bibiheybat oil field has an asymmetric brachy-anticlinal structure, measuring 6 km in length, 3.5 km in width, and 1100 m in height, oriented northwest–southeast.

In order to clarify the situation, samples were taken from the produced waters and oils of the study area. Physico-chemical analysis of the water was carried out according to standards GOST 4011-72, GOST R 52407-2005, GOST 4192-82, GOST 4245-72, GOST 4388-72, GOST 4389-72, GOST 18164-72, GOST 18876-73, GOST R 51211-98, ISO 6060:1989, and Standard Methods 5210B.

The density and kinematic viscosity of oil samples were determined using an Anton Paar SVM 1001 viscometer. The dynamic viscosity of oil was measured using an Anton Paar

MCR 302 rheometer. Mechanical impurities were determined according to ASTM D473. The resin content was determined according to ASTM D381. Water content was determined according to ASTM D4006-16 (E1).

Results

Experimental Part

Utilizing formation waters with nanotechnologies at the atomic-molecular level and developing the mechanism of their impact on the well bottom zone are set as urgent tasks. For this purpose, taking into account the geological and technological conditions, we have selected and presented in Tab. 1 the component content of certain N-series nanocomposites used in the treatment of produced formation waters (co-produced with oil) to increase their efficiency in secondary technological processes.

A 250 ml formation water sample was taken from the formation water collection station of the Bibiheybat oil and gas field. We added 7.5 ml of 1.0 % composite mixtures of BAF-1 and BAF-2 nanostructured polycrystalline powders – obtained by treating a kerosene fraction with an alkaline waste (KFAW) and an alkaline-treated diesel fraction waste (ADFW) – to this sample, and performed physico-chemical analyses. Additionally, using ADFW together with 0.5 % aluminum nanoparticles, a nanocomposite was prepared and tested.

Table 1

Component content of the compositions according to conventional names

Name	Component content of the compositions
N-1	KFAW + (BAF-1+BAF-2)
N-2	ADFW + (BAF-1+BAF-2)
N-4	ADFW + 0.5% Al (40-60 nm)

A formation water sample taken from the field's water disposal facility was treated by adding 7.5 ml each of the N-1, N-2, and N-4 nanocomposites, and physico-chemical analyses were carried out on the water.

As seen in Tab. 2, the addition of the N-1 nanocomposite led to a slight decrease in HCO_3^- and Na^++K^+ ions, and a slight increase in Ca^{2+} and Mg^{2+} ions, resulting in a reduction in the Cl^- ion content. The total mineralization of the water sample decreased by 2.84 g/l, but its hardness increased by 2.15 mg-eq/l. According to Tab. 2, the addition of the N-2 nanocomposite to the formation water increased the CO_3^{2-} and HCO_3^- ions, while a decrease in Na^++K^+ ions was

observed. Although Ca^{2+} and Mg^{2+} ions increased, a decrease in the Cl^- ion content was recorded. Comparative analysis shows that the effect of the new N-1 and N-2 nanocomposites on the formation water samples led to certain positive changes in water characteristics in the first case, but the hardness increased significantly (by 2.15 mg-eq/l), i.e. the water shifted from soft to moderately hard. In the second case, the mineralization of the formation water sample decreased markedly (by 3.74 g/l) and, although its hardness increased slightly (by 1.59 mg-eq/l), its type changed to alkaline.

Table 2

The effect of N-series nanocomposites on the chemical indicators of formation water (mg/l)

Composition	Additive volume, ml	Chemical composition content of formation water, mg/l						Type of water
		CO_3^-	HCO_3^-	Na^++K^+	Cl^-	Ca^{2+}	Mg^{2+}	
N-1	0	-	1.2695	2.9904	2.3844	1.1222	1.1419	CaCl2
	7.5	-	1.2599	2.999	2.2972	1.0211	1.1497	CaCl2
N-2	0	-	1.2695	2.3844	2.9913	1.1222	1.1419	CaCl2
	7.5	1.147	1.2887	2.1972	2.779	1.1269	1.1448	Alkaline water
N-4	0	1.32	3.26	58.36	58.75	2.01	3.96	CaCl2
	7.5	1.82	3.82	59.52	57.69	1.38	2.43	Alkaline water

Furthermore, the chemical composition of a high-viscosity formation water sample (100 ml) changed from a hard water to an alkaline water after the addition of the N-4 nanocomposite.

Thus, based on the comparative experimental research results, the N-2 and N-4 nanocomposites – which improve the effectiveness of the water type for technological processes – changed the type of aggressive formation waters, converting a hard water into an alkaline water. The nanocomposites reduced the Ca^{2+} and Mg^{2+} divalent cations

held on the surface of negatively charged clay particles in the oil, replacing them with Na^+ ions. This created an opportunity to use the synergistic effect obtained from the application of N-2 and N-4 nanocomposites in the water-flooding method.

Continuing the research, nanocomposites were added to the oil sample taken from the surface of formation waters of Bibiheybat OGP, and the obtained results were systematized in the Tab. 3.

Table 3

(50 °C) with the addition of N nanocomposites to the oil sample taken from the formation water surface of the Bibiheybat OGPD

№	Indicators	As usual	N-1	N-2	N-4
1	Specific gravity of oil, kg/cm ³	915.0	915.0	915.0	915.0
2	Mechanical mixtures, %	26.67	6.67	3.33	25
3	Resin, %	0	0	0	0
4	Water separated from oil, %	0.03	0.16	0.27	0.04
5	Pure oil in the sample, %	73.30	93.17	96.4	74.69
6	Kinematic viscosity, sSt	27.10	12.1	3.2	21.45
7	Dynamic viscosity, sPz	26.67	11.99	3.14	21.41

Although no resin was detected in the composition of the oil, the kinematic viscosity of the sample was calculated at 27.1 sSt, and the dynamic viscosity at 26.27 sPz. However, after the addition of the N-1 nanocomposite, the amount of mechanical impurities decreased up to 4 times, the kinematic viscosity reduced to 15 sSt, and the dynamic viscosity to 14.282 sPz. Along with this, the amount of water separated from the oil increased by 5.3 times, and the volume of pure oil increased by 19.87 %.

When the N-2 nanocomposite was added to the same sample, the physical-chemical indicators were monitored. An increase was observed in the amount of mechanical impurities, kinematic and dynamic viscosity, the amount of separated water, and pure oil. This can be explained by the

more effective impact of the N-2 nanocomposite on the oil components collected from the water surface.

As seen from the table, with the addition of 60 ml of N-4 nanocomposite to the oil sample collected from the surface of formation waters, the mechanical impurities in the oil decreased from 26.67 ml to 25 ml, and an increase in the volume of water separated from the oil was observed – from 0.03 to 0.04. At the same time, both kinematic and dynamic viscosity significantly decreased.

The systematized experimental results obtained by affecting the oil sample collected from the surface of formation waters at the reservoir of formation water intake (RFWI) of Bibiheybat OGPD with new N-series nanocomposites are presented in Fig. 3.

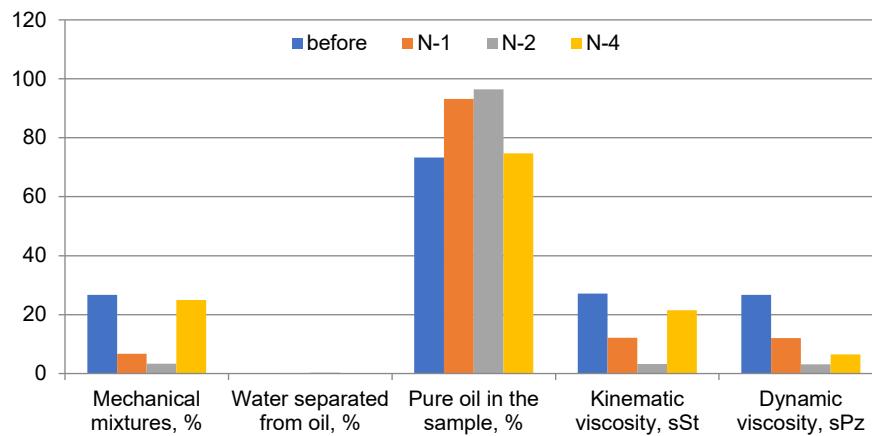


Fig. 3. The results obtained from variable indicators by adding N nanocompositions to the oil sample collected from the water surface from "Bibiheybat OGPD"

Thus, according to the results of the impact of nanocomposites on mechanical impurities – which are the main pollutants in formation waters 30 ml of N-4 nanocomposite was added to 13 g of mechanical impurities taken from the Bibiheybat OGPD, and the resulting mixture was filtered after 3 days. After filtration, 4 g of mechanical impurity remained. In the second case, 30 ml of N-2 nanocomposite was added to another 13 g of mechanical impurities, and after 3 days the mixture was filtered again, 4 g of impurities remained. Finally, 30 ml of N-1 nanocomposite was added to a third 13 g mechanical impurity sample. After 3 days and subsequent filtration, 6 g of impurities were found to remain.

As a result, it is evident that nanocomposites N-2 and N-4 are more effective in reducing (dissolving) mechanical impurities.

Discussion and conclusions

As of 01.01.2023, 29 production horizons are being exploited in the field. Until the present period, a total of 3829 wells have been drilled at the Bibiheybat OGPD. The number of wells currently in operation is 491, 44 wells are pending liquidation, 54 are inactive, 40 are in the water injection, 10 are absorbing wells, and 3155 have been

liquidated. Of the liquidated wells 2326 were closed due to geological reasons, and 829 due to technical reasons. The daily production at the field is presented in the Tab. 4.

As seen in the Tab. 4, the wells at the Bibiheybat field are highly watered, and the large volumes of produced water are treated only through mechanical methods. Considering that mechanical methods cannot completely remove all impurities from formation water (Abdulaziz, Hatem, & Mahdi, 2021; Al-Mohammad, Al-Kaabi, & Mohammad, 2019; Igundu, & Chen, 2012; Murvatov, Usubaliyev, & Mammadova, 2022), this leads to frequent blockages and leaks in pipelines and collectors (Murvatov, Usubaliyev, & Mammadova, 2022). Various complex-composition systems are used (taking into account the field's geotechnical parameters) to condition the physico-chemical properties of formation waters for technological processes (Murvatov, Usubaliyev, & Mammadova, 2022). If the physico-chemical properties of such systems are not compatible with the characteristics of the well-reservoir system, the efficiency of the implemented technological operations and processes will not be at the required level.

Table 4

№	Well №	Average daily production			
		Oil, t/g	Water, t/g	Gas, m3/g	Water %
1	3884	0.7	5	107	88
2	2496	0.1	1	36	91
3	3657	1.1	5.5	89	83
4	3676	1.4	15	107	91
5	3864	1.3	5.8	107	82
6	3872	1.1	6.7	107	86
7	3833	0.6	3	10	83
8	2565	1.3	11	89	89
9	2766	1.4	7.1	89	84
10	3817	0.1	1	35	91
11	3824	0.6	3	4	83
12	3838	0.5	3	3	86
13	2597	1	10	89	91
14	3882	0.6	6.7	180	92
15	3885	2.3	21.7	214	90
16	3479	0.8	6	250	88
17	3480	3.7	13.3	250	78
18	2732	1.1	8.6	89	89
19	3825	1.5	2.5	42	63
20	3835	1.9	2.5	18	57
21	3849	0.8	3	6	79
22	3855	1.3	2	27	61
23	3891	0.7	3	11	81
24	3837	0.2	0.5	11	71
25	3474	4	1.5	3	27
26	3477	2.1	7.6	214	78
27	3478	0.8	5	250	86
28	3679	1.1	9.3	180	89
29	3476	4	16	180	80
30	3860	1.1	15	107	93
31	3862	1.3	15	107	92
32	3485	1.3	15	89	92
33	3815	2.5	10	107	80
34	3868	1.8	3	4	63
Total	34	46.1	244.3	32.11	

Hydrogeochemical systems are known to be dynamic. A technology for utilizing formation waters with various nanocomposites to mobilize oil in reservoir conditions can ensure the rational use of resources (Bera, Mandal, & Belhaj, 2017; Cheraghian, & Hendraningrat, 2016; Cheraghian, Khalilizadeh, & Kamari, 2014; Shahbazov, Bagirov, & Aliyev, 2018). Nanocomposites help reduce surface tension at the interface, improve the wetting ability of rocks, and increase permeability. They also cause increased layer leaching and flow rate due to reduced adhesion and capillary forces. Consequently, at lower surface tension values, layer fluid deformation is easier, and less work is required to displace oil droplets from collectors, which increases their movement speed within the layer. Through interaction, the nanocomposite aids in breaking down the oil film covering the rock surface (Bera, Mandal, & Belhaj, 2017; Cheraghian, & Hendraningrat, 2016; Cheraghian, Khalilizadeh, & Kamari, 2014; Shahbazov, Bagirov, & Aliyev, 2018).

As seen in the Tab. 3, oil displacement with nanocomposite-treated water is explained by its effect on the oil's rheological properties. Heavy hydrocarbons in oil, such as asphaltenes, resins, and paraffin deposits, contribute to the formation of structure and high viscosity in abnormal oils. The nanocomposite-based technology we developed for the utilization and reuse of formation waters in technological processes weakens the interaction between these structure-forming components of oil by adsorbing them. As a result, the physicochemical properties of the formation fluid improve.

Currently, there is quite a lot of classification of natural waters by chemical composition, but few have become widespread. The most commonly used in oil and gas hydrogeology are the classifications of R. Palmer and V. A. Sulin. Based on this, we characterized the water samples of these deposits according to these classifications.

According to the classification of waters, according to V. A. Sulin, these waters are divided into four genetic groups:

- sodium-sulfate (SS);
- sodium-bicarbonate waters (SB);
- calcium-chloride waters (CC);
- magnesium-chloride waters (MC).

According to Palmer, classes are distinguished by the ratio of the sums of metal and acid ions. R. Palmer identifies salt characteristics. The first salinity is due to salts of bases and strong acids. The second salinity is determined by salts of alkaline earth metals and strong acids. The first alkalinity is due to alkali metal salts and salts of weak acids. The second alkalinity is the presence of salts of alkaline earth metals and weak acids. As seen in the Tab. 5, hydrogeochemical analysis of water samples taken from the Bibiheybat field in 2022–2024, the produced waters are mainly of the calcium chloride type and are of high viscosity. As depth increases in the reservoir, the degree of water mineralization gradually decreases; however, according to V. A. Sulin's classification, these waters are "hard" – being of the magnesium chloride and calcium chloride types.

Physical properties of formation waters from the Bibiheybat OGPD (2022–2024)

Table 5

Well №	Depth, m	Density, kg/m ³	Mineralization, mg/l	According to Palmer's classification			
				S ₁	S ₂	A ₁	A ₂
3855	1743	1010.6	20781	53.36	0	45.07	1.57
2837	527	1077.0	115047	88.48	10.62	0	0.90
3420	579	1072.6	108406	90.99	8.17	0	0.84
3496	443	1075.9	111353	83.70	15.37	0.00	0.92
3461	734	1061.7	94357	94.39	3.16	0	2.45
3753	490	1083.1	121067	84.70	14.69	0	0.61
557	463	1070.8	97738	85.46	13.44	0	1.10
924	467	1076.5	106253	86.43	12.91	0	0.66
3820	757	1045.2	64370	92.44	4.23	0.3	3.33
3868	1807	1016.7	28894	76.32	0	20.54	3.14
3890	1643	1036.0	56940	93.94	0	4.37	1.69
2023							
519	527	1030.4	45919	89.49	7.30	0	3.22
3227	631	1072.7	104633	90.33	8.43	0	1.24
3479	1716	1035.8	54192	89.87	7.29	0	2.84
3480	1744	1015.4	25967	84.60	0	7.08	8.32
3864	1780	1024.1	37705	82.92	0	15.70	1.38
3305	676	1074.5	104620	89.46	9.54	0	1.00
548	504	1088.3	123393	89.57	9.83	0	0.59
796	908	1050.9	80066	90.30	0	6.93	2.78
1182	574	1065.7	93825	88.02	10.80	0	1.18
3310	544	1065.4	94368	88.04	10.97	0	0.98
3350	518	1080.2	109260	89.28	10.07	0	0.65
2024							
1118	279	1074.4	101711	81.85	17.28	0	0.87
3162	1233	1026.2	40190	85.75	0	13.93	0.32
3287	294	1083.7	113546	82.67	16.73	0	0.60
3461	734	1060.7	85108	94.44	3.46	0	2.11
3476	1693	1017.6	16065	51.62	0	47.12	1.26
3761	471	1036.4	51937	89.00	6.52	0	4.48
548	504	1087.7	128921	83.02	16.46	0	0.53
1167	228	1068.1	101192	90.70	7.90	0	1.40
3321	247	1058.3	86690	85.18	13.24	0	1.58
1264	743	1058.9	85997	81.34	17.66	0	1.00
3282	493	1083.6	114313	83.80	15.50	0	0.71

As seen from Tab. 6, the presence of both acidic and alkaline conditions in the field, and the mixing of these waters in settling tanks, combined with their considerable aggressiveness, cause the equipment and pipes used in water injection to fail quickly. In such cases, the ecological balance is disrupted.

According to the 2022–2024 hydrogeochemical analysis results, the formation waters are primarily calcium chloride type with high salinity and viscosity. With increasing depth, the water's mineralization tends to decrease, but by V. A. Sulin's classification they remain "hard" waters of magnesium chloride and calcium chloride types. The data in Tab. 5, also indicate that in 2022 the field's produced waters included both sodium bicarbonate type and calcium chloride type waters, while deeper wells yielded a magnesium chloride type water. By 2024, after interventions and treatment, the water types from new or treated wells shifted mostly to calcium chloride or became alkaline in character.

Since oil is retained in the oil reservoir environment by capillary forces, a reduction in these forces leads to increased oil production. This is achieved by reducing rock wettability and the interfacial surface tension between the formation fluid and the rock surface (Bera, Mandal, & Belhaj, 2017; Cheraghian, & Hendraningrat, 2016; Cheraghian, Khalilnezhad, & Kamari, 2014; Shahbazov, Bagirov, & Aliyev, 2018; Murvativ, Usubaliyev, & Mammadova, 2022).

The formation waters extracted from the Bibiheybat OGPD have been classified according to their physical and

chemical composition using various approaches. It has been shown that at the IV stage of field development, production and well injectivity have decreased, the amount of extracted water has increased, and as a result, the environmental landscape has been damaged, leading to inevitable ecological complications.

Since the disposal of formation waters containing toxic components is not universal, their treatment requires substantial capital investment and specific technological conditions. There is no standardized procedure for the treatment of formation waters in the oil industry. However, in order to displace oil from reservoir collectors to the bottom of the well and to avoid reducing the injectivity of injection wells, the water must be purified from insoluble salts and other compounds such as algae and microorganisms that may form under reservoir conditions.

Water intended for reuse in secondary technological processes must not cause foaming, must not form scale in pump-compressor pipes and equipment, and must not induce corrosion in metal components.

At the Bibiheybat OGPD, most of the mining infrastructure and hydraulic engineering facilities created for the management of formation waters are technically outdated and in an unserviceable condition. The inability to properly condition formation water makes its reuse in technological processes a source of various geoecological risks to the surrounding environment.

Table 6

Well №	Depth, m	Chemical composition of formation water, mg/l					Type of water (V.A. Sulin)
		Na ⁺ +K ⁺	Ca ₂ ⁺	Mg ₂ ⁺	Cl ⁻	HCO ₃ ⁻ +CO ₃ ²⁻	
2022							
3855	1743	5766.61	48.10	19.44	4818.85	5294.80	NaHCO ₃
2837	527	40310.72	1895.52	1623.04	69594.66	704.36	CaCl ₂
3420	579	38807.15	2145.20	729.37	65188.34	559.90	CaCl ₂
3496	443	37074.19	3098.59	1934.47	67643.98	716.55	CaCl ₂
3461	734	34452.11	1019.23	463.96	54884.58	1593.61	CaCl ₂
3753	490	40784.51	3725.86	1632.23	73771.02	510.14	CaCl ₂
557	463	32996.56	2565.12	1409.40	58858.82	563.64	CaCl ₂
924	467	36332.01	3687.36	777.60	64366.07	495.32	CaCl ₂
3820	757	23061.25	480.96	704.70	37173.99	1690.92	MgCl ₂
3868	1807	9068	48.10	126.36	11014.52	3989.40	NaHCO ₃
3890	1643	20985	215.49	60.09	30910.10	2546.49	NaHCO ₃
2023							
519	527	16054	601.20	631.80	26763.54	1285.88	CaCl ₂
3227	631	36943.00	2164.32	777.60	62258.92	544.12	CaCl ₂
3479	1716	18771	881.76	583.20	31282.06	814.96	CaCl ₂
3480	1744	8106.20	440.88	121.50	11414.14	2208.20	NaHCO ₃
3864	1780	13141.26	285.76	97.20	17031.34	5061.00	NaHCO ₃
3305	676	36700.95	2885.76	534.60	62604.80	527.04	CaCl ₂
548	504	43471.86	4408.80	523.00	74364.82	495.32	CaCl ₂
796	908	28992.23	320.64	243.00	41505.95	6758.80	NaHCO ₃
1182	574	32452.96	2565.12	777.60	56163.17	636.84	CaCl ₂
3310	544	38312.90	4008.00	631.80	56378.91	204.96	CaCl ₂
3350	518	38312.90	4008.00	291.60	65717.75	397.72	CaCl ₂
2024							
1118	279	33188.37	3206.40	1944.00	61956.69	597.80	CaCl ₂
3162	1233	14277.01	16.03	14.58	18931.21	4377.30	NaHCO ₃
3287	294	37312.99	4408.80	1458.00	68820.53	451.40	CaCl ₂
3461	734	31235.08	801.60	486.00	49909.56	1285.88	CaCl ₂
3476	1693	4313.02	16.03	19.44	3475.78	3835.90	NaHCO ₃
3761	471	17857.50	641.28	778.60	29544.16	1847.08	MgCl ₂
548	504	42718.15	4328.64	1992.60	78900.30	544.12	CaCl ₂
1167	228	35884.10	2004.00	729.00	60131.06	799.10	CaCl ₂
3321	247	29077.16	2304.00	1458.00	51789.18	771.04	CaCl ₂
1264	743	28070.05	2404.80	1944.00	52663.19	915.00	CaCl ₂
3282	493	38060.04	3607.20	1701.00	69515.68	439.20	CaCl ₂

As a result, rapid contamination of the bottom zone of injection wells and a significant decrease in permeability are frequently observed. Consequently, the reduced injectivity of these wells leads to increased pressure in the injection communications, the formation of surface leaks (gryphons), the spread of formation water into surrounding areas, and contamination of open water bodies.

The currently available methods for treating formation water are either too costly or fail to achieve sufficient purification efficiency. Moreover, they require the installation of large-scale auxiliary facilities at the oil fields, such as reagent storage systems, sludge (waste) reservoirs, and other supporting infrastructure.

At the Bibiheybat OGP, the mechanical method applied for water treatment is not considered effective in removing oil, petroleum products, and dissolved elements from the water composition.

In addition, many chemical treatment methods, which are often expensive, result in the generation of hazardous waste, the disposal of which becomes another critical issue.

From this perspective, the application of nanostructured systems in the preparation of formation water to meet conditioning standards within closed-loop water supply systems presents significant theoretical and practical interest.

Based on the research, there's a need to improve the existing technology for restoring the formation-well system in injection wells at the Bibiheybat OGP to treat formation waters, and to increase the oil recovery factor. Research

studies indicate that treating formation waters with small-sized metal nanoparticle-based compositions should also change the collector properties of the formation as these particles penetrate the pore boundaries. This is because compositions made from Al nanoparticles change the rheological parameters of oil and positively affect its movement in formation conditions (Mammadova, 2023; Shahbazov, Bagirov, & Aliyev, 2018).

Thus, to increase the efficiency of produced waters in secondary technological processes, we developed the technological scheme for treating them with N-2 and N-4 nanocomposites and returning them to the formations in a closed water cycle at the field is shown in Fig. 4.

Based on a comparative analysis of the research, it was shown that the N-2 and N-4 nanocomposites change the type of the formation water: aggressive "hard" water was converted into alkaline water. Additionally, the divalent Ca²⁺ and Mg²⁺ cations retained on the surface of negatively charged clay particles in the oil were reduced and replaced by Na⁺ ions. This enabled the removal of oil molecules from the rock pores and created the opportunity to use the synergistic effect obtained from the application of N-2 and N-4 nanocomposites in the water-flooding method.

As a result of treating oil samples (taken from the Bibiheybat OGP) with N-2 and N-4 nanocomposites, it was determined that the amount of mechanical impurities in the oil decreased and the kinematic and dynamic viscosity of the oil were significantly reduced.

Within the framework of environmental safety regulations, a zero-waste closed water supply system is proposed for conditioning formation waters to required standards. The eco-technological scheme of this system,

which involves treating formation waters with N-2 or N-4 nanocomposites, has been developed and demonstrated (Fig. 4) as an effective solution for environmentally safe reuse of formation water.

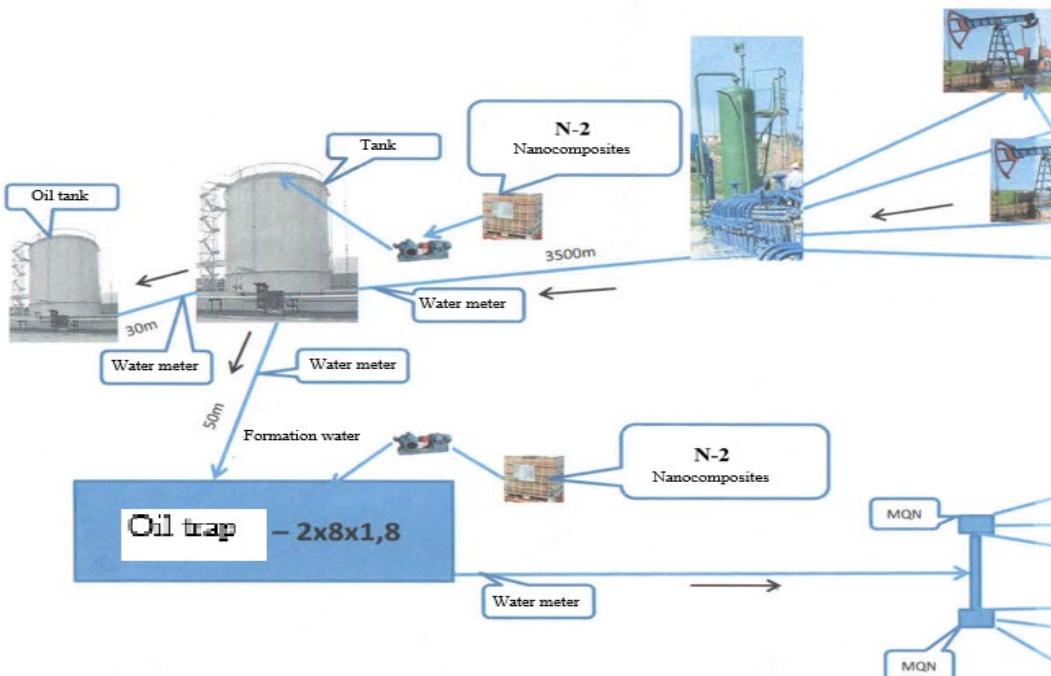


Fig. 4. Technological scheme for recirculation of formation waters

References

Abdulaziz, J. A., Hatem, A. G., & Mahdi, N. R. (2021). Oilfield-produced water characteristics and treatment technologies. *IOP Conference Series: Materials Science and Engineering*, 1058.

Al-Mohammad, A., Al-Kaabi, M., & Mohammad, Y. A., et al. (2019). Produced water characteristics, treatment and reuse: A review. *Journal of Water Process Engineering*, 28, 222–239.

Andreev, V. V. (2003). *Spravochnik po dobychke nefti* (Handbook of Oil Production). Moscow: Nedra-Business Center [in Russian]. [Андреев, В. В. (2003). *Справочник по добыче нефти*. Недра-Бизнесцентр.]

Bera, A., Mandal, A., & Belhaj, H. et al. (2017). Enhanced oil recovery by nonionic surfactants considering mercerization, surface, and foaming properties. *Petroleum Science*, 14, 362–371.

Beyer, J., Goksoyr, A., Hjerman, D. O., & Klungsoyr, J. (2020). Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. *Marine Environmental Research*, 162.

Boysen, D., Boysen, J., & Larson, T. (2011). *Produced Water Management Handbook*. Gas Research Institute.

Cheraghian, G., & Hendraningrat, L. (2016). A review on applications of nanotechnology in enhanced oil recovery. Part B: Effects of nanoparticles on flooding. *International Nano Letters*, 6, 1–10.

Cheraghian, G., & Hendraningrat, L. (2016). A review on applications of nanotechnology in enhanced oil recovery. Part A: Effects of nanoparticles on interfacial tension. *International Nano Letters*, 6, 129–138.

Cheraghian, G., Khalilizadeh, S. Sh., & Kamari, M. et al. (2014). Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO₂. *International Symposium on Oilfield Chemistry*, 114–122.

Ganotskaya, E. D. (2015). *Development of an environmentally safe electrocoagulation demineralization technology for oilfield produced water (on the example of the Dush field, Krasnodar Krai)* [Author's abstract of Cand. Tech. Sci. dissertation]. Krasnodar [in Russian]. [Ганоцкая, Е. Д. (2015). *Разработка экологически безопасной технологии электрокоагуляционной деминерализации нефтяных сточных пластовых вод (на примере месторождения Душ Краснодарского края)*.]

Igunnu, E., & Chen, G. (2012). Produced water treatment technologies. *International Journal of Low-Carbon Technology*, 9(3), 157–177.

Ilchenko, V. P. (2000). *Hydrogeological-ecological monitoring at injection sites for industrial wastewater. Methodical guidance under editorship of Dr. V.P. Ilchenko – RD 51-31323949-48-2000*. Gazprom IRC.

Kovaleva, E. I., Trofimov, S. Y., & Cheng, Z. (2020). Impact of oil contamination on ecological functions of peat soils from West Siberia of Russia. *Journal of Environmental Quality*, 50, 49–62.

Lee, K., Lee, K., Bain, H., & Hurley, G. V. et al. (2005). *Acoustic monitoring and marine mammal surveys in the Gully and outer Scotian Shelf before and during active seismic programs*. Environmental Studies Research Funds (ESRF) Report, December. No. 151.

Mammadova, N. I. (2020). Management of the volume of formation waters produced from oil-gas fields and reduction of environmental impact. *Proceedings of the Scientific Conference of Young Researchers and Doctoral Students dedicated to the 100th anniversary of ASOU*, Baku, 227–231 [in Azerbaijan]. [Məmmədova, N. İ. (2020). Neft-qaz yataqlarından hasil edilən lay sularının hecmiinin idarəe edilməsi və etraf mühitə təsirin azaldılması].

Mammadova, N. I. (2022). Management of produced water volume. *Proceedings of the L (50th) International Scientific-Practical Conference*, Moscow, November 30, 116–120.

Mammadova, N. I. (2023). Application of metallic nanoparticles in formation water. *Proceedings of the LIII (53rd) International Scientific-Practical Conference "EurasiaScience"*, Research and Publishing Center Actualnost.RF, Moscow, May 15, 60–61.

Mammadova, N. I. (2023). Produced water and ecological problems. *Proceedings of the L (50th) International Scientific-Practical Conference*, Moscow, November 30, 117–121.

Mammadova, N. I. (2023). Treatment of formation water extracted from oil fields with surfactants (SAS). *Proceedings of the LIII International Scientific-Practical Conference "EurasiaScience"*, Research and Publishing Center Actualnost.RF, Moscow, May 15, 62–63.

Mehmood, F., Khan, A., & Muneer, R., et al. (2016). Environmental concerns caused by drilling and production operations in the petroleum industry (A case study). *Science International (Lahore)*, 28(5), 4497–449.

Mengxue, H. (2020). Environmental Behavior of Petroleum in Soil and its Harmfulness Analysis. *II 2nd International Conference on Air Pollution and Environmental Engineering*, 450, IOP Conference Series: Earth and Environmental Science.

Miller, G. (2006). Integrated concepts in water reuse: managing global water needs. *Desalination*, 187(1–3), 65–75.

Munirasu, S., Abu, M., & Banat, F. (2016). Use of membrane technology for oilfield and refinery produced water treatment. *Process Safety and Environmental Protection*, 100, 183–202.

Murvatov, F. T., Mammadov, F. T., & Mammadov, N. T. (2014). On some ecological consequences of water flooding in old oil fields of Azerbaijan. *News of the Azerbaijan Engineering Academy (Proceedings)*, 22(6), 107–112.

Murvatov, F. T., Usubaliyev, B. T., & Mammadova, N. I., et al. (2022). Development of a nanostructured composite for impact on the bottomhole area in disposal wells for the management of produced water (on the Siyazan field example). *New Materials, Compounds and Applications*, 6(2), 119–126.

Neff, J. M. (2002). *Bioaccumulation in Marine Organisms. Effects of Contaminants from Oil Well Produced Water*. Elsevier Science Publishers.

Shahbazov, E., Bagirov, A., & Aliyev, C. (2018). Application of nanosystems for improving residual oil recovery in aging fields. *Scientific Israel – Technological Advantages*, 20(5–6).

Silin, M. A., & Magadova, L. A. et al. (2013). Conducting studies of deep samples from injection wells to develop compositions and technologies for treating the bottomhole formation zone. *Neftepromyslovoe Delo (Oilfield Engineering)*, 7, 36–39.

Steinar, S., Emily, L., Daniela, M. P., & Mathijs, G. D. S. (2017). Species sensitivity distributions based on biomarkers and whole organism responses

for integrated impact and risk assessment criteria. *Marine Environmental Research (Elsevier)*, 127, 11–23.

Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. *Frontiers in Microbiology*, 3(204).

Отримано редакцією журналу / Received: 23.04.25

Прорецензовано / Revised: 22.05.25

Схвалено до друку / Accepted: 30.06.25

Назіла МАММАДОВА, канд. техн. наук, викл.

ORCID ID: 0000-0001-6064-6274

e-mail: naza_366@mail.ru

Азербайджанський державний університет нафти та промисловості, Баку, Азербайджан

ЗАСТОСУВАННЯ НОВОГО КЛАСУ НАНОКОМПОЗИТІВ В ЕКОЛОГІЧНОМУ УПРАВЛІННІ ПЛАСТОВИМИ ВОДАМИ НА НАФТОГАЗОВОМУ РОДОВИЩІ БІБІ-ЕЙБАТ

Вступ. Розроблено нову технологію утилізації для забезпечення раціонального повторного використання токсичних пластових вод, видобутих з нафтових родовищ НГВУ "Бібіхейбат", у вторинних технологічних процесах та для відновлення екологічного балансу. Дослідження представляє порівняльний аналіз механізмів впливу нанокомпозитів N-1, N-2 та N-4.

Методи. Зразки пластової води, відібрані з приймальних резервуарів нафтових родовищ НГВУ "Бібіхейбат", обробляли різними нанокомпозитами для оцінки їхнього впливу. Додатково проаналізовано зразки нафти, взяті з поверхні пластової води, щодо змін реологічних параметрів, а основний забруднювач – механічні домішки – оброблено за допомогою нанокомпозитів серії N.

Результати. Запропонована нова технологія утилізації виявилася як екологічно, так і економічно ефективною для підвищення ефективності повторного використання пластової води у вторинних технологічних процесах та мінімізації її впливу на навколишнє середовище. Без необхідності встановлення нових об'єктів на старих нафтових родовищах може бути створена замкнута система водопостачання з використанням нанокомпозитів N-2 або N-4, залежно від геологічних умов.

Висновки. Згідно з результатами дослідження, нанокомпозити N-2 та N-4 змінюють тип пластової води, перетворюючи її з "кислотою" на "лужну". Ці композити також поліпшують реологічні властивості нафти. У рамках стандартів екологічної безпеки пропонується замкнута, безвідходна система водопостачання з використанням нанокомпозитів N-2 або N-4 як екологічно-технологічна схема підготовки пластової води до необхідних умов.

Ключові слова: пластова вода, токсичні компоненти, навколишнє середовище, технологія утилізації, нанокомпозит.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

МІНЕРАЛОГІЯ, ГЕОХІМІЯ ТА ПЕТРОГРАФІЯ

УДК 550.8.056

DOI: <http://doi.org/10.17721/1728-2713.110.10>

Сергій ВИЖВА¹, член-кор. НАН України, д-р геол. наук, проф.
 ORCID ID: 0000-0003-4091-6649
 e-mail: s.vyzhva@knu.ua

Іван ГАФІЧ², канд. геол.-мінералог. наук
 e-mail: gafichip@dtek.com

Андрій ГОЖИК¹, канд. геол.-мінералог. наук, доц.
 ORCID ID: 0000-0001-6198-5681
 e-mail: andrii.gozhyk@knu.ua

Олександр ШАБАТУРА¹, д-р геол. наук, доц.
 ORCID ID: 0000-0003-0810-3701
 e-mail: oshabatura@knu.ua

Сергій ШНЮКОВ¹, д-р геол. наук, доц.
 ORCID ID: 0000-0003-1338-5272
 e-mail: shnyukov54@knu.ua

¹Київський національний університет імені Тараса Шевченка, Київ, Україна
²ДТЕК Нафтогаз

ГЕОХІМІЧНО-ПЕТРОФІЗИЧНА ОЦІНКА ЛІТОЛОГІЧНОЇ ТА КОЛЕКТОРСЬКОЇ МІНЛІВОСТІ КЕРНУ СВЕРДЛОВИН НА ПРИКЛАДІ РУНОВЩИНСЬКОЇ НАФТОГАЗОНОСНОЇ ПЛОЩІ ДНІПРОВСЬКО-ДОНЕЦЬКОЇ ЗАПАДИНИ (ПОПЕРЕДНІ РЕЗУЛЬТАТИ)

(Представлено членом редакційної колегії д-ром геол. наук, проф. О.М. Карпенком)

Вступ. Для реальних розрізів свердловин Руновщинської нафтогазоносної площини Дніпровсько-Донецької западини (ДДЗ), які містять продуктивні горизонти, виконано комплексне петрофізично-геохімічне дослідження репрезентативної серії зразків керна (n=79). Мета роботи – перевірка можливості поєднання інтеграції його результатів з даними геофізичного дослідження свердловин (ГДС) для підвищення ефективності інтерпретації геологого-геофізичних даних.

Методи. Для всіх зразків керна після їх уніфікованої підготовки та попереднього петрографічного вивчення визначено петрофізичні параметри, в тому числі фільтраційно-ємнісні властивості (пористість, проникність) порід, а також концентрація в них всіх головних компонентів та найважливіших мікроелементів (WDXRF, EDXRF). Результатами визначень об'єднано в єдиний петрофізично-геохімічний банк даних.

Результати. За вмістом головних елементів розраховано вміст кварцевого (Qtz), глинистого (CLAY), карбонатного (CARB), органічного (ORG) компонентів порід та кількісно охарактеризовано літологію розрізів. На прикладі сірки продемонстровано можливість виділення локальних геохімічних аномалій, які є індикаторами пластів з припливом нафти. Встановлено стійкі кореляційні зв'язки між інструментально визначеною пористістю і абсолютною проникністю, вмістом модельних компонентів Qtz, CLAY та коефіцієнтом $(K_2O + Na_2O + Al_2O_3 + TiO_2)/LOI$, які значно поліпшені за результатами використання нейронних мереж.

Висновки. Підтверджено ефективність геохімічних методів (*elemental geochemistry*) у варіантах дослідження керну та шламу свердловин ("геохімічний каротаж") для впевненого (без інформаційних втрат і викривлень) поширення результатів прямого "точкового" вивчення фільтраційно-ємнісних та інших параметрів зразків керну в інтервалах його відбору на весь розріз свердловини для поєднання інтерпретації з даними ГДС, досягнення максимально однозначної кількісної інтерпретації всіх даних та потріб "підземної навігації" (*geosteering*) при бурінні. Підтверджено доцільність використання нейронних мереж для підвищення точності визначення фільтраційно-ємнісних властивостей з використанням петрофізичних і геохімічних даних.

Ключові слова: петрофізичні параметри, елементний склад, кількісна літологія, геохімічний каротаж свердловин, углеводні, Дніпровсько-Донецька западина.

Вступ

Ефективна інтерпретація даних сейсморозвідки та параметричного буріння, достовірна оцінка перспектив потенційно нафтогазоносних площ і підрахунок запасів вуглеводневої сировини потребують детального стратиграфічного та літологічного розчленування розрізів із надійним визначенням петрофізичних параметрів усіх літотипів і, особливо, фільтраційно-ємнісних властивостей порід-колекторів. Зазвичай базою для цього слугують результати інтерпретації даних геофізичного дослідження свердловин (ГДС), а дані прямого петрофізичного та літологічного вивчення зразків керну використовуються як "внутрішній стандарт" для уточнення результатів та

обґрунтування їх поширення на весь розріз. Для цього інтервали та детальність відбору таких зразків, в ідеалі, повинні характеризувати всі принципово важливі для інтерпретації частини розрізу. Але на практиці наявний керновий матеріал далеко не завжди репрезентативно перекриває навіть потенційно перспективні інтервали, які виділяються за даними ГДС. Зауважимо, що таке становище характерне не тільки для ділянок зі старим фондом свердловин, але й для нових територій, оскільки сам відбір керна планується за аналогією із сусідніми площами, а можливості оперативної корекції відбору в процесі буріння обмежені з технічних причин.

Таким чином, реальна ситуація відрізняється від ідеальної (повне перекриття розрізу свердловини даними як прямих петрофізичних/літологічних досліджень за керном, так і результатами ГДС), що неминуче знижує достовірність кінцевих результатів. Тобто існує не розв'язана повністю **загальна проблема**, яка полягає у відсутності простої, але ефективної технології впевненого (без втрат і викривлень) поширення результатів прямого "точкового" дослідження зразків керна в інтервалах його відбору на весь розріз свердловини для повноцінної інтеграції з ГДС та досягнення максимально однозначної кількісної інтерпретації всіх даних. Природно, що важливою вимогою до такої технології є й можливість одержати результати паралельно з реалізацією традиційного комплексу ГДС або навіть його випереджаючи. На сьогодні доцільно виділити такі **частини загальної проблеми**, які підлягають послідовному вирішенню: (1) обґрунтування вибору засад потрібної технології, (2) підтвердження правомірності вибору шляхом його пілотного тестування, (3) розробка технології та її апробація.

Для **частини (1) загальної проблеми** на сьогодні є лише одне та фактично безальтернативне рішення, яке полягає у розширеному використанні геохімічних методів у варіантах дослідження керна та шламу свердловин ("геохімічний каротаж"). Це рішення базується на результатах численних геохімічних та ізотопно-геохімічних досліджень, виконаних за останні більш ніж 40 років у галузі хемостратиграфії (Berger, & Vincent, 1981; Chemostratigraphy..., 2019; Brookfield et al., 2020; Ramkumar, Nagarajan, & Santosh, 2021 тощо). Багато в чому вони безпосередньо орієнтовані саме на розгляд прикладних аспектів цієї частини проблеми, включаючи оцінку кількісної мінералогії/літології та колекторських властивостей порід за їх елементним складом (Herron, 1986; Herron, & Herron, 1998; Harvey et al., 1998; Hupp, & Donovan, 2018; Cosme et al., 2025 тощо). **Враховуючи сучасне значне поширення, універсальність, відносно невелику вартість та швидкий розвиток обладнання для рентгенофлуоресцентного елементного аналізу (X-ray fluorescence – XRF), в тому числі його мобільних ("ручних") варіантів (handheld energy dispersive X-ray fluorescence spectrometers – hhEDXRF (pXRF, HHXRF або EDXRF), саме цей геохімічний напрямок (використання розподілу головних та мікроелементів з визначенням їх концентрацій на базі XRF) вже зараз впевнено займає пріоритетну позицію та має всі шанси зберегти її на довгі перспективи (Jarvie et al., 2007; Rowe, Hughes, & Robinson, 2012; Martin, 2019; Martin, & Carr, 2020 тощо). Зауважимо, що ця позиція може бути суттєво посилена за умови контрольного ("точкового") доповнення можливостями, які надають набагато дорожчі системи автоматизованого мінералого-петрографічного вивчення зразків керна і шламу (QEMSCAN, MLA тощо) (Blannin et al., 2021; Jiang, 2012 тощо).**

У цій статті на прикладі реальних розрізів свердловин Руновщинської нафтогазоносної площині ДДЗ, які містять продуктивні горизонти, розглядається **частина (2) загальної проблеми**. Тому **мета роботи** полягає у підтвердженні правильності вибору геохімічних засобів як основи технології, що обговорюється, шляхом їх пілотного тестування. **Завданням роботи** було: (1) репрезентативне опробування керна; (2) його комплексна підготовка (препарація зразків/проб); (3) літологічні, петрофізичні та геохімічні (аналітичні) дослідження; (4) створення петрофізично-геохімічного банку даних, що об'єднує всю одержану інформацію; (5) тестовий розрахунок кількісної літології розрізів, виділення

геохімічних аномалій і оцінка можливості визначення фільтраційно-смісніх (колекторських) параметрів порід за геохімічними даними; (6) визначення перспектив використання нейронних мереж для комплексної інтерпретації даних. Виконання передбачених завдань автори розглядають у контексті підготовки до розв'язання сформульованої вище **частини (3) загальної проблеми**.

Об'єкт дослідження. Район дослідження належить до осьової частини ДДЗ (Атлас ..., 1984 тощо) та розташовується в межах її центрального та найбільш зануреного сегмента з потужним (9–11 км) осадовим комплексом, який складений утвореннями палеозойської, мезозойської та кайнозойської ератем. Основними структурними елементами є глибокі западини (власне занурена частина ДДЗ) та позитивні валоподібні структури (Опішнянсько-Матвіївська структура, Руновщинське підняття та західна частина Кочубеївсько-Розпашнівського валу), утворені соляним тектоногенезом. У межах району досліджень (відповідає Глинсько-Солохівському та Машівсько-Шебелинському нафтогазоносним районам із щільністю нерозвіданих ресурсів вуглеводнів 10–50 тис. т/км²) поклади вуглеводнів виявлено в широкому стратиграфічному інтервалі – від юрських до турнейських утворень (діапазон глибин від 430 до 6300 м).

Власне Руновщинська площа приурочена до однієїменного підняття, яке по відкладах нижнього і середнього карбону є вузькою брахіантклиналлю субширотного простягання розміром 6,0×1,5 км, яка прорвана соляним штоком. Південне крило підняття круті, північне – пологе. Руновщинський соляний шток належить до типу закритих передверхньoperмських, грибоподібних. Основні елементи структури ускладнені різнонаправленою системою порушень, серед яких переважають скиди з північно-східним падінням. За сейсмічними даними (2D) минулих років та за результатами параметричного буріння на ділянці східної перикліналі Руновщинського підняття простежується тектонічний вузол, ускладнений міжблоковою складкою.

Продуктивні горизонти залягають на глибинах 300–5500 м. Поклади вуглеводнів пов'язані з пластовими та комбінованими літологічно і тектонічно екронованими пастками. Колекторами є теригенні і карбонатні породи. Перспективи нафтогазоносності пов'язуються з відкладами нижньoperмського, верхньокам'яновугільного, середньокам'яновугільного і нижньокам'яновугільного комплексів, продуктивність яких підтверджено на сусідніх газоконденсатних родовищах.

За результатами комплексних геолого-геофізичних робіт, пошукового і розвідувального буріння в межах площині відкрито три родовища вуглеводнів: Руновщинське газове, Східноруновщинське газове і родовище Академіка Шпака нафтovе. За даними Державної служби геології і надр України, на родовищі Академіка Шпака обліковані запаси нафти категорії C2 становлять 2730 тис. т, категорії C3 – 2006 тис. т та перспективні ресурси газу категорії C3 – 1640 млн м³; на Руновщинському родовищі запаси вільного газу категорії C2 – 507 млн м³ та категорії C3 – 483 млн м³; на Східноруновщинському родовищі запаси вільного газу категорії C2 – 349 млн м³.

У роботі досліджено репрезентативні фрагменти розрізів свердловин № 100, 101 та 110, які представлені як теригенними, так і карбонатними породами і містять горизонти з підтвердженою продуктивністю. Загальний обсяг опробування становив 287 зразків. Повний комплекс геохімічних і петрофізичних параметрів визначався для 79 зразків.

Методи

Підготовка зразків (проб). Всі зразки керна масою 0,5–1,0 кг підготовлено до лабораторних досліджень за уніфікованою схемою, яка передбачала виготовлення препаратів (циліндрів) для вимірювання петрофізичних параметрів, петрографічних шліфів і геохімічних порошкових проб (<50 мкм) і забезпечувала їх репрезентативність та взаємну зіставність результатів досліджень.

Петрографічні дослідження. Проводились за стандартними методиками з використанням поляризаційних мікроскопів ПОЛАМ РП1 та ПОЛАМ РЗ11.

Петрофізичні дослідження. Виконувались за стандартними методиками в атмосферних умовах і умовах, що моделюють пластові. Визначались такі параметри: пористість, виміряна в атмосфері азота (ρ_N), пористість при насиченні пластовим розчином (ρ_L), проникність (k). Результати досліджень достатньо повно висвітлені в публікаціях (Безродна, & Вижва, 2019; Вижва та ін., 2019; Вижва та ін., 2018).

Аналітичні дослідження. Для всіх геохімічних проб методом рентгено-флуоресцентного аналізу (XRF) в хвильово- та енергодисперсійному варіантах (WDXRF та EDXRF) на рентгенівських спектрометрах CPM-25, CEP-01 (ElvaX-Mini / ElvaX-Light) та РФС-РД визначено концентрації всіх головних та мікроелементів SiO_2 , TiO_2 , Al_2O_3 , $\text{Fe}_2\text{O}_3^{\text{total}}$, MnO , MgO , CaO , Na_2O , K_2O , P_2O_5 , S , Cl , H_2O^- , LOI , Ni , Cu , Zn , Ga , As , Br , Rb , Sr , Y , Zr , Nb , Pb , Th , U , Ba , La , Ce , Pr , Nd ($\text{Fe}_2\text{O}_3^{\text{total}}$ – загальне залізо у формі Fe_2O_3 , H_2O^- та LOI – втрати маси при прожарюванні відповідно при 110 та 1100 °C). Межа виявлення (DL): 0,0n-0,n wt% та n-n×10 ppm для головних оксидів та мікроелементів відповідно. Аналітична похибка (2σ): ≤ 10 від% для концентрацій $\geq 10 \times \text{DL}$. Контроль якості (випадкова та систематична похибки) аналітичних визначень та формування кінцевого банку даних здійснювалось за методиками, які охарактеризовані в роботах (Lazareva et al., 2019a; 2019b; Lazareva et al., 2025).

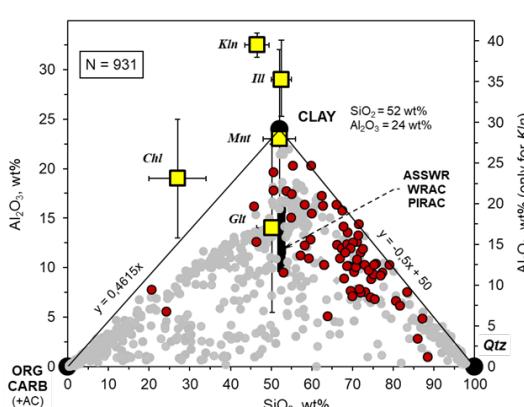
Всі лабораторні дослідження виконано в Центрі колективного користування науковим обладнанням "Сучасні технології дослідження речовини Землі і Сонячної

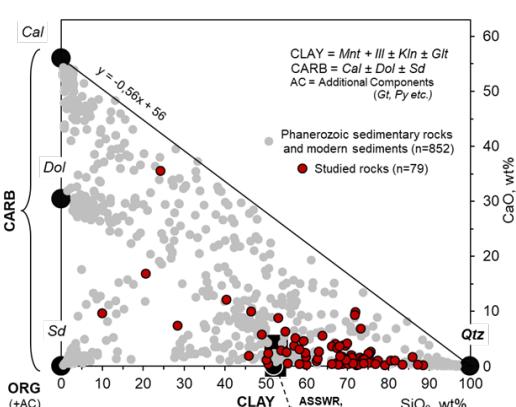
системи" (ЦККНО СТДР) на базі Петрофізичної лабораторії і Лабораторії рентгенівських і мікроскопічних досліджень мінеральної речовини (X-RayMicroLab) ННІ "Інститут геології". Зведені результати досліджень наведено в електронному Додатку (Appendix A, Table S1).

Результати

Кількісна літологія розрізів. Розрахунок кількісного мінерального складу (quantitative mineralogy) та визначення кількісних літологічних характеристик (quantitative lithology) осадових порід за їх елементним складом є складним завданням, вирішенню якого присвячено безліч робіт (Herron, 1986; Herron, & Herron, 1998; Harvey et al., 1998; Hupp, & Donovan, 2018 тощо). Однак запропоновані алгоритми на практиці далеко не завжди забезпечують однозначні та достовірні результати, що пояснюється переважно складною та перемінною хімічною композицією мінералів групи глин (передусім монтморилоніту та іліту), які є обов'язковим і значущим компонентом осадових утворень, а також складнощами її прямого визначення навіть засобами електронно-зондового мікроаналізу (EPMA). Тому на сьогодні зберігається актуальність подальших розробок.

Так, у цій роботі застосовано оригінальний підхід (Shnyukov et al., 2021 тощо), який полягає у використанні генералізованої чотирикомпонентної моделі (рис. 1), що операє такими провідними компонентами осадових утворень: Qtz (кварцовий), CLAY (глинистий), CARB (карбонатний), ORG (органічний). Додаткові компоненти (AC), які присутні не завжди і в невеликих концентраціях, наприклад галіт, гетит, пірит, гіпс, ангідрит тощо, розглядаються і розраховуються окремо. Модель призначена для вирішення фундаментальних завдань, зв'язаних з оцінкою репрезентативності великооб'ємного опробування теригенних відкладів різноманітного походження (флювіогляціальних, алювіальних, дельтових, прибережно-морських, шельфових та глибоководних) для дослідження геохімії їх великих циркон-монацитових детритових популяцій, спрямованого на моделювання еволюції верхньої континентальної земної кори (Shnyukov et al., 2019 тощо).




Рис. 1. Зіставлення вмісту головних оксидів (Al_2O_3 , CaO , SiO_2) в дослідженіх зразках з композицією різноманітних фанерозойських осадових порід, а також сучасних алювіальних, дельтових і морських (шельфових і глибоководних) відкладів у рамках генералізованої чотирикомпонентної літологічної моделі (Shnyukov et al., 2021)

Модельні компоненти складу порід: Qtz = кварцовий, CLAY = глинистий, CARB = карбонатний, ORG = органічний, AC = додаткові компоненти (галіт, гетит, пірит, гіпс, ангідрит тощо).

Середній склад мінералів групи глин: Mnt = монтморилоніт, III = іліт, Glt = глауконіт, Kln = каолініт, Chl = хлорит (природні варіації складу показано планками).

Теоретичний склад карбонатів: Cal = кальцит, Dol = доломіт, Sd = сидерит.

Оцінки складу найближчих природних аналогів компонента CLAY: WRAC = World River Average Clay (Bayon et al., 2015), ASSWR = Average Suspended Sediment in World Rivers (Viers et al., 2009), PIRAC = Peninsular Indian River Average Clay (Babu et al., 2020)

Таке спрямування та генералізація провідних компонентів відразу зумовлюють обмеженість застосування моделі лише відкладами/породами, що утворились унаслідок денудації великих ділянок земної кори, складених максимально широким розмаїттям гірських порід. Обов'язковою умовою є їх глибоке вивітрювання та повне перетворення всіх первинних породотвірних мінералів (за винятком кварцу) на мінерали групи глин. Однак ці обмеження компенсуються тим, що саме в таких умовах реалізується природне репрезентативне опробування всіх петротипів області дренажу з максимальним проявленням не тільки осадової диференціації, але й ефекту гомогенізації мобілізованої корової речовини (Shnyukov et al., 2019), який забезпечує формування ефективно осередненого компонента CLAY – суміші переважно складу монтморилоніт + іліт ± каолініт (рис. 1). Стабільність його хімічної композиції та одержана її реалістична оцінка ($\text{SiO}_2 = 52$; $\text{Al}_2\text{O}_3 = 24 \text{ wt\%}$) саме й відкриває можливість розрахунку вмісту всіх модельних компонентів в осадових породах за їх елементним складом (Shnyukov et al., 2021). Ця можливість неодноразово підтверджена апробацією як ранніх, так і більш розвинених версій моделі та розрахункових процедур (Shnyukov et al., 2001; Shnyukov et al., 2002; Lazareva et al., 2018; Vyzhva et al., 2021).

Досліджені карбон-пермо-тріасові осадові породи свердловин № 100, 101 та 110 за літологічно-фациальними ознаками (ряди: аргіліти – алевроліти – пісковики – вапністі пісковики – вапняки, мергелі – глини – піски), геолого-структурною і палеогеографічною позицією (центральна частина ДДЗ) та джерелом постачання тетригенного матеріалу (принаймні одна велика ділянка верхньої континентальної кори – Український щит) цілком укладаються в обмеження розглянутої чотирикомпонентної моделі, а за хімічною композицією добре узгоджуються з літологічно зумовленими закономірностями зміни вмісту головних оксидів (SiO_2 , Al_2O_3 , CaO) в різноманітних фанерозойських осадових породах та сучасних алювіальних, дельтових і морських відкладах, які складають її фактологічну основу (рис. 1). Це підтверджує коректність застосування моделі для одержання кількісної літологічної характеристики досліджених зразків керна та відповідних інтервалів свердловин.

Результати розрахунку за наведеними в роботі (Shnyukov et al., 2021) процедурами представлено на рис. 2. Як бачимо, розрахована літологія розрізу, яка добре узгоджується з даними попередньо проведених традиційних петрографічних досліджень, на відміну від них має генералізований, спрощений вигляд. Але це спрощення є оптимальним, оскільки не призводить до принципових інформаційних викривлень і втрат і повністю компенсується кількісним характером даних (quantitative lithology), що забезпечує просте кореляційне зіставлення безпосередньо з результатами петрофізичних досліджень та ГДС. До того ж використання більш розвинених версій чотирикомпонентної моделі та розрахункових процедур, які розробляються нині, здатне значно підвищити літологічну інформативність результатів за рахунок деталізації та оцінки вмісту карбонатів, додаткових компонентів (AC) тощо.

Геохімічні аномалії. Для дослідженого розрізу зафіковано три явні локальні аномалії вмісту сірки, які приблизно однакові за своєю високою контрастністю та, очевидно, зв'язані з міграцією вуглеводнів (рис. 2). Вони деталізовані шляхом диференціації внеску різних мінеральних форм елемента: сульфатна сірка оцінена як вміст S , зв'язаної з CaO у формі гіпсу та/або ангідриту, а сульфідна – як її надлишок, не забезпечений наявним

CaO . Сума концентрацій обох форм S відповідає її загальному вмісту.

Як видно з рис. 2, ці аномалії відповідають наявним продуктивним горизонтам Г-6, Г-7в та Г-7н, але, за стабільно невеликої пористості по всьому розрізу, складним чином співвідносяться з абсолютною проникністю порід – високі значення цього параметра характерні виключно для горизонтів Г-7в та Г-7н, – причому приплив нафти зафіковано лише в останньому випадку. Особливістю геохімічної аномалії горизонту Г-7н є невеликий внесок сульфідної сірки в її амплітуду порівняно з аномаліями горизонтів Г-6 та Г-7в (рис. 2). Приймаючи, що інтенсивність розвитку сульфідної мінералізації зумовлюється тривалістю переважання відновних умов, ці дані можуть бути обережно інтерпретовані як свідчення досить довгої міграції по горизонтах Г-6 та Г-7в саме нафти, яка потім була заміщена циркуляцією підземних вод. Це призвело до розвитку сульфатної мінералізації в пустотному просторі та закономірного зниження проникності порід, причому у випадку горизонту Г-6 таке зниження набуло радикального характеру. Для горизонту Г-7н послідовність подій була протилежною, тобто підземні води відносно недавно були заміщені нафтою, про що й свідчить її зафікований приплив.

Наведена інтерпретація потребує додаткового обґрунтування та підтвердження іншими прикладами. Однак вже нині можна констатувати, що розглянутий випадок демонструє можливість виділення локальних геохімічних аномалій, які є індикаторами горизонтів з можливим припливом нафти. Зауважимо, що вагомі, однак далеко не повністю визначені перспективи має використання мікроелементного складу порід для вирішення подібних завдань. Однак їх з'ясування вимагає застосування спеціальних методик для прецизійного врахування фонових умов та ідентифікації слабких геохімічних аномалій, які комплементарні використаній чотирикомпонентній літологічній моделі та неодноразово разом з нею апробовані (Shnyukov et al., 2001; 2002; Lazareva et al., 2018; Shnyukov et al., 2021; Vyzhva et al., 2021).

Фільтраційно-ємнісні (колекторські) параметри порід (ФЕП). Простий кореляційний аналіз (табл. 1) дає змогу припустити, що колекторські параметри досліджених порід, насамперед пісковиків, контролюються значною мірою їх мінеральним складом.

Це підтверджується й встановленими кореляційними залежностями проникності від вмісту модельних компонентів Qtz та CLAY (рис. 3), а також пористості від значень більш складних поліелементних коефіцієнтів (наприклад рис. 4). Однак подібні регресійні залежності достовірні лише в окремих літологічних групах або інтервалах свердловин. В умовах агрегованої вибірки їхня ефективність для прогнозу колекторських параметрів порід значно погіршується.

Поліпшенння ситуації можливе за умови застосування до розгляду широкого переліку мікроелементів з контрастними властивостями та поведінкою на всіх етапах літогенезу. Це дає змогу очікувати їх високу ефективність як елементів-індикаторів фациальних умов накопичення та подальшого діа- та катагенезу осадових утворень. Однак реалізація потенційної інформативності мікроелементів потребує проведення спеціальної програми досліджень з використанням у т. ч. методик прецизійного розрахунку фонових умов, які обговорені вище для випадку ідентифікації слабких аномалій як індикаторів потенційно нафтогазоносних горизонтів розрізу.

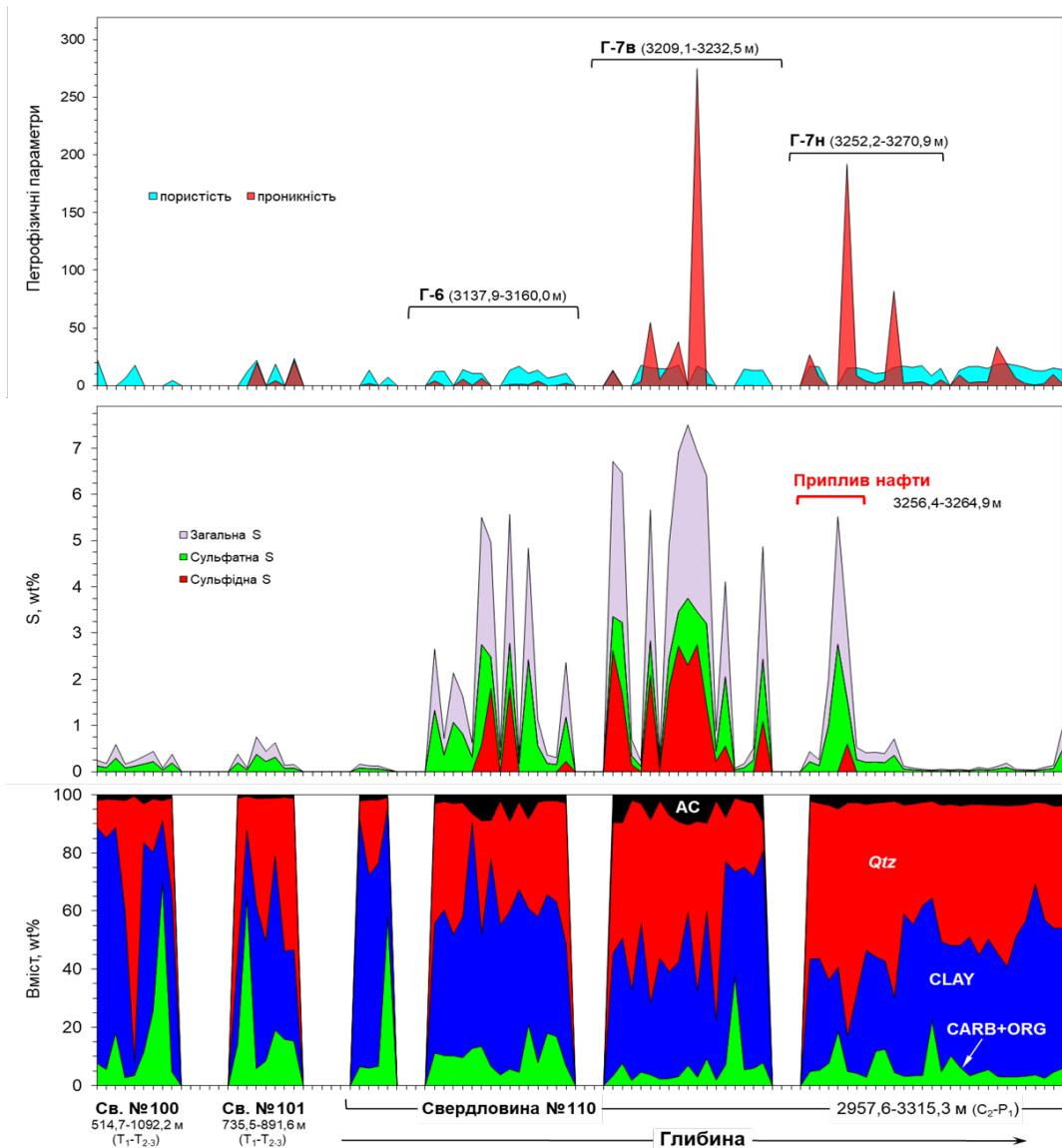


Рис. 2. Кількісна літологія порід (знизу), розрахована згідно з чотирикомпонентною моделлю (Shnyukov et al., 2021 тощо), а також приклад зафіксованих геохімічних аномалій сірки (посередині) та варіації визначених значень петрофізичних параметрів (зверху) для досліджених інтервалів розрізу св. №100, №101 та №110

Шкала глибин – умовна. Г-6, Г-7в та Г-7н – горизонти (для останнього зафіксовано приплив нафти). Для св. 110 в інтервалі продуктивних горизонтів у складі порід присутній також уламковий плагіоклаз у концентраціях 10–15 wt% (спорадично – до 40 wt%)

Таблиця 1

Змінна	Ф _п , %			Ф _п , %			к, мД		
	1	2	3	1	2	3	1	2	3
SiO ₂	-0,16	0,60	0,96	0,28	0,60	1,00	0,29	0,33	0,48
TiO ₂	0,95	-0,18	0,80	0,73	-0,12	0,66	0,72	0,02	-0,27
Al ₂ O ₃	-0,74	-0,09	0,75	-0,96	-0,11	0,56	-0,96	-0,42	-0,43
Fe ₂ O ₃ ^{total}	-0,18	-0,31	0,24	-0,59	-0,37	-0,02	-0,60	-0,38	-0,87
MnO	0,21	-0,79	-0,99	-0,23	-0,78	-0,94	-0,25	-0,23	-0,19
MgO	-0,18	-0,64	-0,99	-0,59	-0,71	-0,97	-0,60	-0,40	-0,28
CaO	0,99	-0,80	-0,99	0,85	-0,78	-0,93	0,84	-0,13	-0,17
Na ₂ O	-0,89	0,002	0,90	-0,61	0,05	0,95	-0,60	0,14	0,45
K ₂ O	-0,98	0,005	0,91	-0,81	0,02	0,77	-0,80	-0,06	-0,15
P ₂ O ₅	-0,29	-0,30	-0,99	0,15	-0,23	-0,99	0,16	-0,06	-0,41
S	0,16	-0,12	0,63	-0,28	-0,01	0,70	-0,29	0,39	0,33
Cl	-0,43	0,26	0,86	0,00	0,16	0,97	0,01	-0,33	0,68
H ₂ O	-0,33	0,19	-0,27	-0,70	0,00	-0,51	-0,71	-0,33	-0,94
LOI	0,43	-0,80	-0,98	0,00	-0,82	-0,98	-0,01	-0,26	-0,37

Примітки: 1 = вапністі пісковики, 2 = пісковики різнозернисті, 3 = аргіліти, алевроліти. Статистично значущі коефіцієнти кореляції виділені червоним жирним шрифтом.

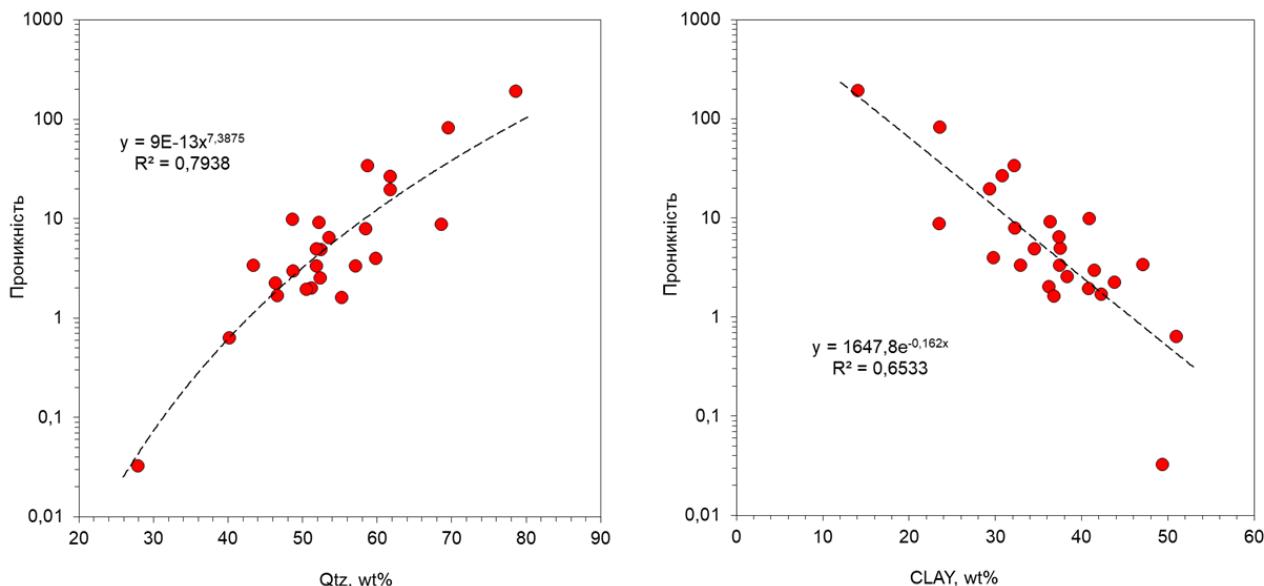


Рис. 3. Залежність абсолютної проникності (N) від розрахованого вмісту модельних компонентів Qtz та CLAY відповідно на прикладі свердловини №110 (інт. 3261,0–3315,3 м)

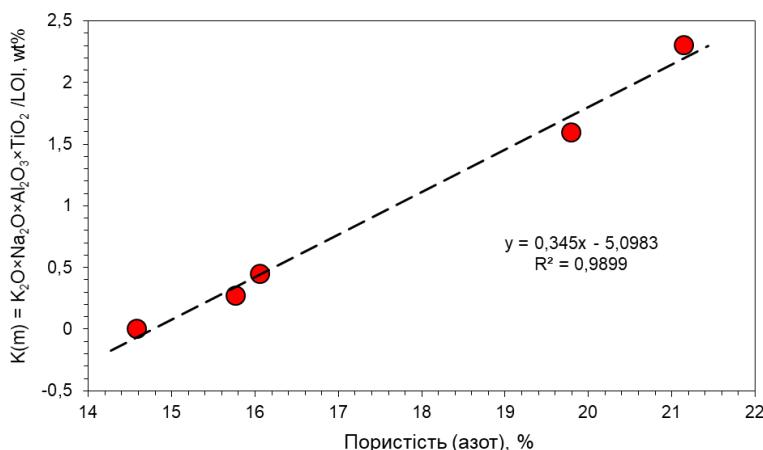


Рис. 4. Регресійна залежність між пористістю (вимірюна в атмосфері N) та мультиплікативним відношенням $(K_2O + Na_2O + Al_2O_3 + TiO_2) / LOI$ на прикладі пісковиків Руновщинської площини

Крім того, для досягнення надійних регресій автори пропонують використовувати більш глибокі інтелектуальні методи аналізу, зокрема нейронні мережі. Іхня здатність маніпулювати різномірними вхідними даними з успіхом використовуються для задач регресії, класифікації, кластеризації.

Можливість використання нейронних мереж для інтерпретації даних. Оцінка можливості здійснювати прогноз ФЕВ та встановлювати нафтузапродуктивний потенціал товщ за допомогою геохімічних даних полягає у послідовній перевірці наборів вхідних даних нейронною мережею ANS.

Завдання регресії через нейронні мережі стосуються встановлення зв'язку ряду вхідних змінних із набором цільових змінних.

Як вхідні дані у нейронну мережу вносилися вміст головних компонентів (від SiO_2 до LOI), мікроелементний склад (від Ni до Nd), розрахований вміст сірки у сульфатній і сульфідній формах, а також елементні і петрохімічні відношення, коефіцієнти та індекси (табл. 2). Групування вхідних даних здійснювалося за вмістом компонентів модельної мінеральної (п'ять категорій) та

літологічної належності (4 групи). Прогнозними показниками виступали пористість, вимірюна по азоту (ϕ_N), пористість у насичених зразках (ϕ) та проникність (κ). Базова функція, яка регулює зв'язок між вхідними і вихідними даними, невідома априорі, і тому зв'язок "вхід–ціль" регулюється апроксиматором (обраною нейронною мережею). Її навчання полягає в отриманні вагових функцій, за якими поліпшується зв'язок вхідних та вихідних змінних.

Нейромережі мають функції активації, які перетворюють вхідні сигнали від нейронів попереднього рівня за допомогою певної математичної функції. Автори використали різні її види, залежно від типу вхідних даних. У випадку, коли вхідні сигнали взагалі не перетворюються, використовувалася функція ідентифікації *Identity* (10 нейромереж із 62 виконаніх), що означає, що вони об'єднувалися у зважену суму та передалися нейронам у верхні шари нейронної мережі без перетворень. Для багатошарового перцептору MLP використовувалася функція *tanh* (20/62), а також і інші функції, наприклад логістична сигмоподібна *Logistic* (20/62) та експоненційна *Exponential* (12/62).

Таблиця 2

Типи вхідних даних нейронної мережі ANS
для задач регресії фільтраційно-ємнісних властивостей порід Руновщинської площини

Головні компоненти	(1 – 14): SiO_2 TiO_2 Al_2O_3 Fe_2O_3 MnO MgO CaO Na_2O K_2O P_2O_5 S Cl H_2O LOI	Безперервні дані
Мікроелементний склад	(1 – 19): Cu Zn Ga As Br Rb Sr Y Zr Nb Pb Th U Ba La Ce Pr Nd	Безперервні дані
Розрахункові форми сірки	(1) сірка сульфатна, (2) сірка сульфідна	Безперервні дані
Елементні індекси	(1) $\text{MgO} + \text{Fe}_2\text{O}_3$, (2) Fe/Mn , (3) $\text{K}_2\text{O}/\text{Al}_2\text{O}_3$, (4) $\text{Na}_2\text{O}/\text{K}_2\text{O}$, (5) $\text{MI1} = (\text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{Na}_2\text{O} + \text{K}_2\text{O})/\text{LOI}$, (6) $\text{MI2} = 1/(\text{S} + \text{Na}_2\text{O} + \text{K}_2\text{O})$, (7) $\text{MI3} = (\text{TiO}_2 + \text{Al}_2\text{O}_3 + \text{Fe}_2\text{O}_3 + \text{K}_2\text{O})$	Безперервні дані
Літологія (літ.)	(1) глини, (2) пісковики карбонатні, (3) пісковики, гравеліти, конгломерати, (4) аргіліти, алевроліти	Категоріальні дані
Модельна мінералогія	(1) Qtz , (2) CLAY , (3) CARB , (4) ORG , (5) AC	Безперервні дані

Алгоритм навчання використовував поширений ітеративний метод числової оптимізації Broyden–Fletcher–Goldfarb–Shanno (BFGS) із різним числом ітерацій, від 0 до 551.

Аналіз чутливості (Sensitivity analysis) в ANS зазвичай належить до оцінки важливості предикторів у відповідних (підігнаних) моделях.

Показники того, наскільки добре нейромережа навчена прогнозувати дані, представлено в табл. 3, в якій

наведено оцінки корельованості прогнозних величин і вхідних даних вибірки-учителя. Повністю навчена нейронна мережа може бути використана для прогнозування будь-яких незалежних даних зі змінними, які мають зіставний діапазон мінливості відносно даних, за яким виконувалося навчання. Листінг найбільш ефективних нейронних мереж (виділено напівжирним у табл. 3) наведено в електронному Додатку (Appendix B). Приєднаний файл можна повторно розгорнути за допомогою C/C++.

Таблиця 3

Ефективність прогнозування нейронними мережами фільтраційно-ємнісних властивостей на прикладі порід Руновщинської площини

Предиктор	Літологія						Модельна мінералогія					
				Регресант								
	Φ_N	Φ_I	K	Φ_N	Φ_I	K	Φ_N	Φ_I	K	Φ_N	Φ_I	K
Головні компоненти	0,891	0,893	0,967				0,845	0,94	0,989			
літ.	Al_2O_3	CaO	літ.	SiO_2	Cl	літ.	S	Al_2O_3	Cl	K_2O	TiO_2	K_2O
Мікроелементи	0,004			0,494		0,961			0,590	0,995		0,999
літ.	As	Sr	літ.	Zr	U	літ.	Th	Nb	Zn	Y	CLAY	Zn
Розрахункові форми сірки	0,420			0,323			0,584			0,638		0,910
$\text{MgO} + \text{Fe}_2\text{O}_3$	0,619			0,345			0,534			0,454		0,620
Fe/Mn	0,692			0,360			0,146			0,773		0,621
$\text{K}_2\text{O}/\text{Al}_2\text{O}_3$	0,458			0,309			0,479			0,450		0,939
$\text{Na}_2\text{O}/\text{K}_2\text{O}$	0,398			0,243			0,122			0,446		0,733
MI1	0,679			0,289			0,394			0,400		0,691
MI2	0,528			0,294			0,442			0,603		0,725
MI3	0,715			0,297			0,418			0,530		0,590
												0,825

Примітки: Червоним жирним шрифтом виділено оцінки ефективності нейромережевої регресії; для предикторних груп "Головні компоненти" та "Мікроелементи" (наведено ознаки, що мають найвищі значення в аналізі чутливості).

Ефективність використання нейромереж для розв'язання регресійних задач значною мірою залежить від якості вхідних даних. Використання таких категоризуючих змінних, як віднесення до "природного" літологічного типу, виявляється менш ефективним, ніж при залученні результатів кількісного мінералогічного моделювання (через параметри груп *quantitative mineralogy* та *quantitative lithology*) (табл. 3).

Вміст петrogenічних оксидів може бути корисним для прогнозу ФЕС із групуванням даних як за літологічною належністю, так і за модельною мінералогією, водночас природа таких регресій різна, на що вказують різні ознакові ансамблі. Активна роль алюмосилікатів та карбонатів (Al_2O_3 , SiO_2 , CaO) та тип літології вказує на вплив мінерального скелету і вторинної мінералогії на формування пустотного простору в окремих літологічних групах порід. У той же час при групуванні за модельною мінералогією прогноз пористості і проникності нейромережами створює можливість випукліше показати вплив власне глинистості. Зміна пористості тут буде залежати передусім від вмісту K_2O (компоненту, що пов'язаний із вмістом глинистих мінералів), TiO_2 та Fe_2O_3 (ознака, що виявляє зрілість осадів або ступінь вивітрювання порід) та хлору (компонент АС). Цікаво, що провідним регресантом у моделюванні

проникності в обох підвибірках виявляється сірка, можливо визначаючи наявність таких вторинних мінералів, як гіпс та ангідрит, які, як відомо, сильно знижують зв'язність і сполученість пор і тим самим проникність.

Найчастіше серед хімічних елементів-предикторів, які найтісніше пов'язані із ФЕС, трапляється цинк, ітрій, уран, торій, які різною мірою чутливі, особливо уран, до змін батиметричних і/та фациальних обстановок седиментогенезу.

Коливання співвідношень форм сірки (сульфатної/сульфідної) та заліза (дво- і тривалентного) трактується як безпосередній індикатор редокс-умов седиментації. Наявність сульфатної сірки в нормальних (не в евапоритових) осадових породах може виступати індикатором окиснювальної фази – геохімічних фазій несприятливих для збереження органічної речовини. Натомість із зростанням аноксії, за наявності реакційного заліза, зростає піритизація заліза, тобто зростає вміст сульфідної сірки. Як наслідок – накопичення сульфідної сірки в осаді, маркує важливий геологічний процес – запобігання аеробному окисненню органічної речовини і зростання рівня її фосилізації. Наприклад, слідування за окисним потенціалом типу керогену достовірно показано у праці (Karpchenko et al., 2025).

Підвищення суми оксидів ($MgO+Fe_2O_3$) призводить до збільшення ступеня бітумінозності ОР, отже може теж виступати маркером евксинних фацій седиментогенезу.

Елементний модуль Fe/Mn чутливий до змін фаціальних умов, що зменшується із збільшенням глибини седиментогенезу; наприклад із переходом від шельфових фацій до пелагічних, тим самим передаючи зміну як хімічних, так і динамічних фацій.

Поєднання лужного модуля (Na_2O/K_2O) і калієвого модуля (K_2O/Al_2O_3) несе генетичну інформацію про розподіл калію і алюмінію серед породотвірних мінералів.

Дискусія і висновки

Проведена робота продемонструвала доцільність комплексування петрофізичних і геохімічних досліджень зі створенням результируючих об'єднаних банків даних. Використання попереднього варіанта такого банку, сформованого для вивчених інтервалів свердловин Руновщинської площині ДДЗ, дає змогу зробити такі висновки:

(1) Одержані дані щодо елементного складу зразків керна дозволили розрахувати літологію розрізу, яка ґрунтуються на раніше запропонованій чотирикомпонентній літологічній моделі, добре узгоджується з традиційними петрографічними даними та, на відміну від них, має оптимально спрощений, але кількісний характер, що забезпечує безпосереднє зіставлення з результатами петрофізичних досліджень та ГДС.

(2) На прикладі S продемонстровано можливість відління локальних геохімічних аномалій, які є індикаторами інтервалів з припливом нафти. З'ясування перспектив використання мікроелементного складу порід для розв'язання подібних задач вимагає застосування спеціальних методик для прецизійного врахування фонових умов, ідентифікації слабких геохімічних аномалій та оцінки їх інформативності.

(3) Встановлені стійкі кореляційні зв'язки між інструментально визначену пористістю і абсолютною проникністю та вмістом модельних компонентів Qtz, CLAY і значеннями більш складних геохімічних коефіцієнтів, а також можливості, які надає використання нейронних мереж, створює передумови розробки надійних методик оцінки фільтраційно-емнісних параметрів порід-колекторів за геохімічними даними.

(4) Встановлено, що нейромережі можуть ефективно прогнозувати ФЕВ за геохімічними даними за умови попереднього їх групування. Найпродуктивнішим є групування за модельною мінералогією (у п'яти категоріях). Поліпшує зручність прогнозу використання не лише багатознакових наборів вхідних даних (головні компоненти, мікроелементний склад), але і залучення різних елементних відношень, мультиплікативних індексів (наприклад, запропоновані M1 – M13) та розрахункових форм сірки.

Таким чином, одержані результати, які автори розглядають як попередні, підтверджують раціональність вибору та ефективність геохімічних засобів для розв'язання останньої частини сформульованої вище **загальної проблеми**, а саме для розробки ефективної технології впевненого поширення результатів прямого "точкового" петрофізичного та геохімічного дослідження зразків керна в інтервалах його відбору на весь розріз свердловини для повноцінної інтеграції з ГДС та досягнення максимально однозначної кількісної інтерпретації всіх даних. Наголосимо, що обов'язковою умовою її успішності є зіставленість результатів інтерпретації геохімічних даних, отриманих для керна та шламу, що має додаткові перспективи реалізації у вигляді випереджального геохімічного каротажу, який потенційно забезпечує

ефективну поточну "підземну навігацію" (geosteering) принаймні при бурінні кущових свердловин.

Зауважимо, що розробка такої технології є важливим та актуальним подальшим завданням. Його повномасштабне виконання вимагає створення для ДДВ та інших актуальних нафтогазоносних регіонів (Волино-Поділля, Причорноморська западина тощо) компактної системи ідеалізованих опорних розрізів відповідного стратиграфічного діапазону, які скомпоновані за рахунок наявних свердловин та забезпечені, крім повноцінних результатів ГДС, репрезентативним керновим матеріалом, а за можливості – й пробами шламу. Комбіноване петрофізично-геохімічне вивчення цих розрізів слід проводити в максимально повних обсягах за уніфікованою методикою, попередньо відпрацьованою на "пілотних" прикладах, подібних до представленого в цій роботі, шляхом поглибленої інтерпретації вже наявних даних, за потреби доповнених до оптимального рівня.

Внесок авторів: Сергій Вижва – концептуалізація, методологія, написання (оригінальна чернетка, перегляд і редактування); Іван Гафич – валідація даних, формальний аналіз; Андрій Гожик – валідація даних, формальний аналіз; Олександр Шабатура – обчислення, формальний аналіз, написання (оригінальна чернетка, перегляд і редактування); Сергій Шнюков – методологія, валідація, формальний аналіз, написання (оригінальна чернетка, перегляд і редактування).

Подяки. Автори вдячні А.М. Омельченко, А.В. Виршило, О.В. Білан, І.І. Онищук та В.С. Цуману за суттєву допомогу у виконанні лабораторних досліджень.

Джерела фінансування. Роботу виконано за підтримки Київського національного університету імені Тараса Шевченка та МОН України (держбюджетні теми 0223U001116 та 0124U001204).

Додаткові матеріали

Додаток А (табл. S1 та S2) та Додаток В до цієї статті можна знайти за адресою <https://geophys.knu.ua/research/fairdata/>

Appendix A (Tables S1 & S2) and Appendix B to this article can be found online at <https://geophys.knu.ua/research/fairdata/>

Список використаних джерел

Атлас геологічного строєння и нефтегазоносности Дніпровско-Донецької впадини. (1984). (Ю. А. Арсірий, Ред.). Мінгіо УССР.

Безродна, І., & Вижва, С. (2019). Аналіз акустичних властивостей порід-колекторів Руновщинської площини на основі петрофізичних досліджень у різних баричних умовах. *Вісник Київського університету. Геологія*, 86(3), 21–26. <https://doi.org/10.17721/1728-2713.86.03>

Вижва, С., Онищук, В., Онищук, І., Рева, М., & Шабатура, О. (2019). Електричні параметри порід верхнього карбону Руновщинської площини Дніпровсько-Донецької западини. *Вісник Київського університету. Геологія*, 85(2), 37–45. <https://doi.org/10.17721/1728-2713.85.05>

Вижва, С., Онищук, І., Рева, М., & Шабатура, О. (2018). Фільтраційно-емнісні особливості порід верхнього карбону (на прикладі Руновщинської площини ДДЗ). *Вісник Київського університету. Геологія*, 83(4), 30–37. <https://doi.org/10.17721/1728-2713.83.04>

Шнюков, С. Е., Андреев, А. В., Заяц, О. В., Савенок, С. П., & Клещенко, С. А. (2001). Инструментальный учет фоновых условий при геохимическом картировании литологически неоднородных территорий (на примере участка дна Черного моря). В *Геологические проблемы Черного моря*. ОМГОР ННПМ НАНУ.

Шнюков, С. Е., Андреев, А. В., Заяц, О. В., Савенок, С. П., & Мартулов, В. М. (2002). Пreciзiонний учет фоновых условий как основа технологии раннего обнаружения, мониторинга и прогноза развития техногенных геохимических аномалий. *Екологiя дiлянки та безпека життедiяльностi*, 3, 6–10.

Babu, S. S., Ramana, R. V., Rao, V. P. et al. (2020). Composition of the peninsular India rivers average clay (PIRAC): A reference sediment composition for the upper crust from peninsular India. *J Earth Syst Sci*, 129, 39. <https://doi.org/10.1007/s12040-019-1301-8>

Bayon, G., Toucanne, S., Skonieczny, C., Andre, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S. J., Menot, G., Monin, L., Ponzevera, E., Rouget, M. L., Tachikawa, K., & Barrat, J. A. (2015). Rare earth elements and neodymium isotopes in world

river sediments revisited. *Geochimica et Cosmochimica Acta*, 170, 17–38. <https://doi.org/10.1016/j.gca.2015.08.001>

Berger, W. H., & Vincent, E. (1981). Chemostratigraphy and biostratigraphic correlation: exercises in systemic stratigraphy. *Oceanologica Acta*, 115–127. <https://archimer.ifremer.fr/doc/00246/35689/>

Blannin, R., Frenzel, M., Tuşa, L., Birtel, S., Ivăşcanu, P., Baker, T., & Gutzmer, J. (2021). Uncertainties in quantitative mineralogical studies using scanning electron microscope-based image analysis. *Minerals Engineering*, 67(15), 106836. <https://doi.org/10.1016/j.mineng.2021.106836>

Brookfield, M. E., Stebbins, A. G., Williams, J. C., Wolbach, W. S., Hannigan, R., & Bhat, G. M. (2020). Paleoenvironments and elemental geochemistry across the marine Permo-Triassic boundary section, Guryul Ravine (Kashmir, India) and a comparison with other North Indian passive margin sections. *Depositional Record*, 6, 75–116. <https://doi.org/10.1002/dep2.96>

Sial, A. N., Gaucher, C., Ramkumar, M., & Ferreira, V. P. (Ред.). (2019). *Chemostratigraphy Across Major Chronological Boundaries*. *Geophysical Monograph* 240. John Wiley & Sons, Inc. <https://doi.org/10.1002/9781119382508.ch10>

Cosme, P., Bossennec, C., Geraud, Y., Malartre, F., Diraison, M., Vidal, J., & Haffen, S. (2025). Evolution of Reservoir Properties in Buntsandstein Sandstones: A Comparative Wells Analysis from the Upper Rhine Graben. *EGU General Assembly 2025*, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20439. <https://doi.org/10.5194/egusphere-egu25-20439>

Harvey, P. K., Brewer, T. S., Lovell, M. A., & Kerr, S. A. (1998). The estimation of modal mineralogy: a problem of accuracy in core-log calibration. In P. K. Harvey & M. A. Lovell (Ред.), *Core-Log Integration*, Geological Society, London, Special Publications (Vol. 136, pp. 25–38). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Herron, M. M. (1986). Mineralogy from Geochemical Well Logging. *Clays and Clay Minerals*, 34(2), 204–213. <https://doi.org/10.1346/CCMN.1986.0340211>

Herron, M. M., & Herron, S. L. (1998). Quantitative lithology: open and cased hole application derived from integrated core chemistry and mineralogy database. In P. K. Harvey & M. A. Lovell (Ред.), *Core-Log Integration*, Geological Society, London, Special Publications (Vol. 136, pp. 81–95). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Hupp, B. N., & Donovan, J. J. (2018). Quantitative mineralogy for facies definition in the Marcellus Shale (Appalachian Basin, USA) using XRD-XRF integration. *Sedimentary Geology*, 371, 16–31. <https://doi.org/10.1016/j.sedgeo.2018.04.007>

Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. *AAPG Bulletin*, 91(4), 475–499. <https://doi.org/10.1306/12190606068>

Jiang, S. (2012). Clay Minerals from the Perspective of Oil and Gas Exploration. In *Clay Minerals in Nature – Their Characterization, Modification and Application*. InTech. <http://dx.doi.org/10.5772/47790>

Karpenko, I., Ischenko, I., & Karpenko, O. (2025). Geochemical characteristics and thermal maturity of the upper devonian rocks (Dnieper-Donets Basin) according to Rock-Eval pyrolysis data (exploration drilling). *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 4(107), 23–30. <https://doi.org/10.17721/1728-2713.107.03>

Lazareva, I., Shnyukov, S., Vyrshylo, A., Omelchenko, A., & Osypenko, V. (2025). Routine monitoring of laboratory precision and accuracy as a tool for assessing analytical uncertainties in large geochemical databases on bulk-rock composition. In *XVIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (14–17 April 2025, Kyiv, Ukraine). <https://eage.in.ua/wp-content/uploads/2025/04/Mon25-219.pdf>

Lazareva, I., Shnyukov, S., Andriev, A., Aleksieienko, A., Zagorodnii, V., & Morozenko, V. (2018). Precision analysis of geochemical background level during industria geochemical anomalies monitoring. In *XII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (13–16 November 2018, Kyiv, Ukraine). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85060468516&partnerID=MN8TOARS>

Lazareva, I., Shnyukov, S., Andriev, A., Aleksieienko, A., & Khlon, E. (2019a). Korosten Pluton (Ukrainian Shield): initial data bank oriented on geochemical modelling. In *XVIII International Conference "Geoinformatics: Theoretical and Applied Aspects"* (Kyiv, Ukraine, 13–16 May 2019). <https://doi.org/10.3997/2214-4609.201902100>

Lazareva, I., Shnyukov, S., Andriev, O., Aleksieienko, A., & Zagorodnii, V. (2019b). Korosten Pluton (Ukrainian Shield): New major and trace element analytical data and its validation. In *18th International Conference on Geoinformatics: Theoretical and Applied Aspects* (13–16 May 2019). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85071387477&partnerID=MN8TOARS>

Martin, K. G. (2019). *X-Ray Fluorescence Applications in Mudrock Characterization: Investigations into Middle Devonian Stratigraphy, Appalachian Basin, USA* [Graduate Theses, Dissertations, and Problem Reports]. West Virginia University. <https://doi.org/10.33915/etd.7462>

Martin, K. G., & Carr, T. R. (2020). Developing a quantitative mudrock calibration for a handheld energy dispersive X-ray fluorescence spectrometer. *Sedimentary Geology*, 398, 105584. <https://doi.org/10.1016/j.sedgeo.2019.105584>

Ramkumar, M., Nagarajan, R., & Santosh, M. (2021). Advances in sediment geochemistry and chemostratigraphy for reservoir characterization. *Energy Geoscience*, 2(4), 308–326. <https://doi.org/10.1016/j.engeos.2021.02.001>

Rowe, H., Hughes, N., & Robinson, K. (2012). The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. *Chemical Geology*, 324–325, 122–131. <https://doi.org/10.1016/j.chemgeo.2011.12.023>

Shnyukov, S., Lazareva, I., Bunkevych, O., Virshylo, A., Omelchenko, A., & Osypenko, V. (2021). Generalized 4-component Lithological Model and Possible Fields of its Application. In *XV International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (17–19 November 2021, Kyiv, Ukraine). <https://doi.org/10.3997/2214-4609.20215K2084>

Shnyukov, S., Tegkaev, E., Lazareva, I., Andriev, O., & Aleksieienko, A. (2019). Denudation as unique Earth Crust sampling procedure: additive effect of sedimentary differentiation and homogenization. In *XVIII International Conference "Geoinformatics: Theoretical and Applied Aspects"* (13–16 May 2019, Kiev, Ukraine). <https://doi.org/10.3997/2214-4609.2019021020>

Shnyukov, S. E., Andreev, O. V., Lazareva, I. I., Tegkaev, E. T., & Aleksieienko, A. G. (2019). Detrital zircon and monazite as a tool for retrospective monitoring of the earth's continental crust evolution: Current problems and tasks. In *XIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (12–15 November 2019, Kyiv, Ukraine). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85089583551&partnerID=MN8TOARS>

Viers, J., Dupre, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. *Science of the Total Environment*, 407, 853–868. <https://doi.org/10.1016/j.scitotenv.2008.09.053>

Vyzhva, S., Shchypotsov, O., Shnyukov, S., Lazareva, I., Gordeev, A., & Virshylo, A. (2021). Integrated Geochemical and Geophysical Monitoring of the Ecological State of Sedimentary Systems in Danube–Black Sea Region: Pilot Results and Development Prospects. In *XX International Conference "Geoinformatics: Theoretical and Applied Aspects"* (11–14 May 2021, Kyiv, Ukraine). <https://www.earthdoc.org/content/papers/10.3997/2214-4609.20215521148>

References

Atlas of the geological structure and oil and gas potential of the Dnieper-Donets Basin. (1984). (Yu. A. Arsyria, Ed.). Mingeo of the USSR [in Russian].

Babu, S. S., Ramana, R. V., Rao, V. P. et al. (2020). Composition of the peninsular India rivers average clay (PIRAC): A reference sediment composition for the upper crust from peninsular India. *J. Earth Syst Sci*, 129, 39. <https://doi.org/10.1007/s12040-019-1301-8>

Bayon, G., Toucanne, S., Skonieczny, C., Andre, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, B., Freslon, N., Gauchery, T., Germain, Y., Jorry, S. J., Menot, G., Monin, L., Ponzevera, E., Rouget, M. L., Tachikawa, K., & Barrat, J. A. (2015). Rare earth elements and neodymium isotopes in world river sediments revisited. *Geochim. Cosmochim. Acta*, 170, 17–38. <https://doi.org/10.1016/j.gca.2015.08.001>

Berger, W. H., & Vincent, E. (1981). Chemostratigraphy and biostratigraphic correlation: exercises in systemic stratigraphy. *Oceanologica Acta*, 115–127. <https://archimer.ifremer.fr/doc/00246/35689/>

Bezrodna, I., & Vyzhva, S. (2019). Analysis of the acoustic properties of reservoir rocks of the Runovshchyna area based on petrophysical studies in different baric conditions. *Bulletin of the Kyiv University. Geology*, 86(3), 21–26 [in Ukrainian]. <https://doi.org/10.17721/1728-2713.86.03>

Blannin, R., Frenzel, M., Tuşa, L., Birtel, S., Ivăşcanu, P., Baker, T., & Gutzmer, J. (2021). Uncertainties in quantitative mineralogical studies using scanning electron microscope-based image analysis. *Minerals Engineering*, 67(15), 106836. <https://doi.org/10.1016/j.mineng.2021.106836>

Brookfield, M. E., Stebbins, A. G., Williams, J. C., Wolbach, W. S., Hannigan, R., & Bhat, G. M. (2020). Paleoenvironments and elemental geochemistry across the marine Permo-Triassic boundary section, Guryul Ravine (Kashmir, India) and a comparison with other North Indian passive margin sections. *Depositional Record*, 6, 75–116. <https://doi.org/10.1002/dep2.96>

Sial, A. N., Gaucher, C., Ramkumar, M., & Ferreira, V. P. (Eds.). (2019). *Chemostratigraphy Across Major Chronological Boundaries*. *Geophysical Monograph* 240. John Wiley & Sons, Inc. <https://doi.org/10.1002/9781119382508.ch10>

Cosme, P., Bossennec, C., Geraud, Y., Malartre, F., Diraison, M., Vidal, J., & Haffen, S. (2025). Evolution of Reservoir Properties in Buntsandstein Sandstones: A Comparative Wells Analysis from the Upper Rhine Graben. *EGU General Assembly 2025*, Vienna, Austria, 27 Apr–2 May 2025, EGU25-20439. <https://doi.org/10.5194/egusphere-egu25-20439>

Harvey, P. K., Brewer, T. S., Lovell, M. A., & Kerr, S. A. (1998). The estimation of modal mineralogy: a problem of accuracy in core-log calibration. In P. K. Harvey & M. A. Lovell (Eds.), *Core-Log Integration*, Geological Society, London, Special Publications (Vol. 136, pp. 25–38). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Herron, M. M. (1986). Mineralogy from Geochemical Well Logging. *Clays and Clay Minerals*, 34(2), 204–213. <https://doi.org/10.1346/CCMN.1986.0340211>

Herron, M. M., & Herron, S. L. (1998). Quantitative lithology: open and cased hole application derived from integrated core chemistry and mineralogy database. In P. K. Harvey & M. A. Lovell (Eds.), *Core-Log Integration*, Geological Society, London, Special Publications (Vol. 136, pp. 81–95). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Harvey, P. K., Brewer, T. S., Lovell, M. A., & Kerr, S. A. (1998). The estimation of modal mineralogy: a problem of accuracy in core-log calibration. In P. K. Harvey & M. A. Lovell (Eds.), *Core-Log Integration*, Geological Society, London, Special Publications (Vol. 136, pp. 25–38). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Shnyukov, S., Andreev, O. V., Lazareva, I., Tegkaev, E. T., & Aleksieienko, A. (2019). Denudation as unique Earth Crust sampling procedure: additive effect of sedimentary differentiation and homogenization. In *XVIII International Conference "Geoinformatics: Theoretical and Applied Aspects"* (13–16 May 2019, Kiev, Ukraine). <https://doi.org/10.3997/2214-4609.2019021020>

Shnyukov, S. E., Andreev, O. V., Lazareva, I. I., Tegkaev, E. T., & Aleksieienko, A. G. (2019). Detrital zircon and monazite as a tool for retrospective monitoring of the earth's continental crust evolution: Current problems and tasks. In *XIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (12–15 November 2019, Kyiv, Ukraine). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85089583551&partnerID=MN8TOARS>

Viers, J., Dupre, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. *Science of the Total Environment*, 407, 853–868. <https://doi.org/10.1016/j.scitotenv.2008.09.053>

Vyzhva, S., Shchypotsov, O., Shnyukov, S., Lazareva, I., Gordeev, A., & Virshylo, A. (2021). Integrated Geochemical and Geophysical Monitoring of the Ecological State of Sedimentary Systems in Danube–Black Sea Region: Pilot Results and Development Prospects. In *XX International Conference "Geoinformatics: Theoretical and Applied Aspects"* (11–14 May 2021, Kyiv, Ukraine). <https://www.earthdoc.org/content/papers/10.3997/2214-4609.20215521148>

Geological Society, London, Special Publications (Vol. 136, pp. 81–95). <https://doi.org/10.1144/GSL.SP.1998.136.01.32>

Hupp, B. N., & Donovan, J. J. (2018). Quantitative mineralogy for facies definition in the Marcellus Shale (Appalachian Basin, USA) using XRD-XRF integration. *Sedimentary Geology*, 371, 16–31. <https://doi.org/10.1016/j.sedgeo.2018.04.007>

Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. *AAPG Bulletin*, 91(4), 475–499. <https://doi.org/10.1306/12190606068>

Jiang, S. (2012). Clay Minerals from the Perspective of Oil and Gas Exploration. In *Clay Minerals in Nature – Their Characterization, Modification and Application*. InTech. <http://dx.doi.org/10.5772/47790>

Karpenko, I., Ischenko, I., & Karpenko, O. (2025). Geochemical characteristics and thermal maturity of the upper devonian rocks (Dnieper-Donets Basin) according to Rock-Eval pyrolysis data (exploration drilling). *Visnyk of Taras Shevchenko National University of Kyiv. Geology*, 4(107), 23–30. <https://doi.org/10.17721/1728-2713.107.03>

Lazareva, I., Shnyukov, S., Vyrshylo, A., Omelchenko, A., & Osypenko, V. (2025). Routine monitoring of laboratory precision and accuracy as a tool for assessing analytical uncertainties in large geochemical databases on bulk-rock composition. In *XVIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (14–25 November 2025, Kyiv, Ukraine). <https://eage.in.ua/wp-content/uploads/2025/04/Mon25-219.pdf>

Lazareva, I., Shnyukov, S., Andreev, A., Aleksieienko, A., Zagorodnii, V., & Morozenko, V. (2018). Precision analysis of geochemical background level during industria geochemical anomalies monitoring. In *XII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (13–16 November 2018, Kyiv, Ukraine). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85060468516&partnerID=MN8TOARS>

Lazareva, I., Shnyukov, S., Andreev, A., Aleksieienko, A., & Khlon, E. (2019). Korosten Pluton (Ukrainian Shield): initial data bank oriented on geochemical modelling. In *XVIII International Conference "Geoinformatics: Theoretical and Applied Aspects"* (Kyiv, Ukraine, 13–16 May 2019). <https://doi.org/10.3997/2214-4609.201902100>

Lazareva, I., Shnyukov, S., Andreev, O., Aleksieienko, A., & Zagorodnii, V. (2019). Korosten Pluton (Ukrainian Shield): New major and trace element analytical data and its validation. In *18th International Conference on Geoinformatics: Theoretical and Applied Aspects* (13–16 May 2019). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85071387477&partnerID=MN8TOARS>

Martin, K. G. (2019). *X-Ray Fluorescence Applications in Mudrock Characterization: Investigations into Middle Devonian Stratigraphy, Appalachian Basin, USA* [Master's thesis]. West Virginia University. <https://doi.org/10.33915/etd.7462>

Martin, K. G., & Carr, T. R. (2020). Developing a quantitative mudrock calibration for a handheld energy dispersive X-ray fluorescence spectrometer. *Sedimentary Geology*, 398, 105584. <https://doi.org/10.1016/j.sedgeo.2019.105584>

Ramkumar, M., Nagarajan, R., & Santosh, M. (2021). Advances in sediment geochemistry and chemostratigraphy for reservoir characterization. *Energy Geoscience*, 2(4), 308–326. <https://doi.org/10.1016/j.engeos.2021.02.001>

Rowe, H., Hughes, N., & Robinson, K. (2012). The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. *Chemical Geology*, 324–325, 122–131. <https://doi.org/10.1016/j.chemgeo.2011.12.023>

Shnyukov, S., Lazareva, I., Bunkevych, O., Virshylo, A., Omelchenko, A., & Osypenko, V. (2021). Generalized 4-component Lithological Model and Possible Fields of its Application. In *XV International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (17–19 November 2021, Kyiv, Ukraine). <https://doi.org/10.3997/2214-4609.20215K2084>

Shnyukov, S., Tegkaev, E., Lazareva, I., Andreev, O., & Aleksieienko, A. (2019). Denudation as unique Earth Crust sampling procedure: additive effect of sedimentary differentiation and homogenization. In *XVIII International Conference "Geoinformatics: Theoretical and Applied Aspects"* (13–16 May 2019, Kiev, Ukraine). <https://doi.org/10.3997/2214-4609.201902102>

Shnyukov, S. E., Andreev, A. V., Zayats, O. V., Savenok, S. P., & Kleshchenko, S. A. (2001). Instrumental accounting of background conditions in geochemical mapping of lithologically heterogeneous territories (on the example of a section of the Black Sea bottom). In *Geological problems of the Black Sea. OMGOR NNPM NASU*, 165–184 [in Russian].

Shnyukov, S. E., Andreev, A. V., Zayats, O. V., Savenok, S. P., & Margulev, V. M. (2002). Precision accounting of background conditions as the basis for the technology of early detection, monitoring and forecasting of the development of technogenic geochemical anomalies. *Ekologiya dovilkillya ta bezpeka zhitydialnosti*, 3, 6–10 [in Russian].

Shnyukov, S. E., Andreev, O. V., Lazareva, I. I., Tegkaev, E. T., & Aleksieienko, A. G. (2019). Detrital zircon and monazite as a tool for retrospective monitoring of the earth's continental crust evolution: Current problems and tasks. In *XIII International Scientific Conference "Monitoring of Geological Processes and Ecological Condition of the Environment"* (12–15 November 2019, Kyiv, Ukraine). <http://www.scopus.com/inward/record.url?eid=2-s2.0-85089583551&partnerID=MN8TOARS>

Viers, J., Dupre, B., & Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. *Science of the Total Environment*, 407, 853–868. <https://doi.org/10.1016/j.scitotenv.2008.09.053>

Vyzhva, S., Shchyptsov, O., Shnyukov, S., Lazareva, I., Gordeev, A., & Virshylo, A. (2021). Integrated Geochemical and Geophysical Monitoring of the Ecological State of Sedimentary Systems in Danube-Black Sea Region: Pilot Results and Development Prospects. In *XX International Conference "Geoinformatics: Theoretical and Applied Aspects"* (11–14 May 2021, Kyiv, Ukraine). <https://www.earthdoc.org/content/papers/10.3997/2214-4609.20215521148>

Отримано редакцією журналу / Received: 22.04.25
Прорецензовано / Revised: 26.05.25
Схвалено до друку / Accepted: 30.06.25

Serhii VYZHVA¹, DSc (Geol.), Prof., Corresponding Member of the National Academy of Sciences of Ukraine
ORCID ID: 0000-0003-4091-6649
e-mail: s.vyzhva@knu.ua

Ivan HAFYCH², PhD (Geol. & Mineral.),
Deputy of Head of Geology and Research DTEK Naftogaz
e-mail: gafichip@dtek.com

Andrii GOZHYK¹, PhD (Geol. & Mineral.), Assoc. Prof.
ORCID ID: 0000-0001-6198-5681
e-mail: andrii.gozhyk@knu.ua

Oleksandr SHABATURA¹, DSc (Geol.), Assoc. Prof.
ORCID ID: 0000-0003-0810-3701
e-mail: oshabatura@knu.ua

Sergiy SHNYUKOV¹, DSc (Geol.), Assoc. Prof.
ORCID ID: 0000-0003-1338-5272
e-mail: shnyukov54@knu.ua

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
²DTEK Naftogaz

GEOCHEMICAL AND PETROPHYSICAL ASSESSMENT OF LITHOLOGICAL VARIABILITY AND RESERVOIR PROPERTIES OF WELLS CORE: RUNOVSHCHYNA OIL AND GAS FIELD OF THE DNIPRO-DONETSK BASIN AS AN EXAMPLE (PRELIMINARY RESULTS)

B a c k g r o u n d . A comprehensive petrophysical and geochemical study of a representative series of core samples ($n=79$) was performed for real well sections of the Runovshchyna oil and gas area of the Dnieper-Donets Basin containing productive horizons. The aim of the work was to test the possibility of full integration of geochemical methods with geophysical well logging data to improve the efficiency of data interpretation.

M e t h o d s . A set of petrophysical parameters (including porosity and permeability of rocks), as well as the content of major and trace elements (WDXRF, EDXRF) were determined for all core samples after their uniform preparation and preliminary petrographic study. Obtained analytical results were used to create a combined petrophysical and geochemical data bank.

R e s u l t s . The created database allowed to calculate the contents of quartz (Qtz), clays (CLAY), carbonates (CARB) and organic matter (ORG) in rocks based on the content of the main elements and on the previously proposed 4-component lithological model. It also allowed to characterize

the quantitative lithology of the section within the studied intervals and to show the possibility of identifying local geochemical sulfur anomalies that are indicators of oil-bearing intervals. It was proposed to establish a stable correlation between instrumentally determined porosity and permeability and the content of model components Qtz, CLAY and the coefficient $(K_2O + Na_2O + Al_2O_3 + TiO_2)/LOI$ and to confirm the possibility of using neural networks to interpret the data.

C o n c l u s i o n s . *There is effectiveness of geochemical methods (elemental geochemistry) in the variants of studying the core and cuttings of wells ("geochemical log") for confident (without information losses and distortions) distribution of the results of direct "point" study of filtration and capacitance parameters of core samples in the intervals of its selection to the entire well section for full integration with the data of the well logging, achievement of the most unambiguous quantitative interpretation of all data and the needs of geosteering during drilling. The expediency of using neural networks to improve the accuracy of determining filtration and capacitance properties using petrophysical and geochemical data is confirmed.*

K e y w o r d s : *petrophysical parameters, elemental composition, quantitative lithology, geochemical well logging, hydrocarbons, Dnieper-Donetsk Basin.*

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

ГЕОЛОГІЧНА ІНФОРМАТИКА

UDC 005.631.11:004

DOI: <http://doi.org/10.17721/1728-2713.110.11>

Vitaliy ZATSERKOVNYI¹, DSc (Engin.), Prof.
ORCID ID: 0009-0003-5187-6125
e-mail: vitalii.zatserkovnyi@gmail.com

Victor VOROKH¹, PhD Student
ORCID ID: 0009-0005-0112-8422
e-mail: fainkucha@gmail.com

Olga HLOBA¹, Student
ORCID ID: 0009-0003-4923-3374
e-mail: olgagloba73@knu.ua

Tetiana MIRONCHUK¹, PhD (Philol.) Assist. Prof.
ORCID ID: 0000-0002-5923-1028
e-mail: t_mironchuk@ukr.net

Liudmyla PLICHKO¹, PhD (Natural Sciences)
ORCID ID: 0000-0001-6779-0236
e-mail: plichkol@knu.ua

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

UTILIZING GIS, GPS, REMOTE SENSING, AND AI IN THE STUDY OF SOIL CHARACTERISTICS

(Представлено членом редакційної колегії д-ром геол. наук, ст. дослідником О.І. Меньшовим)

Background. Modern agriculture faces numerous challenges associated with climate change, economic factors, and increasing demands for production efficiency. The implementation of advanced technologies, particularly Geographic Information Systems (GIS), Remote Sensing (RS), Global Navigation Satellite Systems (GNSS/GPS), and Artificial Intelligence (AI), allows for the optimization of agrotechnical processes and improved productivity in precision farming.

Methods. This study examines the application methods of GIS, GPS, RS, and AI in precision agriculture. It employs the analysis of satellite and aerial imagery, spatial modelling techniques, geostatistics, and machine learning for yield prediction and optimization of management decisions. Additionally, the use of sensor systems for field data collection and their integration into digital agricultural platforms is analysed.

Results. The study implemented a comprehensive model for assessing soil characteristics by combining GIS, GPS, remote sensing, and artificial intelligence methods. The results confirmed the effectiveness of using digital maps and satellite images for spatial interpolation of soil parameters (such as potassium, moisture, and humus content), yield mapping, and real-time crop monitoring. GPS navigation ensured high accuracy in machinery positioning and soil sampling, while machine learning algorithms (particularly LAI-based models and Random Forest) demonstrated yield prediction accuracy above 80 %. A crop rotation model built using Python libraries enabled the development of an optimal five-year rotation plan, considering soil types, climatic conditions, and potential yield. Variability maps and zoning results served as the basis for scenario-based field management at the enterprise level.

Conclusions. The integration of GIS, GPS, RS, and AI into agricultural practices significantly enhances the accuracy of soil analysis and the efficiency of agroprocess management. The developed model enables the automation of decision-making processes based on large volumes of spatial and field data, contributing to cost reduction, increased productivity, and preservation of soil fertility. The implementation experience in the Kyiv region has demonstrated its practical applicability and potential for scaling within the framework of modern precision agriculture.

Keywords: geographic information systems (GIS), remote sensing (RS), global navigation satellite systems (GNSS/GPS), artificial intelligence (AI), precision agriculture (PA), geoinformation technologies (GIT), APSIM (Agricultural Production Systems Simulator), DSSAT (Decision Support System for Agrotechnology Transfer).

Background

In the current context of global climate change, soil degradation, and the growing need to intensify agricultural production while adhering to principles of sustainable development, the use of high-precision technologies in soil cover research is gaining relevance. One of the most effective approaches is the integration of Geographic Information Systems (GIS), GPS navigation, Remote Sensing (RS), and Artificial Intelligence (AI) into the comprehensive study of the spatial variability of soil characteristics.

Recent studies confirm that the integration of these technologies significantly improves the accuracy of agroecosystem monitoring and management. In particular, the use of high-resolution satellite imagery and deep learning has proven highly effective in modeling soil moisture under various climatic conditions (Hassan-

Esfahani et al., 2021). The combination of GIS with GPS and RS data enables the creation of highly accurate maps of fertility, moisture levels, pH, and other soil indicators, which are critical for planning agrotechnical operations. The integration of satellite data and machine learning has achieved up to 92 % accuracy in predicting the spatial variability of soil organic matter (Ahmad, Khan, & Ali, 2022).

Additionally, AI algorithms-especially deep neural networks-allow the analysis of large volumes of agricultural data, revealing patterns and forecasting changes in soil conditions over time and space. Integrating AI into agricultural models is a key stage in the digital transformation of agriculture (Wang et al., 2023).

In the Ukrainian context, the urgency of applying such technologies is rising against the backdrop of declining soil fertility, increasing climate risks, and the need to optimize

resource use. As highlighted in literature, the integration of digital technologies into agriculture forms the basis for making effective decisions in the management of soil and agricultural resources (Burliai, & Okhrymenko, 2021).

Moreover, modern GIS systems not only accumulate data on soil properties but also visualize them spatially, significantly simplifying the decision-making process at various levels. The use of interactive maps combined with predictive models enables the evaluation of the agricultural potential of land under different climate change scenarios (Shrestha, & Pradhanang, 2022).

For instance, as of 2024, the average cost of analyzing a single soil sample in Ukrainian agricultural laboratories ranged from 1500 to 2500 UAH. For fields larger than 300 hectares, it is typically necessary to analyze between 30 and 80 samples (depending on the sampling grid), amounting to between 45,000 and 200,000 UAH. Therefore, interpolation and geostatistical methods enable the estimation of spatial distribution parameters using fewer field measurements-i.e., with larger sampling grids-while maintaining high prediction accuracy. The application of such methods significantly improves resource management, reduces costs, and minimizes environmental impact.

GIS is the core tool for data processing, analysis, and management used in precision agriculture. It ensures the effective integration of spatial and digital data, assisting farmers in optimizing production processes and making well-grounded management decisions. However, GIS alone does not guarantee efficient agro-territorial management. It must be embedded into agronomic platforms that collect, store, and interpret information from diverse sources, model scenarios, and provide a solid basis for sound decision-making. The concept of active information-implying real-time data updates from multiple sources has already become standard practice in modern precision farming. This includes the use of high-resolution satellite images, data from unmanned aerial vehicles (drones), and information from IoT sensors placed in fields. Agricultural platforms are built on a modular architecture, where functions such as land bank management, field mapping, task planning, real-time work monitoring and analysis, weather tracking, document automation, logistics, and even product sales are all integrated into a single digital system. Currently, the most popular agro-platforms in Ukraine are Agrilab, Soft. Farm,

Forland, and OneSoil (Fig. 3) (Precision Farming and Agro IT Solutions, n.d.). Recent research also emphasizes the role of precise soil modeling in adapting to climate change. For instance, the combination of remote sensing, deep learning, and big data analytics is the foundation of effective soil mapping in regions with high spatial variability (Morales, Zhang, & Wang, 2023).

Special attention should be given to machine learning tools that enable the creation of automated systems for real-time soil condition assessment. Classification algorithms can be used to identify soil types and predict their erosion susceptibility with an accuracy exceeding 90 % (Singh, Sharma, & Kumar, 2021).

It is worth noting that digital tools not only enhance agricultural productivity but also play a vital role in environmental protection. Reducing ecological pressure, optimizing the use of fertilizers and pesticides, and preserving biodiversity are all made possible through precision agricultural technologies. The use of GIS and AI enables the integration of soil research into a comprehensive sustainable land use strategy.

Modern precision agriculture actively integrates innovative technologies for crop and soil monitoring-form, ground-based sensors and drones to satellite systems. By employing LiDAR, fluorescence spectroscopy, thermal imaging, and AI, farmers gain accurate data for optimizing fertilization, irrigation, and yield prediction. This promotes increased agricultural efficiency, reduced costs, and minimized environmental impact.

A successful example of AI integration in agriculture is John Deere, whose farming equipment is equipped with AI systems that autonomously determine the appropriate quantity of seeds and fertilizers, as well as the techniques for their application in soil. Companies such as John Deere and CNH Industrial are developing tractors and combines harvesters with AI components, including autopilot systems and precision control for field operations. These technologies are successfully implemented in many countries, including the USA, Germany, and Australia. The world's first unmanned grain harvester (Fig. 1) and autonomous tractor developed for precision farming were introduced in China in 2021 by the Chinese company Country Garden (Fig. 2).

Fig. 1. Unmanned harvester by Country Garden
(China presented the operation of..., n.d.)

Fig. 2. Autonomous tractor developed for the needs of precision agriculture in China
(China presented the operation of..., n.d.)

The Stout Smart Cultivator uses machine vision and artificial intelligence to mechanically cultivate and weed fields with precision blades (Smart Cultivator Stout, n.d.). Blue River Technology has developed the See & Spray system, which leverages computer vision and AI to detect weeds and apply

herbicides with pinpoint accuracy, significantly reducing chemical usage (Blue River Technology, n.d.). CropX offers a solution for real-time soil moisture monitoring using sensors and AI algorithms, allowing for optimized irrigation management (Agronomic Farm Management System, n.d.).

AI integration enables drones to autonomously plan flight paths while avoiding obstacles, enhancing both safety and operational efficiency. The application of swarm technology makes it possible for multiple spraying drones to work collaboratively in an automated manner. Additionally, AI enhances target identification, allowing drones to more accurately recognize and classify objects, thereby improving the precision of monitoring and resource application (Zhang, & Kovacs, 2020).

Artificial intelligence (AI) is rapidly being integrated into various sectors, and agriculture is no exception. In the context of precision farming, AI offers innovative solutions to increase efficiency, productivity, and sustainability in agricultural production. It is projected that the global AI in agriculture market will grow from USD 2.08 billion in 2024 to USD 5.76 billion by 2029, reflecting a compound annual growth rate (CAGR) of 22.55 % over the period 2024–2029 (Filippov, 2024).

Thus, studying the specific applications of GIS, GPS, RS, and AI in soil characteristic analysis holds significant theoretical and practical value for the development of precision agriculture, crop rotation forecasting, yield improvement, and environmental conservation. The integrated use of spatial analysis, digital mapping, satellite technologies, and machine learning models opens new frontiers for the efficient management of land resources.

Methods

One of the main objectives of precision agriculture addressed through GIS is the identification of zones with varying productivity potential within a single field. This enables the application of site-specific management strategies, allowing farmers to optimize resource use, minimize costs, and increase yields through a differentiated approach to fertilization, irrigation, soil treatment, and other agronomic practices (Brovarets, 2018).

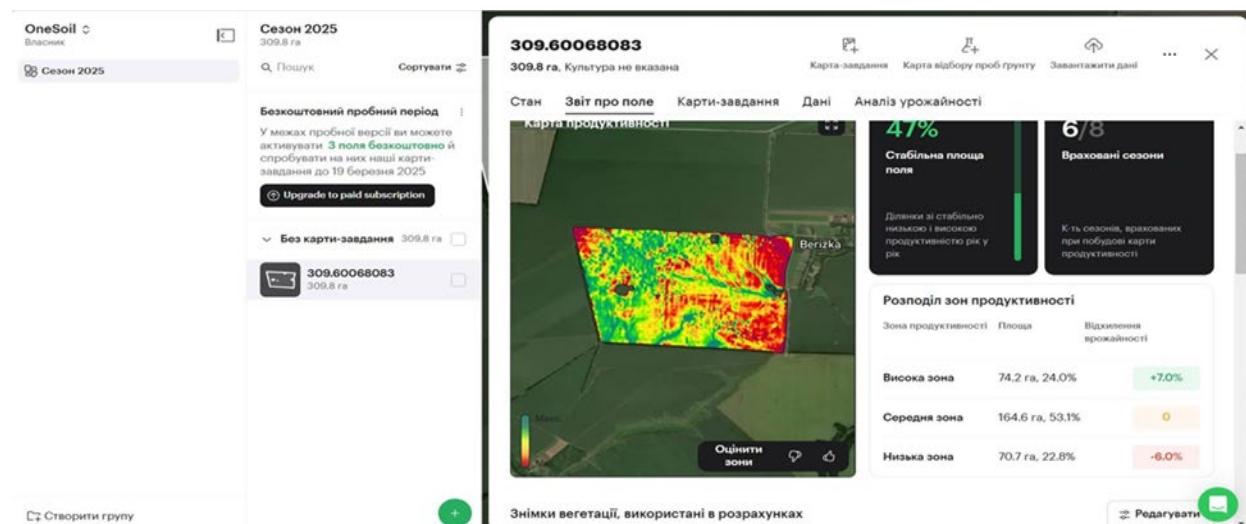
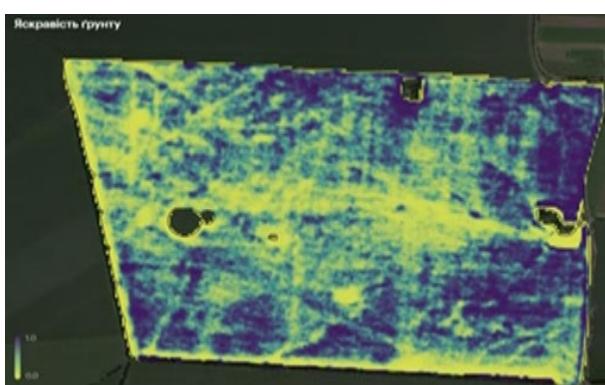
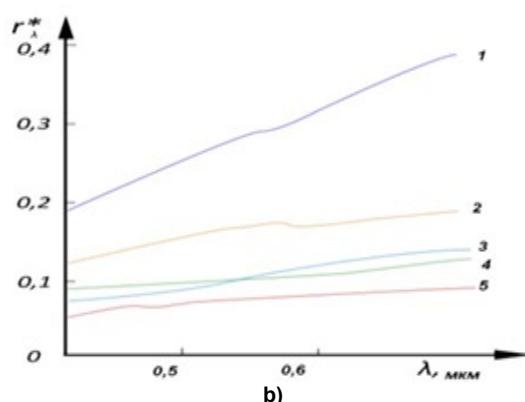



Fig. 3. Ukrainian agro-platform OneSoil (OneSoil, n.d.)

The Global Positioning System (GPS) is a U.S.-based radio navigation satellite system used to determine the location of stationary and mobile objects in three global coordinates: longitude, latitude, and altitude, with an accuracy of several tens of meters (Tsyhanenko, 2015). In addition to GPS, there exist other Global Navigation Satellite Systems (GNSS), such as Galileo (EU), BeiDou (China), and QZSS (Japan). GNSS receivers do not rely on electronic components that may change their parameters over time,

which ensures consistently accurate positioning without the need for frequent calibration.


Remote Sensing (RS) plays a crucial role in the development of precision agriculture by providing timely spatiotemporal information on the condition of agricultural land. Thanks to modern satellite and aerial imagery, farmers gain access to detailed data on crops, soil characteristics, and climatic conditions, enhancing the efficiency of agricultural process management (Fig. 4).

a)

Fig. 4. Brightness of soils of typical low-humus and degraded light loamy chernozems (a) (author's own development); spectral brightness curves of main soil types:

1 – sierozem; 2 – sod-podzolic; 3 – dark chestnut; 4 – dark gray forest; 5 – chernozem (b) (Zatserkovnyi, 2018)

Unlike vegetation, bare soil reflects radiation based on its physical and chemical properties. The key factors determining the spectral characteristics of soil include the provided below (Zatserkovnyi, 2018).

In most agricultural fields, both bare soil and vegetation are present simultaneously. This creates mixed spectral signals, which can complicate the accurate interpretation of data, as the reflected light contains information from both the plants and the soil. To isolate the information specific to vegetation cover, specialized mathematical and algorithmic methods are used (Zatserkovnyi, 2018).

Modern remote sensing (RS) technologies have significantly expanded the range of parameters that can be analysed to improve the efficiency of precision agriculture. In addition to traditional indicators, such as biomass, plant stress (detecting signs of disease, pests, or nutrient deficiency), and growth rate modern RS methods allow for the assessment of:

- soil and air moisture (via microwave scanning – radio waves with wavelengths from 1 cm to 1 m);
- surface temperature (using thermal infrared and microwave radiation);
- ozone concentration in the atmosphere (which influences the photosynthetic activity of plants);
- chlorophyll levels (via hyperspectral scanning).
- Soil electrical conductivity (sensor equipment evaluates soil structure and moisture content).

Application of AI in Precision Agriculture (Colback, 2025):

- crop monitoring: The use of high-resolution drones and satellite imagery enables real-time imaging of fields. Computer

vision systems powered by artificial intelligence can detect early signs of disease, pests, or other stress factors in plants, allowing for prompt intervention and control.

- yield prediction: AI models can forecast crop yields based on historical data, weather conditions, and other influencing factors. This helps farmers plan harvest logistics and marketing strategies.

- resource optimization: AI analyses data on soil moisture, weather forecasts, and crop health to determine optimal timing and dosage for irrigation, fertilization, and pesticide application.

- autonomous machinery: The development of autonomous tractors and robotic systems controlled by AI allows for the automation of tasks such as sowing, spraying, and harvesting, reducing the need for manual labour and increasing operational accuracy (Colback, 2025).

A team of scientists and engineers at EOS Data Analytics (EOSDA) has developed effective methods for crop yield estimation using remote sensing and machine learning models, particularly LAI assimilation. The company conducted a yield prediction for a large Ukrainian agroholding, achieving over 80 % accuracy in the green-labelled areas (EOS Data Analytics, n.d.).

The same algorithm was applied in 2020 to estimate crop yields for a Canadian agricultural company, with the data presented in Tab. 1.

These specialists worked on implementing a hybrid approach that combines biophysical and statistical models to achieve high-precision yield forecasting.

Table 1

Crop yield estimates for a Canadian agricultural company in 2020
(EOS Data Analytics, n.d.)

Crop	Modelled yield, tons per field	Actual yield, tons per field
Canola	40.19	39.00
Corn	119.14	110.00
Oats	125.03	125.00
Winter rye	64.39	75.00
Confectionery sunflower	2063.60	1800.00
Annual sunflower	1834.19	1800.00
Wheat	61.73	65.00

Within the scope of the study, an integrated methodology was applied to develop an optimal crop rotation plan by combining machine learning capabilities with the principles of physiological modelling of crop growth. The foundation of this methodology was based on principles like those used in APSIM (Agricultural Production Systems Simulator) and DSSAT (Decision Support System for Agrotechnology Transfer)-agronomic simulators capable of modelling crop growth dynamics while accounting for climatic conditions, soil properties, and agricultural practices (Confalonieri et al., 2010).

The machine learning logic embedded in the algorithm follows key agronomic crop rotation rules:

- the possibility of growing the same crop on the same plot for two consecutive years is excluded to prevent soil exhaustion.
- crops with higher potential yield are prioritized in the initial years of planning – this reflects the adaptive strategies embedded in DSSAT-based models.
- local soil and climatic conditions, such as temperature regimes, precipitation levels, and soil characteristics are incorporated into the calculations.

Based on these principles, the model automatically generates a five-year crop rotation plan, selecting optimal crop combinations to ensure stable yields and maintain soil fertility. An important component of the model is the

assimilation of the Leaf Area Index (LAI) – a biophysical indicator of crop condition, which can also be calculated from remote sensing data (e.g., Sentinel-2). LAI is integrated into the forecasting system to refine yield predictions. For this, data assimilation algorithms are applied, particularly the Ensemble Kalman Filter (EnKF). This algorithm continuously updates its system state estimates by combining model predictions with newly obtained observations, reducing the influence of noise. It fuses LAI observations with internal model variables, thereby improving model accuracy (Hassan-Esfahani et al., 2021).

This approach ensures flexibility and adaptability of the system to spatial and temporal changes in growing conditions, allowing agricultural producers to optimize the planning of agronomic operations, increase productivity, and simultaneously maintain ecological balance in soil systems.

The application of these methods to a large Ukrainian agroholding has demonstrated their effectiveness and practical value in the agribusiness sector.

Results

One of the key tools in precision agriculture is the use of GPS technology, whose core applications include:

- farm planning: Information gathered from various satellite sources and georeferenced via GPS can be integrated to develop field management strategies, including fertilizer application, soil treatment, and harvesting.

- field mapping.
- soil sampling: GPS enables the precise identification of soil sampling locations, ensuring more accurate analysis of soil fertility and condition (Fig. 5).
- navigation of agricultural machinery: GPS guidance allows tractors, harvesters, and other equipment to operate in the field with high precision, minimizing overlaps and skips during operations, thereby reducing fuel consumption.
- crop monitoring: With GPS, it is possible to track crop development in different areas of a field, enabling timely detection of problem zones and implementation of corrective measures.
- variable-rate application of fertilizers and pesticides: Integration of GPS with variable-rate technology allows precise dosing of fertilizers and pesticides based on the

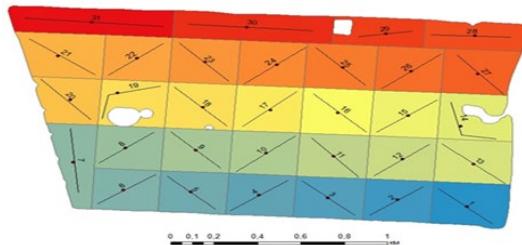


Fig. 5. Locations and routes of soil sampling with GPS referencing

The yield data were obtained from a combine harvester owned by the agricultural enterprise "Kernel", located near the village of Beryzka, within the Varva Territorial Community of Pryluky District, Chernihiv Region. The machinery was equipped with a yield monitoring system and GPS navigation, which allowed for recording the yield at each point of the field during harvesting. Based on these spatially referenced point values, a yield map was created using spatial interpolation methods in a GIS environment (Fig. 6). The map shows the spatial distribution of corn grain yield for a 309.6 hectare field in 2020. The highest yield values, reaching 11.3–14.4 tons per hectare (dark green areas), are observed locally in the central part of the field, likely near zones with better water availability due to terrain depressions or higher soil fertility. Most of the field is covered by areas with average yield (7.8–11.2 t/ha), indicating stable agri-production conditions without major constraints. Meanwhile, the lowest yields (2.89–6.14 t/ha), shown in red and dark orange, are mostly concentrated along the field's perimeter, particularly in the north and east. This may indicate the presence of adverse factors such as soil compaction, erosion, moisture or nutrient deficiency, or inconsistent machinery operation. Thanks to digital technologies and big data analysis, farmers can make well-informed decisions about optimizing tillage, fertilization, crop protection, and irrigation.

The visualization of data in map format greatly enhances the understanding of spatial patterns, particularly the relationships between natural factors and crop performance. In Figure 7, the left image shows the grid of soil sampling points with indicated levels of available potassium in each cell. The right image illustrates the spatial modelling result of potassium content, generated using the Inverse Distance Weighting (IDW) interpolation method, which creates a continuous surface from discrete measurements. The IDW interpolation method assumes that values at any unknown location depend on nearby known values, with closer points

needs of specific field zones, reducing input costs and environmental impact.

- yield mapping: During harvest, GPS-enabled functions in combine harvesters allow for the creation of yield maps, visualizing the productivity of different field areas. This helps identify causes of yield variability and supports the development of strategies to improve future efficiency (Fig. 6).

- operation under low visibility: GPS navigation ensures accurate machinery operation even under challenging weather conditions or at night, expanding the window for fieldwork and increasing productivity.

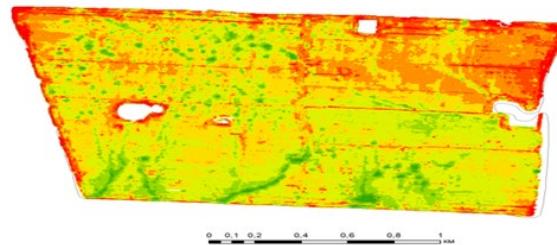


Fig. 6. Yield map (cartogram) of the field

exerting a stronger influence than distant ones. In this method, the unknown value is calculated as a weighted average of neighbouring points, where weights are inversely proportional to the distance. This approach enables the construction of a continuous surface from a limited number of spatial samples, as shown in the map. An analysis of the available potassium distribution in the soil for 2020 reveals significant spatial heterogeneity. Most of the field area is characterized by elevated (81–120 mg/kg) and high (121–150 mg/kg) potassium content. Zones with very high levels (>181 mg/kg) are localized in the northeastern part of the field (marked in purple). In contrast, the lowest values (less than 100 mg/kg) are recorded in the southeastern sector and in some central areas, indicating the need for localized potassium fertilization adjustment. The obtained data can be used to create task maps for variable-rate potassium fertilizer application (Zatserkovnyi, & Vorokh, 2024).

However, graphical interpretation alone is not sufficient, as it does not allow determining whether the observed relationships are statistically significant or merely due to random factors or measurement errors. When using classical interpolation methods, such as Inverse Distance Weighting (IDW), it is assumed that the predicted value at an unknown point is determined solely by the values at known points, with distance being the primary influence factor. However, this approach may lack accuracy, as the spatial distribution of measured characteristics may depend not only on distance but also on other factors. For example, soil moisture content may vary not just with proximity but also due to terrain, soil type, or hydrological conditions. Furthermore, some parameters may exhibit a distinct spatial trend, such as a gradual increase or decrease in nutrient concentration (e.g., nitrogen) in a certain direction across the field.

Accounting for such patterns is only possible using geostatistical analysis methods, particularly kriging, which evaluates spatial autocorrelation and builds more accurate models of spatial variability.

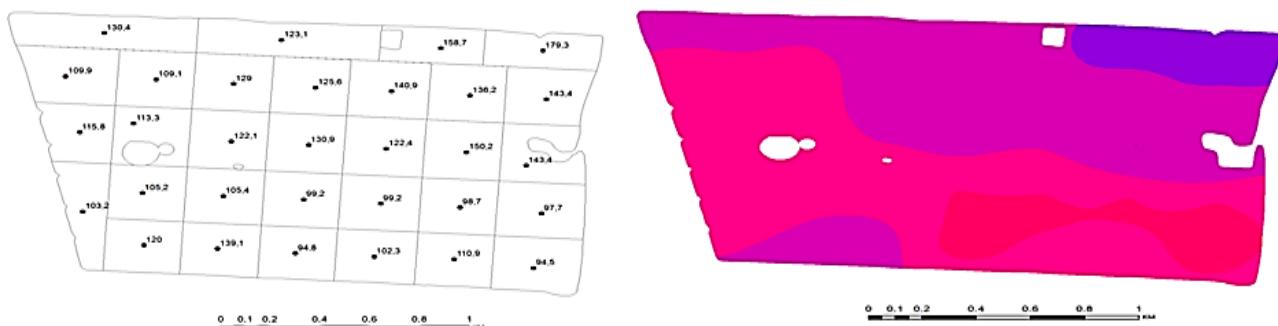


Fig. 7. Cartogram of available potassium distribution in soil, created using the IDW interpolation method

Thanks to accurate monitoring and management powered by AI, farmers will be able to achieve higher crop yields from their fields. AI-driven optimization of fertilizer, water, and pesticide use will help reduce costs and minimize negative environmental impact. Big data analysis performed by artificial intelligence will enable farmers to make informed decisions based on real-time indicators and AI-generated recommendations.

The subject of this study is LLC "FK LTD", an agricultural enterprise located in the urban-type settlement of Volodarka,

Bilotserkivskyi District, Kyiv Region. The company's primary activities include the cultivation of grain crops, legumes, and oilseed crops. In addition, the enterprise grows corn, wheat, sunflower, and soybeans.

The land plots owned or operated by the company are located near Volodarka and in surrounding villages within the Volodarka Territorial Community (Fig. 8.). Some of the plots are leased, while others are owned directly by the enterprise.

Fig. 8. Part of the land plots owned by the enterprise on the outskirts of the urban-type settlement of Volodarka

To adapt the digital model to the real operating conditions of LLC "FK LTD", a flexible solution was developed based on the Python programming language, utilizing specialized libraries for handling large volumes of numerical and tabular data. This approach enabled the personalization of the model, considering the specific features of the company's land bank, including soil types, agrochemical characteristics, meteorological conditions, and the range of cultivated crops. The input data included information on soil types, their agrochemical composition, average crop yields, and the climatic features of the region. All this information was systematized and presented in a tabular format for further analysis and integration into the model.

The next step involved developing an algorithm capable of automatically generating a crop rotation plan based on predefined constraints and criteria. For this purpose, Python was used along with the Pandas and NumPy libraries, enabling the processing of large datasets. The model incorporated key agronomic rotation rules, among which a central principle was the avoidance of growing the same crop on the same plot for two consecutive years. It also considered the need for alternating crops that have different impacts on soil fertility and prioritizing crops with higher yield potential at the initial stages of planning.

After configuring the algorithm, a series of simulations were conducted, during which the model generated several

crop rotation options for a five-year period. Each proposed scenario was evaluated based on the balance of crop types, compliance with agrotechnical requirements, and forecasted yield indicators. The optimal variant was selected-combining grain, legume, and oilseed crops-ensuring the alternation of depleting and soil-enriching crops.

In the model, the first year was allocated to corn, a crop with high yield potential, laying the foundation for economic profitability but requiring careful planning for subsequent crops due to its significant impact on soil. The second-year proposed wheat, a less demanding crop that helps compensate for soil load. The third year included barley, providing additional balance to the rotation. The fourth year was designated for soybeans, enriching the soil with nitrogen and restoring its fertility. The fifth year concluded with sunflowers, completing the rotation cycle with different crop types.

The resulting crop rotation plan was analyzed and compared with average yield indicators across Ukraine, allowing the evaluation of the model's forecast accuracy. The discrepancies between the predicted and actual yields were minor, indicating high model accuracy. At the same time, alternative scenarios were tested, giving the enterprise multiple flexible options for final decision-making.

Thus, the developed crop rotation modeling scenario not only considered local soil and climatic conditions but also

enabled the creation of an adaptive rotation strategy aimed at increasing yield and maintaining soil fertility in the long term.

The predominant soil types in the area are typical medium-humus and low-humus chernozems on loess deposits, occupying about 80 % of the territory. These soils

contain 3–5 % humus, and the depth of the humus horizon exceeds 80 cm. They are most favorable for the cultivation of sugar beets, winter wheat, barley, forage, and vegetable crops. Generalized soil data are presented in Tab. 2.

Table 2

Information on the soil cover of the settlement

Code of the agro-production soil group	Name of the agro-production soil group
19e	Sod-podzolic and podzolic-sod soils with surface gleying, medium loamy
29d	Light gray and gray podzolized soils, medium loamy
52b	Typical low humus chernozems (sandy loam) and their complexes with solonetzic variants
54d	Typical medium humus chernozems, light loamy
54e	Typical medium humus chernozems, medium loamy

The average monthly temperatures in winter (January–February) are around -6°C , and in summer (July) about $+19.4^{\circ}\text{C}$. In certain years and months, deviations from the average annual and monthly temperatures may occur. The absolute minimum recorded in the region was -35°C , and the maximum was $+37^{\circ}\text{C}$.

The annual precipitation amounts to 525 mm, with about 150 days of precipitation per year. The highest precipitation occurs in summer, averaging 205 mm, while the lowest is in winter – 90 mm on average. The climograph is shown in Fig. 9.

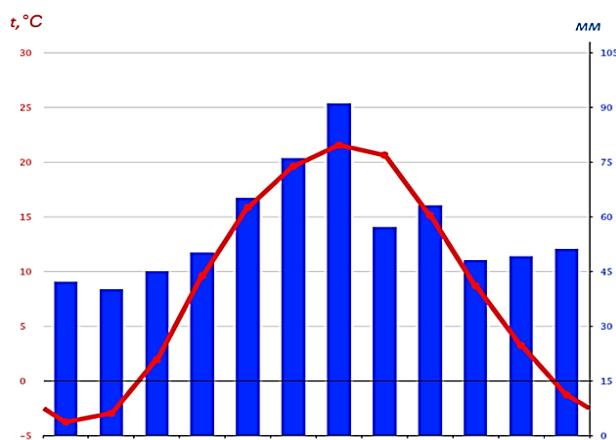


Fig. 9. Climograph of the Volodarka Territorial Community

The terrain is mostly flat, with minor elevation differences across the area. There are exposures of crystalline rocks, particularly granite. The surface slope trends from west to east. The company cultivates the following crops: wheat, barley, corn, sunflower, and soybeans.

The goal of crop rotation is to increase yields. Based on soil data, climate conditions, and the types of cultivated crops, it is possible to plan a five-year rotation to improve productivity and maintain soil fertility.

The model was developed in the Python environment using the Pandas and NumPy libraries, which are commonly used in AI model training. Pandas enable manipulation of tabular data—for example, the content of chemical components and humus in soils can be represented in table format. NumPy is used to process large data arrays.

We start by importing the libraries. As a first step, we define the list of crops and enter estimated yield values in conditional units, since real data was not available (Fig. 10).

The "plan rotation" function allows the creation of a crop rotation plan, with the duration set to five years (Fig. 11). Additionally, several rules are introduced for training the model, for example, crops must not repeat for two consecutive years, and crops with the highest expected yield are given priority in the initial years.

At the end of the code, the return function is set to output the crop rotation plan. The results of the model are then analyzed. We run the model and receive the following crop rotation recommendation (Fig. 12).

The expected yield results closely match the average yield indicators of these crops in Ukraine (Tab. 3). However, it should be noted that the accuracy and volume of input data can be improved, which would further enhance the precision of the model.

Overall, the model performed well, except for wheat in year 4. It would have been better to include soybean instead. To avoid this, the rule prioritizing high-yield crops could be improved. Returning the model can generate alternative crop rotations (Fig. 13).

Analysis of crop rotations based on commonly accepted crop rotation rules Tab. 4.

```

ONLINE PYTHON BETA
main.py + 
1 import pandas as pd
2 import numpy as np
3
4 # Дані про врожайність культур (в умовних одиницях, на основі історичних даних)
5 crop_data = {
6     'Культура': ['Соя', 'Пшениця', 'Кукурудза', 'Ячмінь', 'Соняшник'],
7     'Врожайність': [2.5, 4.0, 6.5, 3.8, 2.8], # середні показники врожайності
8     'Збагачення ґрунту (азот)': [1, 0, -1, 0, -2] # умовний вплив на ґрунт (1 - позитивний, -1 - виснаження)
9 }
10
11 # Створення DataFrame
12 df = pd.DataFrame(crop_data)

```

Fig. 10. Code snippet with input data

```

# Функція для моделювання сівозміни на кілька років
def plan_rotation(years=5):
    rotation_plan = []
    last_crop_index = -1 # Індикатор попередньої культури

    for year in range(years):
        # Умовний вибір культури для максимізації врожайності і дотримання ротації
        if last_crop_index == -1:
            chosen_crop = df.iloc[np.argmax(df['Врожайність'])] # вибір початкової культури з найвищою врожайністю
        else:
            # Зміна культури, щоб уникнути однакової культури поспіль
            potential_crops = df[df.index != last_crop_index]
            chosen_crop = potential_crops.sample(1).iloc[0] # випадковий вибір, щоб забезпечити ротацію

```

Fig. 11. Code snippet with rules for training the dataset

```

L: 38, Col: 1
Run Share Command Line Arguments
Rik 1: Кукурудза (Очікувана врожайність: 6.5 т/га)
Rik 2: Пшениця (Очікувана врожайність: 4.0 т/га)
Rik 3: Ячмінь (Очікувана врожайність: 3.8 т/га)
Rik 4: Пшениця (Очікувана врожайність: 4.0 т/га)
Rik 5: Соняшник (Очікувана врожайність: 2.8 т/га)

** Process exited - Return Code: 0 **
Press Enter to exit terminal

```

Fig. 12. Model testing and validation

Table 3

Comparison of yield indicators		
Crop	Expected yield at LLC "FK LTD", t/ha	Average yield in Ukraine, t/ha
Corn	6.5	7.0
Wheat	4.0	4.0
Barley	3.8	3.5
Sunflower	2.8	2.3
Soybean	2.5	2.2

```

Rik 1: Кукурудза (Очікувана врожайність: 6.5 т/га)
Rik 2: Пшениця (Очікувана врожайність: 4.0 т/га)
Rik 3: Соя (Очікувана врожайність: 2.5 т/га)
Rik 4: Ячмінь (Очікувана врожайність: 3.8 т/га)
Rik 5: Пшениця (Очікувана врожайність: 4.0 т/га)

** Process exited - Return Code: 0 **
Press Enter to exit terminal

Rik 1: Кукурудза (Очікувана врожайність: 6.5 т/га)
Rik 2: Соя (Очікувана врожайність: 2.5 т/га)
Rik 3: Соняшник (Очікувана врожайність: 2.8 т/га)
Rik 4: Ячмінь (Очікувана врожайність: 3.8 т/га)
Rik 5: Соя (Очікувана врожайність: 2.5 т/га)

** Process exited - Return Code: 0 **
Press Enter to exit terminal

```

Fig. 13. Alternative crop rotation plans

Table 4

Commonly accepted crop rotation rules (crop rotation)	
Crop characteristics in rotation	Year of rotation / crop
A high-yield crop that depletes the soil. The selection is based on the model rule of prioritizing high-yield crops in the initial years	Year 1: Corn
Does not deplete the soil and is a good choice to follow corn	Year 2: Wheat
A satisfactory option after wheat, if nitrogen levels remain adequate	Year 3: Barley
Growing cereals for several consecutive years may lead to soil depletion	Year 4: Wheat
Loosens the soil and creates a break in the cereal crop cycle	Year 5: Sunflower

Thus, the proposed crop rotation forecasting model has demonstrated strong results and can be used by the enterprise to optimize costs, increase yields, and preserve nutrients in the soil.

Despite its clear advantages, the implementation of AI in agriculture faces several challenges:

- high implementation costs: AI technologies and related equipment can be expensive, making them inaccessible for small farms.

- lack of technical training: Farmers often lack the knowledge and skills needed to operate new technologies.

- infrastructure issues: In remote areas, there may be no access to high-speed internet, which is essential for processing large datasets.

- incomplete or inaccurate data: AI systems require high-quality data to function effectively; poor or incomplete data may lead to incorrect results.

- integration complexity: Implementing AI often requires adaptation or replacement of existing equipment and software systems.

In the future, further integration of AI with other technologies, such as the Internet of Things (IoT), blockchain, and quantum computing is expected to create fully automated farms. Key directions for development include:

- expansion of IoT-based farm management systems: Integrating AI into soil sensors, weather stations, and automated irrigation and fertilization systems will not only provide a continuous flow of data but also allow for real-time adaptation of agronomic decisions.

- use of blockchain technologies will ensure transparent documentation, which is especially important for quality control and supply chain traceability of agricultural products.

- Intelligent software platforms will be capable of making independent decisions on fieldwork, optimizing processes, and even autonomously operating agricultural machinery.

Discussion and conclusions

The research conducted confirmed that the synergistic application of GIS, GPS, remote sensing (RS), and artificial intelligence (AI) provides a new level of precision in analyzing soil characteristics and making agrotechnical decisions within precision agriculture systems. The implemented model enabled not only the integration of large volumes of spatial and field data, but also the automation of agricultural management processes.

One of the key outcomes was the high effectiveness of using satellite imagery and digital maps for spatial analysis of soil parameters—particularly potassium, moisture, and humus content, which lays the foundation for an adaptive approach to agribusiness management. GPS navigation significantly improved the accuracy of equipment positioning and soil sampling locations, minimizing resource losses and ensuring stability in agri-production processes.

The integration of machine learning, particularly Random Forest models and LAI assimilation, made it possible to achieve yield prediction accuracy above 80 %, representing a major step toward scientifically grounded production strategy planning. The crop rotation model, developed using Python and the Pandas and NumPy libraries, was successfully adapted to the local soil and climatic conditions of the agricultural enterprise, demonstrating its flexibility and practical value.

The results confirmed that implementing such digital solutions contributes to cost reduction, increased productivity, and preservation of soil fertility, which are essential for the sustainable development of the agricultural sector. The experience of testing the model under conditions in the Kyiv

region demonstrated the scalability potential of the proposed model for other regions and agricultural systems.

In conclusion, the comprehensive implementation of GIS, GPS, RS, and AI creates a foundation for the development of automated decision support systems that ensure not only high efficiency of agricultural processes but also promote the ecological stability of agro-landscapes.

Authors' contribution: Vitalii Zatserkovnyi – conceptualization, formal analysis, methodology, review and editing; Viktor Vorokh – conceptualization, methodology; Olga Hloba – formal analysis, data treating; Tetiana Mironchuk – revision and editing, Liudmyla Plichko – review of publications, revision and editing.

References

Ahmad, A., Khan, S., & Ali, M. (2022). Predicting spatial variability of soil organic carbon using machine learning and remote sensing data. *Geoderma*, 405. <https://doi.org/10.1016/j.geoderma.2021.115174>

Blue River Technology. (n.d.). *Our Products*. Retrieved April 21, 2025, from <https://www.bluerivertechnology.com/our-products/>

Brovarets, O. (2018). Probabilistic-statistical methods for determining the magnitude of variability zones of agrobiological parameters of agricultural lands to ensure proper quality of technological operations in crop production based on local operational monitoring data. *Bulletin of Khmelnytskyi National University*, 5, 272–283 [in Ukrainian]. [Броварець, О. (2018). Імовірністо-статистичні методи визначення величини зон варіабельності агробіологічних параметрів сільськогосподарських угідь для забезпечення належної якості технологічних операцій у рослинництві на основі даних локального оперативного моніторингу. *Вісник Хмельницького національного університету*, 5, 272–283].

Burliai, A. P., & Okhrymenko, B. O. (2021). Precision agriculture as a direction of modernization of agricultural production. *Modern Economics*, 29, 29–34 [in Ukrainian]. [Бурляй, А. П., & Охріменко, Б. О. (2021). Точне землеробство як напрям модернізації аграрного виробництва. *Сучасна економіка*, 29, 29–34].

Colback, T. (2025). How AI is transforming modern agriculture in 2025. *Precision Farming Dealer*. Retrieved April 21, 2025, from <https://www.precisionfarmingdealer.com/articles/6440-how-ai-is-transforming-modern-agriculture-in-2025>

Confalonieri, R., Bechini, L., Bregaglio, S., Donatelli, M., & Acutis, M. (2010). A library of crop simulation models. *Agronomy Journal*, 102(3), 700–707. <https://doi.org/10.2134/agronj2009.0300>

Corrigan, V. (2020). Advanced imaging technologies in precision agriculture: Applications of RGB, multispectral, hyperspectral, thermal, radar, and LiDAR sensors. *Journal of Agricultural Imaging*, 15(3), 112–125.

CropX. (n.d.). *Agronomic Farm Management System*. Retrieved April 21, 2025, from <https://cropx.com/>

EOS Data Analytics. (n.d.-a). *Crop yield prediction using remote sensing*. Retrieved April 21, 2025, from <https://eos.com/products/crop-monitoring/custom-solutions/yield-prediction/>

EOS Data Analytics. (n.d.-b). *Crop yield assessment: Satellite-based forecasting*. Retrieved April 21, 2025, from <https://eos.com/uk/products/crop-monitoring/custom-solutions/yield-prediction/>

Esri. (n.d.). *An overview of the interpolation toolset*. ArcGIS Pro Documentation. Retrieved April 21, 2025, from <https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/an-overview-of-the-interpolation-tools.htm>

Filippov, M. (2024, May 13). How artificial intelligence and robots are transforming the agricultural sector. *Ekonomichna Pravda* [in Ukrainian]. [Філіппов, М. (2024, 13 травня). Як штучний інтелект і роботи змінюють аграрний сектор. *Економічна правда*]. Retrieved March 7, 2025, from <https://www.epravda.com.ua/columns/2024/05/13/713533/>

Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & McKee, M. (2021). Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. *Remote Sensing*, 7(3), 2627–2646. <https://doi.org/10.3390/rs70302627>

Morales, M. M., Zhang, Y., & Wang, L. (2023). Digital soil mapping of soil organic matter with deep learning and remote sensing data. *ISPRS International Journal of Geo-Information*, 11(5), 299. <https://doi.org/10.3390/ijgi11050299>

OneSoil. (n.d.). *Free farming app for precision agriculture*. Retrieved April 3, 2025, from <https://onesoil.ai/ua>

Shrestha, N., & Pradhanang, S. M. (2022). Assessment of climate change effects of drought conditions using the soil and water assessment tool. *Agriculture*, 14(2), 233. <https://doi.org/10.3390/agriculture14020233>

Singh, R., Sharma, A., & Kumar, V. (2021). Evaluation of different machine learning models for predicting soil erosion. *International Journal of Environmental Research and Public Health*, 18(3). <https://doi.org/10.1155/2021/6665485>

Stout Industrial Technology. (n.d.). *Smart Cultivator*. Retrieved April 21, 2025, from <https://www.stout.ai/smart-cultivator/>

Traktorist.ua. (n.d.-a). In China, the first autonomous combine harvester with 300 hp was developed. *Traktorist.ua*. Retrieved April 21, 2025,

from <https://traktorist.ua/news/v-kitayi-rozrobili-pershiy-v-sviti-avtonomniy-kombayn-potuzhnisty-300-ks>

Traktorist.ua. (n.d.-b). The world's first 300 HP unmanned harvester presented in China. *Traktorist.ua*. Retrieved from <https://traktorist.ua/news/v-kitayi-rozrobili-pershiy-v-sviti-avtonomniy-kombayn-potuzhnisty-300-ks>

Travelite AGRO. (n.d.). *Precision agriculture and Agro IT solutions: An overview of modern agro platforms in Ukraine*. Retrieved April 21, 2025, from <https://traveliteagro.com/tochne-zemlerobstvo-ta-agro-it-rishennia/>

Tsyganenko, V. M. (2015). Global Positioning System (GPS) and its application in geoinformation technologies. *Bulletin of the National University of Water and Environmental Engineering. Series: Geodesy, Land Management and Cadastre*, 1, 45–50 [in Ukrainian]. [Циганенко, В. М. (2015). Глобальна система позиціонування (GPS) та її застосування в геоінформаційних технологіях. *Вісник НУВГП. Серія: Геодезія, землеустрої і кадастр*, 1, 45–50].

Wang, J., Zhang, H., Li, L., & Hu, J. (2023). AI and machine learning for soil analysis: An assessment of sustainable agricultural practices. *Bioresources and Bioprocessing*, 10, Article 90. <https://doi.org/10.1186/s40643-023-00710-y>

Віталій ЗАЦЕРКОВНИЙ¹, д-р техн. наук, проф.

ORCID ID: 0009-0003-5187-6125

e-mail: vitalii.zatserkovnyi@gmail.com

Віктор ВОРОХ¹, асп.

ORCID ID: 0009-0005-0112-8422

e-mail: fainkucha@gmail.com

Ольга ГЛОБА¹, студ.

ORCID ID: 0009-0003-4923-3374

e-mail: olgagloba73@knu.ua

Тетяна МІРОНЧУК¹, канд. філол. наук, доц.

ORCID ID: 0000-0002-5923-1028

e-mail: t_mironchuk@ukr.net

Людмила ПЛІЧКО¹, д-р філософії (природничі науки)

ORCID ID: 0000-0001-6779-0236

e-mail: plichkol@knu.ua

¹Київський національний університет імені Тараса Шевченка (Київ, Україна)

ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ГІС, GPS, ДЗЗ ТА ШІ В ДОСЛІДЖЕННІ ГРУНТОВИХ ХАРАКТЕРИСТИК

В с т у п . Сучасне сільське господарство нарахується на численні виклики, пов'язані з кліматичними змінами, економічними фактограмами та зростаючими вимогами до ефективності виробництва. Впровадження передових технологій, зокрема геоінформаційних систем (ГІС), дистанційного зондування землі (ДЗЗ), глобальних навігаційних супутниковых систем (GPS) та штучного інтелекту (ШІ), дає змогу оптимізувати агротехнічні процеси та підвищити продуктивність у прецизійному землеробстві.

М е т о д и . У роботі розглянуто методи застосування ГІС, GPS, ДЗЗ та ШІ у точному землеробстві. Використано аналіз супутниковых та аерофотознімків, методи просторового моделювання, геостатистику, машинне навчання для прогнозування брожайності та оптимізації управлінських рішень. Також досліджено використання сенсорних систем для збору польових даних та їх інтеграції у цифрові платформи агробіороботства.

Р е з у л ь т а т и . У ході дослідження реалізовано комплексну модель оцінки ґрунтових характеристик на основі поєднання ГІС, GPS, дистанційного зондування та методів штучного інтелекту. Результатами підтвердили ефективність використання цифрових карт супутниковых знімків для просторової інтерполяції параметрів ґрунту (вміст калію, волого, гумусу), побудови карт брожайності та моніторингу посівів у реальному часі. Використання GPS-навігації забезпечило високу точність позиціонування техніки й польового відбору проб, а алгоритми машинного навчання (зокрема, моделі на основі LAI та Random Forest) показали точність прогнозу брожайності понад 80 %. Побудована модель сівозміни із застуванням бібліотек Python дала змогу сформувати оптимальний п'ятирічний план ротації культур з урахуванням типів ґрунтів, кліматичних умов і потенційної брожайності. Карты варіабельності та результатами зонування стали основою для сценарного управління полем на рівні аграрного підприємства.

В и с н о в к и . Інтеграція ГІС, GPS, ДЗЗ та штучного інтелекту в аграрну практику суттєво підвищує точність аналізу ґрунтових характеристик і ефективність управління агропроцесами. Побудована модель дає змогу автоматизувати процеси прийняття рішень на основі великого обсягу просторових і польових даних, сприяє зниженню витрат, підвищенню брожайності та збереженню родючості ґрунтів. Досвід впровадження моделі в умовах Київської області засвідчив її практичну придатність і потенціал до масштабування в рамках сучасного точного землеробства.

К л ю ч о в і с л о в а : геоінформаційні системи (ГІС), дистанційне зондування Землі (ДЗЗ), глобальні навігаційні супутниковые системи (GPS) та штучний інтелект (ШІ), прецизійне землеробство (ПЗ), геоінформаційні технології (ГІТ), APSIM (Agricultural Production Systems Simulator), DSSAT (Decision Support System for Agrotechnology Transfer).

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Where to do soil analysis: List of agro laboratories. (2024, November 5). *SuperAgrom*. Retrieved November 15, 2024, from <https://superagrom.com/blog/1073-de-zrobiti-analiz-gruntu-spisok-agrolaboratori>

Zatserkovnyi, V. I. (2018). The practical aspects of remote land sensing: Study of the causes of water penetration on ground hydraulic structures. *Hydraulic Engineering and Land Reclamation*, 4, 45–50 [in Ukrainian]. [Зацерковний, В. І. (2018). Практичні аспекти дистанційного зондування земель: дослідження причин проникнення води на наземні гідротехнічні споруди. *Гідротехніка та мелиорація*, 4, 45–50].

Zatserkovnyi, V. I., & Vorokh, V. V. (2024). Differential Technologies of Precision Agriculture. *Technical Sciences and Technologies*, 1(35), 292–301 [in Ukrainian]. [Зацерковний, В. І., & Ворок, В. В. (2024). Диференційні технології прецизійного землеробства. *Технічні науки та технології*, 1(35), 292–301].

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. *Precision Agriculture*, 13(6), 693–712. <https://doi.org/10.1007/s11119-012-9274-5>

Отримано редакцію журналу / Received: 30.01.25

Прорецензовано / Revised: 19.02.25

Схвалено до друку / Accepted: 30.06.25

Arif HUSEYNOV, Master of Arts (Earth Sciences)
ORCID ID: 0000-0002-9941-3221

e-mail: huseynovarif85@gmail.com

Institute of Oil and Gas Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan

Viktor NESTEROVSKYI, DSc (Geol.), Prof.

ORCID ID: 0000-0002-7065-8962

e-mail: v.nesterovski@ukr.net

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Ayten HUSEYNOVA, PhD (Earth Sciences)

ORCID ID: 0000-0002-1932-4289

e-mail: aytenhuseynova@anas.az

Presidium of the National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

FIRST EXPERIENCE IN USING SATELLITE DATA FOR MONITORING THE HYDRO-FLUID REGIME OF LOKBATAN VOLCANO IN THE ASSESSMENT OF SEISMIC EVENT RISKS IN THE REGION

(Представлено членом редакційної колегії д-ром геол. наук, ст. наук. співроб. О.Л. Шевченком та д-ром геогр. наук, проф. Д.О. Ляшенком)

Background. *Mud volcanoes are unique natural structures affecting the environment by continuous emissions of gas-liquid fluids, mud breccia and mudflows. Despite extensive research and a substantial dataset on mud volcanism, the understanding of the fluid dynamics and hydrogeological processes associated with these systems remains a subject of ongoing debate. Globally, there are more than 2,500 mud volcanoes distributed across 42 countries (Aliyev et al., 2015), highlighting their widespread occurrence.*

Azerbaijan represents a unique region for the study of contemporary mud volcanism, hosting more than 350 mud volcanoes within a relatively small territory. Among them, the Lokbatan mud volcano is the most active, with 28 recorded eruptions. In this context, a comprehensive approach to studying the activity of mud volcanoes, including satellite monitoring, is highly relevant.

Methods. *The study employed remote sensing techniques to analyze the hydro-fluid regime of the Lokbatan mud volcano. Specifically, satellite imagery was used to calculate a moisture index for the volcano field. For the first time, this index was remotely measured, enabling assessment of surface moisture dynamics as a proxy for fluid migration and subsurface activity.*

Results. *The satellite-derived moisture index showed clear correlations with mud volcanic activity. Observations indicate that variations in the moisture index correspond to shifts in the fluid regime of the volcano, reflecting possible underground fluid migration or pressure changes prior to eruptions.*

Conclusions. *The study demonstrates the potential of satellite-based monitoring in assessing the hydro-fluid regime of active mud volcanoes. The approach provides an effective, low-cost alternative to field-based observations and can support early warning systems for seismic or eruptive events. These findings contribute to the development of preventive strategies for managing geological hazards in seismically active regions.*

Keywords: *Mud volcano, satellite images, fluids, NDWI, monitoring.*

Background

In the modern world, an integrated approach to solving challenges in Earth sciences is highly demanded and widely applicable. Today, satellite imagery, drone surveys, and other remote sensing technologies are increasingly used for data collection, analysis, and interpretation. By using modern technologies, the time and effort required to obtain such data are significantly reduced, making previously inaccessible research sites available without excessive risks or additional costs. In this study, satellite monitoring was applied for the first time to measure the moisture index at Lokbatan mud volcano.

The object of the research is the Lokbatan mud volcano, located 17 km southwest of Baku (Fig. 1). This choice is justified by the specific geological structure of the volcano, its eruption activity, proximity to the urban agglomeration, and spatial connection with the oil field.

Analysis of Previous Studies

Mud volcanoes of the Absheron Peninsula in Azerbaijan have a long history of study. The main research efforts have been conducted in connection with oil and gas exploration. Significant contributions in this field have been made by F. Dadashev, A. Yakubov, Ad. Aliyev, I. Guliyev, A. Feyzullayev, D. Guseynov, A. Mazzini, M. Schmidt, G. Etiope, and others. Their publications

have examined in detail the morphology and genesis of mud volcanoes, the relationship between mud volcanism and hydrocarbon occurrences, the estimation of combustible gas volumes released during eruptions, and the physical-mathematical modeling of mud volcanoes.

In recent years, some researchers have begun to consider mud volcanoes as one of the major natural sources of greenhouse gas emissions into the atmosphere. Accordingly, several studies have focused on the role of mud volcanism in climate change processes. It is also worth noting that one of the modern and promising directions today is the use of satellite technologies, particularly data from the Sentinel mission, for remote monitoring of mud volcano activity. For example, NDWI was effectively used to analyze the spread of the Sidoarjo mudflow (Indonesia) (Wicaksono and Isa, 2022). Additionally, a number of monographs and color atlases have been published aimed at popularizing knowledge about mud volcanoes and promoting geological tourism in the country (Aliyev et al., 2015; Aliyev, Guliyev, & Rahamanov, 2019; hnyukov, 2006).

Objective of the Study

The aim of this study is to explore the potential of using satellite data for monitoring mud volcanic activity on the Absheron Peninsula of Azerbaijan, using the most active volcano, Lokbatan, as a case study.

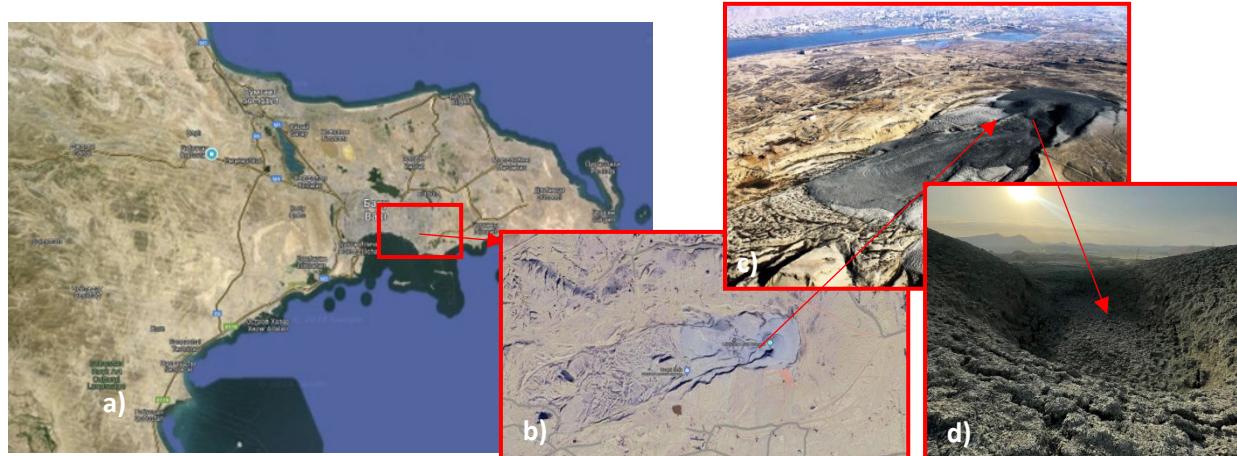
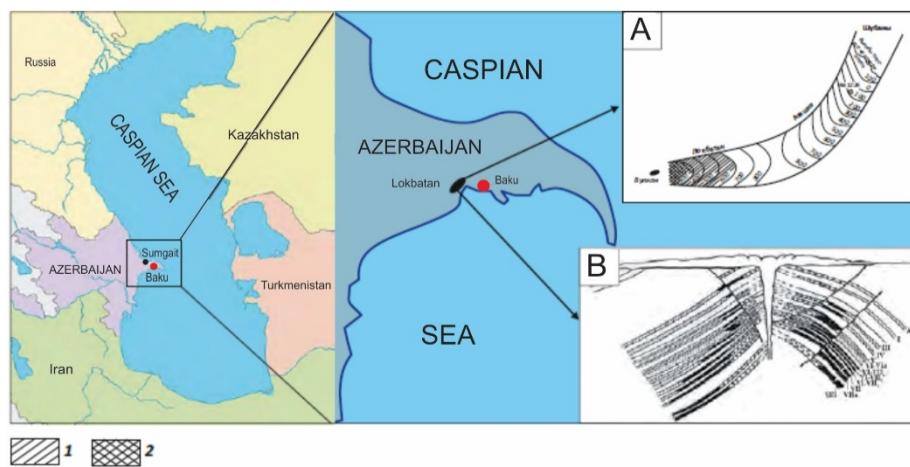


Fig. 1. (a, b) Location of the Lokbatan mud volcano (a, b)? (source: Google Maps);
(c) aerial photograph of the general view (c)? (photo by A.R. Huseynov); (d) view of the crater field (d)? (photo by V. Shukyurov)

Methods

To study the fluid regime of the Lokbatan volcano, satellite monitoring was applied using the Normalized Difference Water Index (NDWI) based on Sentinel-2 satellite data. The methodology consisted of several stages: collection and calibration of satellite images, calculation of NDWI for assessing water bodies and soil moisture, analysis of time series from 2017 to 2023, mapping of changes (using Google Earth), and data interpretation. NDWI values greater than 0 indicate wet soil, while values below 0 represent dry areas. The resulting data were presented in KMZ format and used for analyzing the dynamics of fluid processes on the volcano. The extracted NDWI values for the volcano were plotted on a graph, which allowed for the visualization of changes in the water regime.


Main Material Presentation and Its Analysis

The Lokbatan mud volcano in relief represents a small dome with two peaks and an absolute elevation of 86 meters. The base of the mud volcano structure measures

2.5 km by 2.3 km, covering an area of 5.75 km². Structurally, the mud volcano is situated on the crest of an asymmetrical brachyanticline of latitudinal orientation, which extends and connects with the Akhtarma-Puta and Gushkhana brachyanticlines, forming a unified Lokbatan–Puta–Gushkhana anticline zone. Besides Lokbatan, the mud volcanoes of Akhtarma-Puta and Gushkhana are also located here (Yakubov, Kastrulin, & Dzhavadov, 1976a; Yakubov, Aliyev, & Rakhmanov, 1976b).

In 1927, the Lokbatan hydrocarbon field was discovered near the mud volcano, and by 1933, it began development with an initial oil production rate of about 20,000 tons per day. The exploration well No. 45, drilled 1.5 km from the volcano's crater in the mudfield, proved the feasibility of drilling in areas complicated by mud volcanism.

The field contains several productive horizons, which is penetrated by a central channel. At present, the Lokbatan oil field is in the final stage of development.

A — structure in VI Horizon Top; accumulation in VI-Vla horizons, B — field cross-section: scheme of flat sheet pools broken into blocks.
1 — oil; 2 — gas

Fig. 2. The schematic map of the Lokbatan oil field location (Zhemeriev, 1958, Martynova et al., 2022)

The Lokbatan anticline is composed of Pliocene-Quaternary deposits and is associated with a major longitudinal fault, which displaces strata of the same age by 300–350 meters. On the outside, the volcano is protected from erosion by a ridge of Absheron limestone and sandstones of the productive strata.

A particularly interesting fact about the Lokbatan mud volcano is the absence of a typical mud cone field, as well as the lack of small gryphons and salsas within its crater area, which are commonly observed at other mud volcanoes. In most volcanoes, during the inactive stage, water, liquid mud, and gas are usually released through these gryphons and

salsas. However, in the case of Lokbatan, the volcano's surface remains dry. A similar phenomenon is observed in only one other known case – the largest volcano of the Kerch Peninsula, Dzhau-Teppe – which also lacks a gryphon-salsa developmental stage (Shnyukov, 2006).

The main crater of the Lokbatan volcano formed after the eruption of 1887 and represents a subsidence caldera of oval shape with a diameter of 25 meters. The area covered by mud-volcanic material is about 424 hectares, and the average thickness of the erupted deposits reaches 60 meters. The elongated flow of mud-volcanic deposits,

observed in Fig. 1, extends 700 meters and has a western direction.

According to seismic studies, the Lokbatan mud volcano has a two-chamber structure (Kadirov, & Mukhtarov, 2004; Aliyev et al., 2013; Rashidov, Khasaeva, & Guseynov, 2016). The first, upper chamber is located at a depth of 1.5–2 km and lies within the deposits of the Quaternary system, while the second chamber is located in Neogene deposits at a depth of 4–6 km. The second chamber has periodic connections with productive oil-bearing horizons (Fig. 3) (Rashidov, Khasaeva, & Huseynov, 2016; Alizade, 2007).

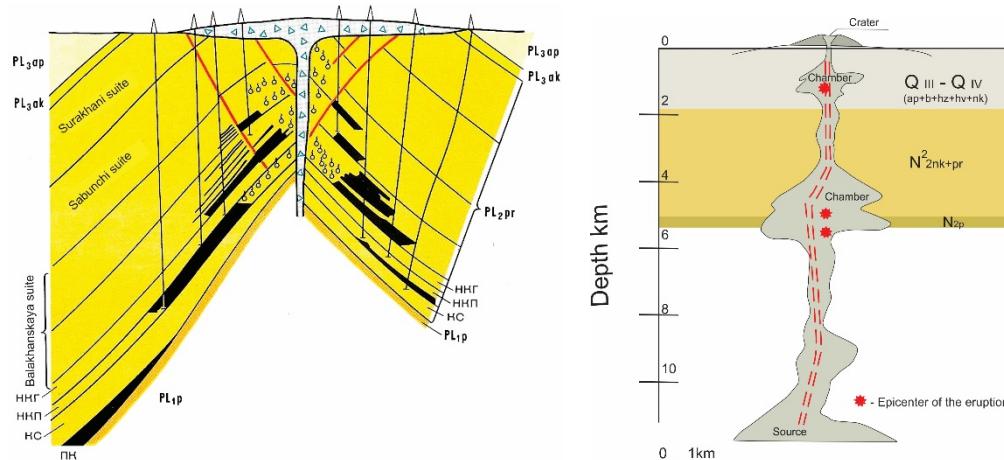


Fig. 3. Geological cross-section (a) (Aliyev et al., 2015) and conceptual model of the internal structure (b) of the Lokbatan mud volcano (Rashidov, Khasaeva, & Huseynov, 2016)

Field observations have shown that during an active eruption, the volcano ejects a large volume of a gas mixture (methane, carbon dioxide), steam, water, liquid mud, and breccia, forming a distinctive fountain reaching several hundred meters in height (Aliyev et al., 2013). The photo (Fig. 6) shows several moments of the volcano's eruption in 2012. Initially, there was an emission of steam and gas, followed by spontaneous ignition, and then the eruption of mud and breccia. Methane was the main gas component released during the eruption – accounting for 90–95 %. The carbon dioxide content reached 3–5 %. Nitrogen and hydrogen sulfide were also recorded in small amounts (Fig. 4). The gas sampled during the eruption on September 20, 2012, for isotopic analysis indicated a thermogenic origin of methane ($\delta^{13}\text{CCH}_4 = -48\text{‰}$) (Farber, Schmidt, & Feyzullayev, 2015).

The erupted liquid mud contains rock fragments of various sizes. Together with clay, they form what is known

as "mud breccia". Often, large rock fragments separate from the main mass during an eruption and scatter in different directions above the fountain, resembling volcanic "bombs". These fragments are composed of oil-bearing sandstones and combustible shales from the productive Eocene-Miocene age. The clay matrix of the erupted mud mainly consists of kaolinite and hydrosmectite. The smectite content in the mud does not exceed 5–15 %. The Eocene-age combustible shales are enriched with organic matter significantly more (31.7 %) compared to Miocene shales (16.9 %). These shales generate gaseous and liquid hydrocarbons. The sandstone fragments from the eruptions are heavily impregnated with oil (Fig. 5) (Guliyev et al., 2017).

The oil is heavy, naphthalene-aromatic, with a high concentration of resins (up to 20 %) and asphaltenes (up to 10 %). The content of oil fractions is up to 50 % (Guliyev et al., 2017).

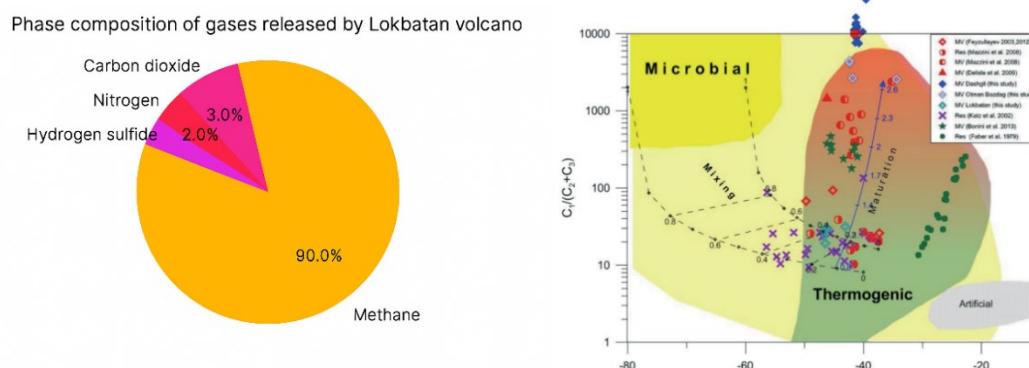


Fig. 5 Oil-bearing sandstone and combustible shale in the mud breccia of the Lokbatan mud volcano (Aliyev et al., 2015)

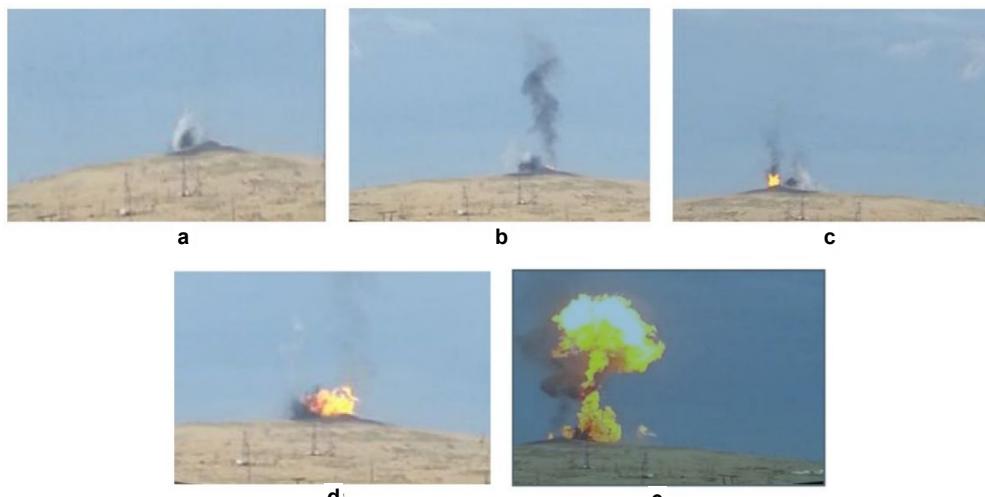


Fig. 6. Sequential moments of the Lokbatan mud volcano eruption in 2012 (Aliyev et al., 2013):

a) beginning of the eruption phase, eruption of breccia and steam; b) increase in intensity of breccia and steam eruption; c) ignition of the intermediate focus; d, e) ignition of the entire gas eruption column

The Lokbatan deposit is a multi-layered structure, with productive horizons that are significantly isolated from one another, which is reflected in the composition of hydrocarbon from different depths.

For a long time, it was believed that the central eruptive channel of the mud volcano, by piercing all the productive horizons from bottom to top, connected them into a single unit, averaged the composition of hydrocarbons, and contributed to the rapid depletion of reserves through this channel. However, this hypothesis has not been confirmed for this volcano. Hydrocarbon emissions occur only during the active phase of eruptions, and between eruptions, the volcano does not release hydrocarbons.

This suggests that the productive horizons, divided into two wings, become isolated from the eruptive channel after the active phase by impermeable clayey rocks that prevent the hydrocarbons from migrating. For the same reason, no water is emitted from the volcano between cycles of active eruption, meaning it remains "dry". When the pressure in the productive horizons reaches an anomalous value, the clay plug is breached, and the entire water-gas-mud-oil mixture rises through the central channel.

Seismic events in the region likely contribute to the creation of a brief impulse that increases the pressure on the reservoir.

The first documented eruption of the Lokbatan mud volcano was in 1828 (Gamba, 1828). Periods of increased activity include eruptions occurring with small intervals of 2 to 5 years, from 1915 to 1941, during which 8 eruptions were recorded. Periods of decreased activity included the period from 1828 to 1900, with only 5 eruptions (Aliyev, Guliyev, &

Rahmanov, 2019). Currently, we are observing another period of increased mud volcanic activity. The most recent eruption was recorded in September 2024 (Fig. 7).

The water index of the Lokbatan volcano, like many others, had not been investigated before.

The idea occurred during the annual international summer school on "Mud Volcanism and Hydrocarbon Systems", which has been held since 2018 in Baku. We noticed the observable "dryness" of the mud flow and the absence of salsas emmissions, which made the Lokbatan volcano stand out among others.

For satellite monitoring of the fluid (water) regime of the volcano, the Sentinel-2 satellite was selected in combination with the NDWI (Normalized Difference Water Index). This index was first proposed by McFeeters in 1996 to detect surface water in wetland environments and measure the area of open water surfaces (McFeeters, 1996). Thus, the NDWI is used to identify water bodies and assess soil moisture based on multispectral satellite imagery (Gao, 1996).

Recent studies have expanded the application of NDWI in mud volcano research, demonstrating its effectiveness for surface water and fluid regime monitoring. For example, investigated land cover characteristics of the Kesongo Mud Volcano Complex on Java Island, Indonesia, using harmonized Sentinel-2A MSI imagery to analyze surface features and provide visual interpretation of the fluid regime (Harbowo, & Sitinjak, 2025). Similarly, NDWI was successfully applied to predict the extent of the Sidoarjo mud flow, highlighting the method's potential for monitoring mud volcanic activity and associated hazards (Wicaksono, & Isa, 2022).

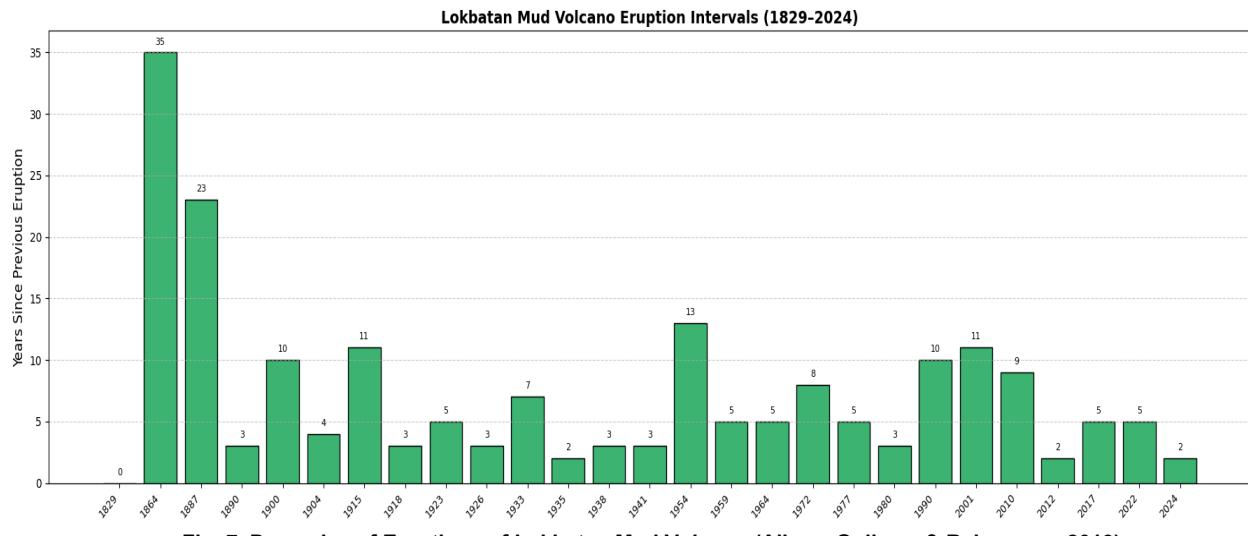
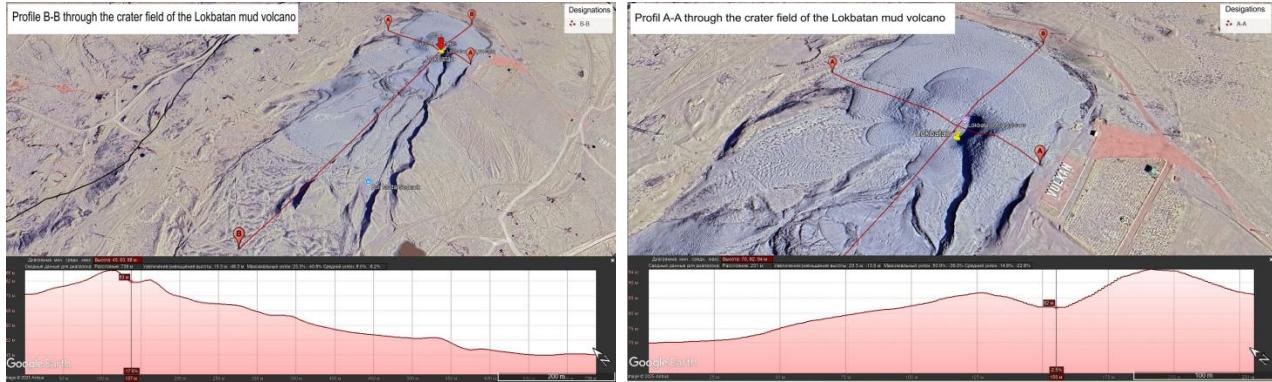



Fig. 7. Dynamics of Eruptions of Lokbatan Mud Volcano (Aliyev, Gulyev, & Rahmanov, 2019)

Fig. 8. Morphological Features of the Lokbatan Mud Volcano Based on Google Earth Data:
a) – Across the Crater Field and b) – Along the "Tongues" of Breccia Outflows

In light of these developments, the current study not only utilizes Sentinel-2 data combined with NDWI but also aims to synthesize previous research experiences, emphasizing the novelty and applicability of this integrated methodology for assessing the fluid dynamics of mud volcanoes in the Absheron region. This approach offers a promising tool for enhanced remote monitoring, risk assessment, and early warning of mud volcanic and seismic hazards.

Despite the fact that initially for NDWI calculations it was supposed to use images obtained only from the Landsat Multispectral Scanner (MSS) satellite, it is worth noting that this method also worked well when using images from other satellites when there was a need for such an assessment (McFeeters, 1996; Chowdary et al., 2008; Environmental Protection Agency, 2005; Murray, 2012; Panigrahy, 2012; US Geological Survey..., 2013).

The NDWI is calculated using the following formula (1):

$$NDWI = \frac{(Band\ 2 - Band\ 4)}{(Band\ 2 + Band\ 4)}, \quad (1)$$

where Band 2 represents green light reflectance at the TOA (Top of Atmosphere) level, and Band 4 corresponds to near-infrared (NIR) reflectance. According to McFeeters (1996), NDWI values greater than zero are assumed to indicate the presence of water surfaces, while values less than or equal to zero generally correspond to non-water surfaces.

Thus, NDWI values range from -1 to 1, where higher index values are typically associated with water bodies or, in our case, areas with moist soil, whereas lower values indicate dry, non-water surfaces. It should be noted that data obtained from the Sentinel-2 satellite in open access reflect the spectral characteristics of the Earth's surface and require additional analytical processing, as well as integration with other data sources for comprehensive interpretation.

To analyze the dynamics of the fluid (water) regime of the Lokbatan mud volcano during the 2017–2023 period, which included two recorded eruptions, a satellite monitoring approach was applied. The use of satellite data enabled a detailed investigation of surface changes in the volcano area. The action algorithm included several key steps: 1) collection of satellite images and their calibration; 2) identification of fluid processes; 3) time series analysis; 4) mapping of changes; 5) interpretation of the obtained data and formulation of conclusions.

During processing, the NDWI formula was applied to the acquired multispectral satellite images. As a result, a KMZ file was generated, representing NDWI values for the researched area (Fig. 9). Then, NDWI values were extracted from image pixels along profile A-A (through the crater). These values were then plotted on a time-series graph showing the distribution of NDWI over time (Fig. 10).

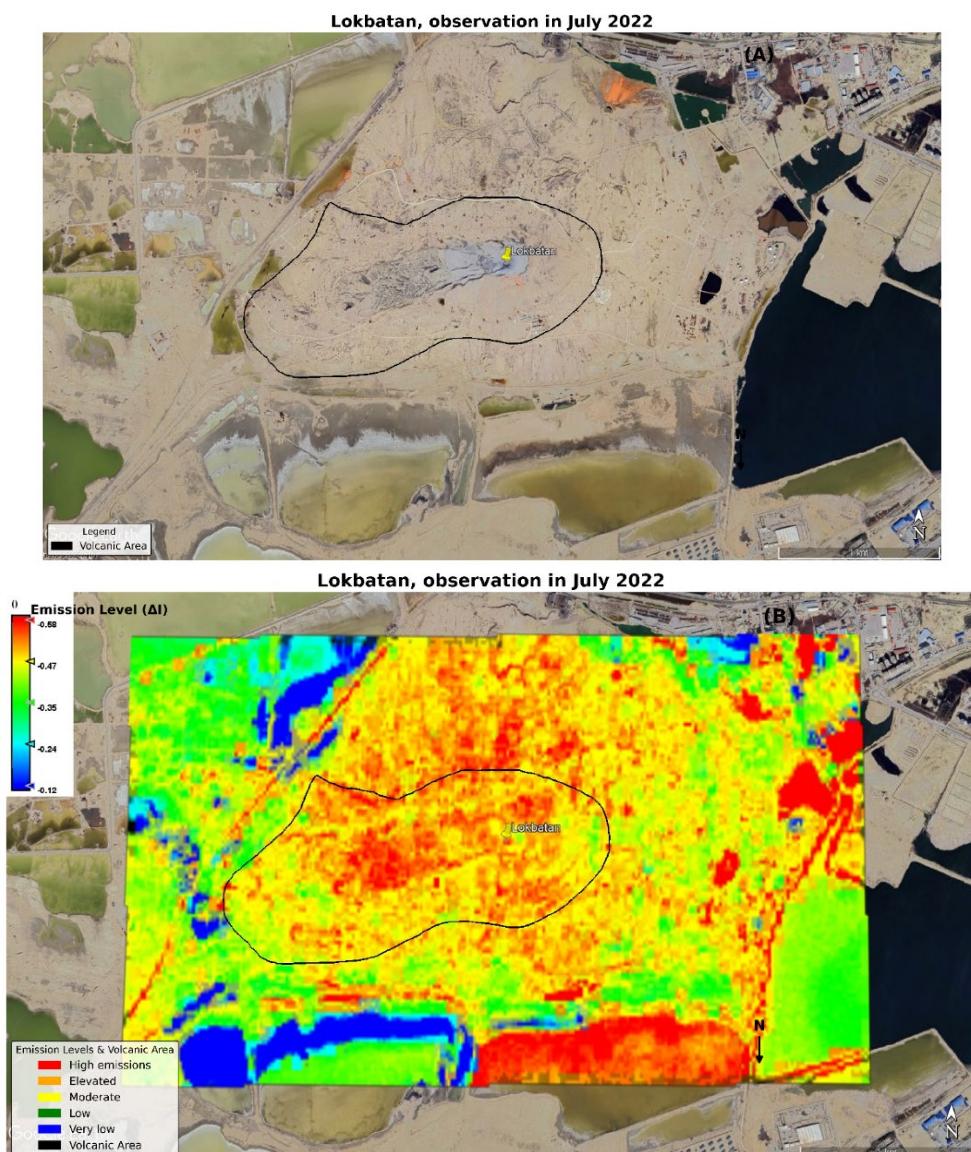


Fig. 9. Map of the Moisture Index Distribution at the Lokbatan Mud Volcano for the 2022:
 a) Satellite image of the Lokbatan mud volcano, b) map of moisture Index (NDWI) distribution for the Lokbatan area

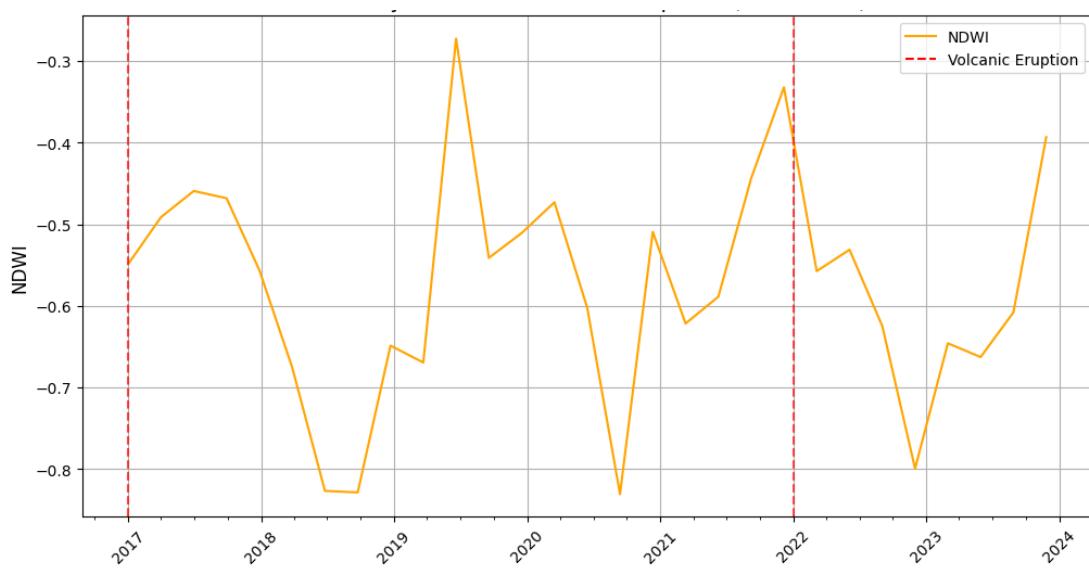


Fig. 10. Plot of NDWI and Eruption variation on the Lokbatan mud volcano from 2017 to 2023

Results

During the aforementioned period, a comprehensive set of monitoring activities was carried out for the Lokbatan mud volcano. According to satellite data, the analysis of the moisture index of the mud volcanic cover, influenced by various factors including geological activity and climate changes, revealed the following trends and factors:

- **Climate factor** – the moisture of the mud volcanic cover positively correlates with seasonal and climatic changes.

- **Earthquakes and geodynamic activity** – recorded earthquakes, especially in 2020, 2021 and 2022, probably have an influence on moisture and may be predictors of changes in the geodynamic conditions, as well as sometimes preceding volcanic activity.

- **Anomalies in the moisture index** – sudden changes in moisture, anomalous peaks, and stable values during certain periods can serve as indicators of potential risks of volcanic activity.

- **Forecasting volcanic activity** – before the eruption in August 2022, anomalies in the water regime of the mud volcano were observed in February. This could serve as an indicator for predicting paroxysmal events.

In **2017**, the NDWI values in the Lokbatan mud volcano and its surroundings had significant fluctuations, from minimum to maximum values. In 2017, the humidity index values in the volcano and its surroundings had significant fluctuations, from minimum to maximum values, which was the result of several factors at once – seasonal fluctuations, which were most pronounced in the summer, and volcanic activity, which manifested itself in the form of the 25th eruption, which led to a sharp increase in the moisture index. By autumn, NDWI values reached a minimum value. However, by the end of the year, a gradual increase in NDWI values was observed, especially in the central (crater) part of the Lokbatan mud volcano.

In **2018**, the humidity index values also showed considerable fluctuations; however, the overall trend indicated a gradual increase, most likely due to climatic factors (seasonal variations) as well as hydrogeological processes.

At the beginning of **2019**, NDWI values remained relatively stable, but in May, a sharp drop to -1 was recorded. By summer, the index had risen slightly to -0.78, only to decline again in winter, reaching a minimum value of -0.96.

At the beginning of **2020**, an increase in NDWI values was observed, followed by a decline during the spring period. The summer season was characterized by relatively stable NDWI values. However, by October, a sharp increase to -1 was recorded, followed by a return to minimum values in December. It is also worth noting that on February 15, an earthquake with a magnitude of 4.6 was recorded near the mud volcano at a depth of approximately 30 km, which may have influenced the overall NDWI trend for 2020.

Throughout **2021**, fluctuations in NDWI values were recorded at the Lokbatan mud volcano. In early February, the NDWI value was -0.45, but from March to May, it dropped to -0.65. Additionally, earthquakes with magnitudes of 4.1 and 5.0 were recorded in August and November, respectively, which undoubtedly affected the geodynamic activity in the region.

It is noteworthy that in December, NDWI values in the southwestern part of the Lokbatan mud volcano reached -0.94, in the central (crater) part -1, and in the mudflow "tongue" area -0.55.

In **2022**, on August 11, the Republican Seismological Service Center recorded an eruption of the Lokbatan mud volcano that lasted 5 minutes and 12 seconds ($E=0.6 \times 10^7$), along with two earthquakes: one in February with a magnitude of 4.2 at a depth of 56 km, and another in August with the same magnitude at a depth of 62 km. These events, to some extent, were reflected in the NDWI values. The NDWI values for the first half of 2022 remained relatively stable at -0.76. However, a sharp spike in NDWI values was observed in the crater area in February, reaching -1.

The year **2023** was characterized by relatively stable NDWI values. However, an increase in NDWI values up to -1 was observed in the crater area at the beginning of the year.

The anomalies in NDWI values observed in the middle and end of the year in the crater area may be due to some volcanic activity or seasonal environmental changes. According to the data collected for 2023, the average NDWI value for the crater area was -0.81, with a maximum value of -1 and a minimum of -0.57.

Based on the accumulated satellite data on NDWI for the Lokbatan mud volcano, its variations, and observed trends during the 2017–2023 period, a statistical forecast can be made regarding the expected behavior of NDWI values for the coming years. Using linear variation, we attempted to make such a forecast for the period from 2024 to 2030 (Fig. 11).

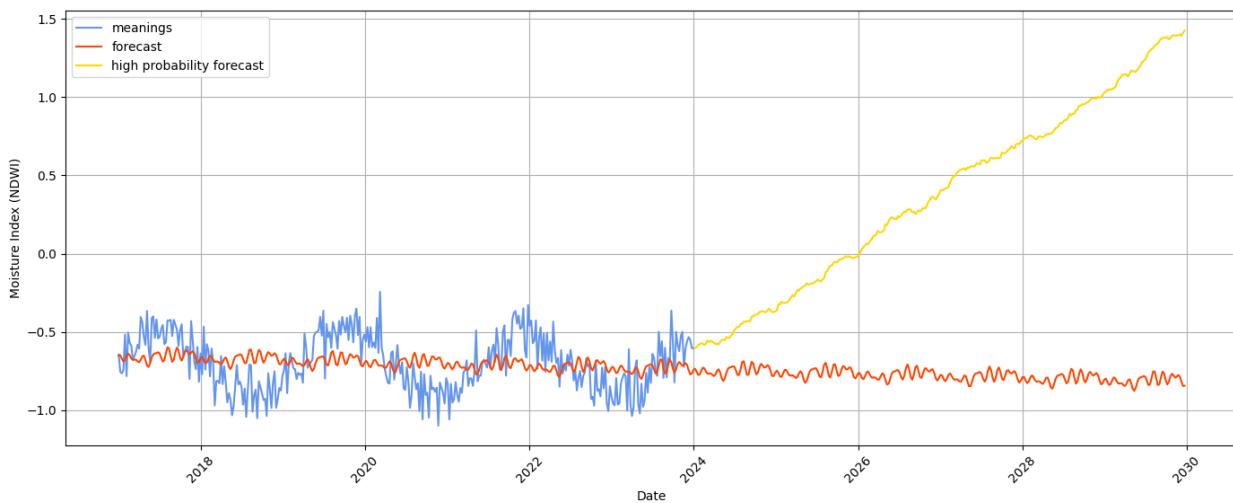


Fig. 11. Assessment of probable variations in the moisture index until 2030

The accuracy of the estimated data can be judged by the calculations for 2024, where the actual values almost coincide with the predicted ones. At the beginning of 2024, the high-probability trend shows fluctuations, then begins to rise in June, reaching a peak by the end of the year. An anomaly stands out in late June – early July, where a sharp increase in value occurs. The average value rises sharply from -0.39 to 0.07. In 2025, the high-probability trend fluctuates between 0.26 and 0.77 from January to June, with a sharp increase in June–July. An anomaly in October–November, expressed by growth, also stands out.

The graph titled "Assessment of probable changes in the moisture index until 2030" presents two main forecast components:

⦿ The blue line represents the historical values of the moisture index, collected over the period from 2017 to 2024.

⦿ The orange line shows the forecast, calculated using time series models such as Prophet, which take into account both trends and seasonal components. This forecast is based on historical data up to 2024 and extrapolates it into the future until 2030. The methodology assumes the continuation of current trends and seasonal patterns. The "forecast" has a broader uncertainty range, as it includes all possible scenarios – both favorable and unfavorable – without filtering by probability. This makes it suitable for assessing the overall range of moisture index fluctuations, assuming external factors remain unchanged.

⦿ The yellow line represents the high probability forecast – the most likely scenario of future development, derived from a confidence interval (typically 95 %). It can be constructed using Bayesian or ensemble modeling methods, where the result reflects an average trajectory (e.g., the median) across multiple simulations. Unlike the full forecast, this component focuses on the statistically dominant scenario, excluding extreme variations. Thus, the "high probability forecast" reflects an optimistic yet realistic vector of potential changes in the moisture index, given the current trends.

Discussion and conclusions

Monitoring the Lokbatan mud volcanic activity using satellite data has shown positive results and can be effectively applied in future comprehensive studies of mud volcanism dynamics.

The fluid regime of the Lokbatan mud volcano during the study period was influenced by both geodynamic and climatic factors, which was reflected in variations of the moisture index.

The behavior of the moisture index under climatic influence differs from that caused by geodynamic factors by the "smoothness" of value changes and its clear seasonal dependence. In contrast, geodynamic factors tend to be associated with more abrupt "spikes" in the humidity index values, standing out against the general background – for example:

- Earthquakes can affect internal hydrodynamic processes within the mud volcano, leading to fluctuations in the moisture index (as observed with earthquakes in 2020, 2021, and 2022 within a 100 km radius of the Lokbatan mud volcano).

- Sudden changes in the moisture index on the mud volcano can be considered an additional mechanism for assessing potential upcoming volcanic activity (as demonstrated in the 2022 data analysis).

In conclusion, the interconnection between geological processes, climatic factors, and seismic activity represents a complex and demanding process that requires extensive data analysis and systematic monitoring. This approach is

essential for effectively responding to both actual and potential risks associated with mud volcanoes.

Therefore, analyzing changes in the water regime of mud volcanoes based on satellite data – using the Lokbatan mud volcano as an example – can serve as an additional tool for anticipating future paroxysms. Satellite moisture analysis provides crucial insights into the dynamics of volcanic processes, contributing to the development of monitoring and forecasting systems for volcanic activity. However, further and more detailed studies are necessary.

Authors' contributions: Arif Huseynov – conceptualization, methodology, software, formal analysis, data validation, writing (original draft). Viktor Nesterovskyi – writing (review and editing); Ayten Huseynova – data validation, writing (original draft).

References

Aliyev, A., Guliev, I., Dadashov, F., & Rahmanov, R. (2015). *Atlas of the world mud volcanoes*. Nafta&Press, Sandro Teti Editori.

Aliyev, A., Guliyev, I., & Rahmanov, R. (2019). *Catalogue of recorded mud volcano eruptions of Azerbaijan (2008–2018)*. Elm.

Aliyev, G. G., Guliyev, I. S., Yetirmishli, G. et al. (2013). The eruption of the Lokbatan mud volcano on September 20, 2012: New evidence for the replenishment of hydrocarbon resources. *ANAS Transactions. Earth Sciences*, 2, 18–25 [in Russian]. [Алиев, Г. Г., Гулиев, И. С., Йетирмишли, Г. и др. (2013). Извержение грязевого вулкана Локбатан 20 сентября 2012 г.: новые свидетельства восполнения ресурсов углеводородов. *Известия Национальной академии наук Азербайджана. Науки о Земле*, 2, 18–25].

Alizade, A. A. (Ed.). (2007). *Geology of Azerbaijan: (in 8 volumes). Stratigraphy* (Vol. 1). Nafta-Press [in Russian]. [Ализаде, А. А. (Гл. ред.). (2007). *Геология Азербайджана: (в 8 томах). Стратиграфия* (Т. 1). Nafta-Press, с. 580].

Chowdary, V. M., Chandran, R. V., Neeti, N., Bothale, R. V., Srivastava, Y. K., Ingle, P., Ramakrishnan, D., Dutta, D., Jeyaram, A., Sharma, J. R. et al. (2008). Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. *Agricultural Water Management*, 95(7), 754–766.

Environmental Protection Agency (EPA). (2005). *Wetland Mapping and Classification Methodology – Overall Framework – A Method to Provide Baseline Mapping and Classification for Wetlands in Queensland* (Version 1.2). Queensland Government.

Farber, E., Schmidt, M., & Feyzullayev, A. (2015). Geochemical Hydrocarbon Exploration – Insights from Stable Isotope Models. *Oil Gas European Magazine*, 41(2), 93–98.

Gamba, J. F. (1828). Earthquake and eruption of a new fire-breathing mountain near Baku. *Sev. archive*, 34(7), 161–162 [in Russian]. [Гамба, Ж. Ф. (1828). Землетрясение и извержение новой огнедышащей горы близ Баку. *Сев. архив*, 34(7), 161–162].

Gao, B.-C. (1996). NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. *Remote Sensing of Environment*, 58, 257–266.

Guliyev, I., Kerimov, V., Osipov, A. et al. (2017). Generation and Accumulation of Hydrocarbons at Great Depths Under the Earth's Crust. *SOCAR Proceedings*, 1, 004–016 [in Russian]. [Гулиев, И. С., Керимов, В. Ю., Осипов, А. В. и др. (2017). Генерация и аккумуляция углеводородов в условиях больших глубин земной коры. *SOCAR Proceedings*, 1, 004–016]. <https://doi.org/10.5510/OGP20170100302>

Harbwo, D. G., & Sitinjak, E. S. (2025, February). *Investigating the Land Cover Characteristics of the Kesongo Mud Volcano Complex, Java Island, Indonesia: Surface Analysis and Visual Interpretation through Harmonized Sentinel-2A MSI Imagery*. Paper presented at the IOP Conference Series: Earth and Environmental Science, Indonesia.

Kadirov, F. A., & Mukhtarov, A. Sh. (2004). Geophysical Fields, Deep Structure, and Dynamics of the Lokbatan Mud Volcano. *Izvestiya, Physics of the Solid Earth*, 40(4), 67–73 [in Russian]. [Кадиров, Ф. А., & Мухтаров, А. Ш. (2004). Геофизические поля, глубинное строение и динамика грязевого вулкана Локбатан. *Физика Земли*, 40(4), 67–73].

Martynova, G. S., Maksakova, O. P., Nanadzhanova, N. I. et al. (2022). Lokbatan oil field. *Oil and Gas Geology*, 2, 45–52 [in Russian]. [Мартынова, Г. С., Максакова, О. П., Нанаджанова, Н. И. и др. (2022). Месторождение нефти Локбатан. *Геология нефти и газа*, 2, 45–52. <https://doi.org/10.31087/0016-7894-2022-2-45-52>].

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. *International Journal of Remote Sensing*, 17(7), 1425–1432.

Murray, N. J., Phinn, S. R., Clemens, R. S. et al. (2012). Continental scale mapping of tidal flats across East Asia using the Landsat archive. *Remote Sensing*, 4(11), 3417–3426.

Panigrahy, S., Murthy, T. V. R., Patel, J. G. et al. (2012). Wetlands of India: Inventory and assessment at 1:50,000 scale using geospatial techniques. *Current Science*, 102(6), 852–856.

Rashidov, T., Khasayeva, A., & Huseynov, A. (2016). On issue of the mud volcano Lokbatan inner structure. *Geophysics News in Azerbaijan*, 1–2, 41–44 [in Russian]. [Рашидов, Т. М., Хасаева, А. Б., & Гусейнов, А. Р. (2016). К вопросу о внутреннем строении грязевого вулкана Локбатан. *Azerbaycanda Geofizika Yenilikleri*, 1–2, 41–44].

Shnyukov, E. F. (2006). *Mud volcanoes of the Kerch-Taman region*. GlavMedia [in Russian]. [Шнуков, Е. Ф. (2006). *Грязевые вулканы Керченско-Таманского региона*. ГлавМедиа].

Wicaksone, W., & Isa, S. M. (2022). Predicting the Extent of Sidoarjo Mud Flow Using Remote Sensing. *Journal of ICT Research & Applications*, 16(1).

Yakubov, A. A., Aliyev, A. A., & Rakhamanov, R. R. (1976b). *Mud volcanoes of Azerbaijan (annotated bibliographic reference)*. Elm [in Russian]. [Якубов, А. А., Алиев, А. А., & Рахаманов, Р. Р. (1976b). *Грязевые вулканы Азербайджана (аннотированный библиографический справочник)*. Элм].

Yakubov, A. A., Kastruylin, N. S., & Javadov, A. A. (1976a). *Mud volcanism and oil and gas potential of Lokbatan*. Elm [in Russian]. [Якубов, А. А., Кастрюлин, Н. С., & Джавадов, А. А. (1976a). *Грязеою вулканізм і нефтегазоносність Локбатана*. Элм].

Zhemerev, V. S. (1958). Changes in the nature of waters during the exploitation of oil horizons in Lokbatan. *Geology of Oil*, 11, 45–50 [in Russian]. [Жемерев, В. С. (1958). Изменение характера вод в процессе эксплуатации нефтяных горизонтов в Локбатане. *Геология нефти*, 11, 45–50].

US Geological Survey (USGS) and US Department of the Interior. (2013, May 3). *Normalized Difference Water Index (NDWI)*. Retrieved July 8, 2025, from http://delta.usgs.gov/fm/data/data_ndwi.aspx

The history of the famous oil well "No. 45" and the mud volcano in Lokbatan – UNKNOWN FACTS – PHOTO. (2022, November 29). *Day.Az*. [in Russian]. [История знаменитой нефтяной скважины "№ 45" и грязевого вулкана в

Локбатане – НЕИЗВЕСТНЫЕ ФАКТЫ – ФОТО (2022). *Day.Az*. <https://news.day.az/society/1469420.html>

US Geological Survey. (n.d.). *Earthquakes map* (2020). Retrieved July 8, 2025, from [US Geological Survey. \(n.d.\). *Earthquakes map* \(2021\). Retrieved July 8, 2025, from \[US Geological Survey. \\(n.d.\\). *Earthquakes map* \\(2023\\). Retrieved July 8, 2025, from \\[**Отримано редакцію журналу / Received: 23.01.25**
Прорецензовано / Revised: 20.02.25
Схвалено до друку / Accepted: 30.06.25\\]\\(https://earthquake.usgs.gov/earthquakes/map/?ext=36.61553,41.46248&ext=48.28319,69.5874&range=search&search=%7B%22name%22%22Search%20Results%22,%22params%22%22%7B%22starttime%22%222023-02-21%2000:00:00%22,%22endtime%22%222023-12-28%2023:59:59%22,%22latitude%22:40.3,%22longitude%22:49.7,%22maxradiuskm%22:100,%22minmagnitude%22:2.5,%22eventtype%22%22earthquake%22,%22orderby%22%22time%22%7D%7D</p>
</div>
<div data-bbox=\\)\]\(https://earthquake.usgs.gov/earthquakes/map/?ext=38.66407,40.01599&ext=41.69753,41.04724&range=search&search=%7B%22name%22%22Search%20Results%22,%22params%22%22%7B%22starttime%22%222021-01-01%2000:00:00%22,%22endtime%22%222021-12-31%2023:59:59%22,%22latitude%22:40.3,%22longitude%22:49.7,%22maxradiuskm%22:100,%22minmagnitude%22:2.5,%22eventtype%22%22earthquake%22,%22orderby%22%22time%22%7D%7D</p>
</div>
<div data-bbox=\)](https://earthquake.usgs.gov/earthquakes/map/?ext=38.52668,46.79077&ext=41.56614,53.82202&range=search&search=%7B%22name%22%22Search%20Results%22,%22params%22%22%7B%22starttime%22%222020-01-01%2000:00:00%22,%22endtime%22%222020-12-31%2023:59:59%22,%22latitude%22:40.3,%22longitude%22:49.7,%22maxradiuskm%22:100,%22minmagnitude%22:2.5,%22eventtype%22%22earthquake%22,%22orderby%22%22time%22%7D%7D</p>
</div>
<div data-bbox=)

Аріф ГУСЕЙНОВ, магістр наук про Землю

ORCID ID: 0000-0002-9941-3221

e-mail: huseynovarif85@gmail.com

Інститут нафти і газу, Міністерство науки і освіти Азербайджану, Баку, Азербайджан

Віктор НЕСТЕРОВСЬКИЙ, д-р геол. наук, проф.

ORCID ID: 0000-0002-7065-8962

e-mail: v.nesterovski@ukr.net

Київський національний університет імені Тараса Шевченка, Київ, Україна

Айтен ГУСЕЙНОВА, канд. геол. наук

ORCID ID: 0000-0002-1932-4289

e-mail: aytenhuseynova@anas.az

Президія Національної академії наук Азербайджану, Баку, Азербайджан

ПЕРШИЙ ДОСВІД ВИКОРИСТАННЯ СУПУТНИКОВИХ ДАНИХ ДЛЯ МОНІТОРИНГУ ВОДНО-ФЛЮЇДНОГО РЕЖИМУ ВУЛКАНА ЛОКБАТАН ПРИ ОЦІНЦІ РИЗИКІВ СЕЙСМІЧНИХ ПОДІЙ У РЕГІОНІ

В с т у п . Грязьові вулкани є активними природними структурами, що впливають на навколошнє середовище шляхом безперервних викидів газорідинних флюїдів, грязьової брекчії та грязьових потоків. Попри широкі дослідження та значний масив даних про грязьовий вулканізм, розуміння динаміки флюїдів та гідрогеологічних процесів, пов'язаних із цими системами, залишається предметом постійних дискусій. Нині налічується понад 2500 грязьових вулканів, розташованих у 42 країнах світу, що підкреслює їх глобальне поширення.

Територія Азербайджану – унікальний регіон для дослідження сучасного грязьового вулканізму. На його порівняно невеликій території розташовано понад 350 грязьових вулканів. Грязьовий вулкан Локбатан серед них є найактивнішим. На ньому зареєстровано 28 активних подій з виверженням великої кількості матеріалу, з ним пов'язане нафттове родовище і сейсмічні події. У цьому контексті комплексний підхід до вивчення активності грязьових вулканів, включаючи супутниковий моніторинг, є надзвичайно актуальним.

М е т о д и . У роботі використано методи дистанційного зондування для аналізу водно-флюїдного режиму грязьового вулкана Локбатан, фіксації активних фаз і пошуку кореляційних зв'язків. Зокрема, супутникова знімка застосовано для розрахунку індексу вологості у межах грязевулканічного поля, що періодично змінюється. Вперше цей індекс вимірюваний дистанційно, що дало змогу оцінити динаміку поверхневої вологи як показник міграції флюїдів та підповерхневої активності.

Р е з ультати . Отриманий за допомогою супутника індекс вологості показав чіткі кореляції з активністю грязьового вулкана. Спостереження вказують на те, що варіації індексу вологості відповідають змінам у флюїдному режимі грязевулканічної структури, відображаючи можливу підземну міграцію флюїдів або зміни тиску перед фазою виверження.

В и с н о в к и . Дослідження демонструє потенціал супутникового моніторингу в оцінці водно-флюїдного режиму інших активних грязьових вулканів. Цей підхід може забезпечити ефективну, недорогу альтернативу польовим спостереженням і лабораторним дослідженням і надає можливість підтримувати системи раннього попередження про сейсмічні події чи виверження. У подальшому отриманий досвід можна реалізувати при розробці превентивних стратегій управління геологічними процесами в сейсмічно активних регіонах.

К л ю ч о в і с л о в а : грязьовий вулкан Локбатан, супутникова знімка, флюїди, NDWI, моніторинг.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

UDC 004.891:528.4

DOI: <http://doi.org/10.17721/1728-2713.110.13>

Vasyl HUDAК¹, PhD Student
 ORCID ID: 0009-0002-7333-0409
 e-mail: gudak_vasyl@knu.ua

Serhii MARHES², PhD Student
 ORCID ID: 0009-0004-2942-9406
 e-mail: sergemarhes@gmail.com

Vitalii ZATSERKOVNYI¹, DSc (Techn.), Prof.
 ORCID ID: 0009-0003-5187-6125
 e-mail: vitalii.zatserkovnyi@knu.ua

Mauro DE DONATIS³, PhD (Geol.), Assoc. Prof.
 ORCID ID: 0000-0002-9721-1095
 e-mail: mauro.dedonatis@uniurb.it

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

²State Institution "Scientific Centre for Aerospace Research of the Earth
 of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine", Kyiv, Ukraine

³University of Urbino Carlo Bo, Urbino, Italy

METHODOLOGY FOR THE AUTOMATED DETECTION OF ANOMALOUS GEOSPATIAL ZONES IN SATELLITE IMAGERY USING STATISTICAL ANALYSIS AND A CUSTOM QGIS PLUGIN

(Представлено членом редакційної колегії д-ром геогр. наук, проф. Д.О. Ляшенком)

Background. This article presents a methodology for the automated detection of anomalous geospatial zones, implemented as a plugin for the QGIS geographic information system. The developed tool enhances the efficiency of spatial analysis and enables the rapid identification of areas with potential changes for monitoring natural and anthropogenic processes.

Methods. The proposed approach is based on thresholding and statistical analysis of satellite imagery within the QGIS environment. The plugin provides interactive adjustment of image processing parameters and automatically detects geodynamic anomalies, which are then vectorized and delivered to the user for further analysis. The algorithm utilizes Python libraries (NumPy, SciPy, GDAL, PyQt, QGIS API) to handle various types of satellite data and applies standard deviation-based criteria to identify anomalous areas.

Results. The testing of the plugin developed by the authors confirmed its effectiveness in processing satellite imagery types such as InSAR, thermal infrared (TIR), and NDWI-based images. The plugin successfully identified areas of vertical displacement of the Earth's surface, detected thermal anomalies, and delineated regions with moisture deficits. This approach substantially improves the accuracy of geospatial analysis.

Conclusions. The developed plugin is an effective tool for the automated monitoring of changes in the Earth's surface and the assessment of hydrogeological conditions. Its integration within the QGIS environment enables the efficient adjustment of analysis parameters and the generation of results in vector data format. Plugin testing confirmed its practical value and revealed potential directions for further improvement, particularly regarding the separate processing of positive and negative displacement values to enhance the accuracy of anomaly interpretation.

Keywords: automated detection, geospatial zones, QGIS plugin, satellite imagery, geodynamic anomalies, spatial analysis.

Background

In the modern, rapidly changing world, various types of emergencies increasingly arise, including natural disasters, military conflicts, and man-made accidents. In such situations, rapid response is critically important, as it involves assessing the situation and making optimal or efficient decisions to mitigate negative consequences. However, the process of territorial assessment is often time-consuming and complex due to the large volume of data that must be processed, as well as the lack of effective tools for timely data collection and analysis.

Contemporary methods for analyzing satellite imagery play a key role in monitoring environmental changes, assessing anthropogenic impacts, and detecting geodynamic processes. Nonetheless, traditional approaches such as visual interpretation and manual digitization have significant limitations when dealing with large-scale areas or vast datasets. Their effectiveness is often compromised by the subjectivity of interpretation, dependence on the operator's qualifications, and the difficulty of reproducing results, which complicates long-term analysis and automated change mapping. Therefore, new tools capable of automating these processes and enhancing the accuracy of outcomes are needed to

overcome these challenges and ensure timely analysis (Tempa, & Aryal, 2022).

Under these circumstances, the availability of a comprehensive tool capable of conducting rapid and accurate analysis of satellite images to detect destruction and assess the overall condition of affected areas becomes essential (MASAI Project, n.d.). Such tools represent a vital component for improving emergency response efficiency. The automation of satellite image analysis through the use of Geographic Information Systems (GIS) helps to minimize the shortcomings of traditional methods by standardizing the detection of anomalous zones that emerge as a result of image processing (Janz et al., 2021). In particular, geostatistical algorithms facilitate more accurate anomaly recognition, reduce the impact of data noise, and enhance overall analysis efficiency. The integration of such solutions into the QGIS environment opens new opportunities for automated monitoring of surface changes, especially in the context of hydrogeological condition assessments and the analysis of anthropogenic impacts (Ivanik et al., 2022).

This study presents a custom-developed plugin for the QGIS software that enables the identification of anomalous zones derived from satellite image processing – namely,

© Hudak Vasyl, Marhes Serhii, Zatserkovnyi Vitalii, De Donatis Mauro, 2025

areas that deviate from background values and indicate changes or anomalies within the studied region. A key feature of the plugin developed by the authors is its applicability to various types of satellite data. Specifically, the study demonstrates the use of the plugin with InSAR images, thermal infrared (TIR) imagery, and optical indices derived from multispectral images (e.g., NDWI in the green and near-infrared (NIR) bands). The plugin is lightweight and user-friendly, requiring no additional pre-processing or complex computations. The user simply uploads an image, defines parameters for extracting polygons with anomalous values, and the plugin automatically performs the analysis and generates results. The plugin is freely available under an open-access license at https://github.com/rnrhs/autocountour_qgis_plugin (Marhes, 2025), ensuring its broad accessibility to researchers and professionals working in the fields of remote sensing and geospatial technologies. Its open-source nature also allows for easy modification, extension of functionality, and integration into diverse analytical workflows, which is a crucial aspect for supporting both scientific research and applied engineering practices.

The primary objective of the developed plugin is the automated detection of anomalous zones that exceed

predefined threshold values, separating them from the main data array that does not meet the anomaly criteria. The threshold serves as a criterion for identifying deviations from the average or statistically expected values, enabling the extraction of geospatial objects with abnormal displacements or other parameters that warrant further analysis.

Methods

The algorithm governing user interaction with the plugin interface comprises a series of sequential steps designed to enable efficient processing of satellite imagery and the detection of zones with potential geodynamic anomalies (Fig. 1).

The image processing workflow within the developed plugin begins with its launch in the QGIS environment. Prior to this, the plugin must be installed following the official QGIS guidelines (QGIS Project, 2024). Subsequently, the user selects the raster image to be processed and adjusts the sensitivity parameters to configure anomaly detection settings. As the user modifies the sensitivity threshold, corresponding changes are dynamically visualized on the map, allowing threshold values to be fine-tuned through iterative selection to enhance the accuracy of anomaly detection. The final output is generated in the form of vector data, which is well-suited for further spatial analysis.

Fig. 1. Schematic representation of the sequence of user-side operations

The proposed QGIS plugin algorithm, grounded in statistical analysis and geoinformation approaches, facilitates the effective identification of anomalies in raster data by employing threshold-based and statistical techniques for the automated detection of anomalous regions in satellite imagery, followed by automatic vectorization of the results. The core principle of the algorithm is the assumption that anomalous values can be identified as deviations from the average statistical level, defined within a specified threshold coefficient.

Threshold analysis is based on determining a value beyond which the data are considered anomalous (Folini, Lenzi, & Biraghi, 2022). The threshold can be set manually or computed adaptively depending on the data distribution. Although this method is relatively straightforward to implement, it requires appropriate threshold selection to avoid false positives. The main stages of the threshold analysis include:

- noise removal and interpolation of missing values;
- determination of the threshold value – which can be specified by the user or automatically calculated (e.g., as a percentage of the maximum deviation or based on a histogram of data distribution);
- application of the threshold criterion – comparing each pixel to the threshold and highlighting zones exceeding this level, followed by contour smoothing;
- filtering of spurious regions.

Statistical analysis is employed to identify areas that significantly deviate from the average level of values. One common approach involves the use of standard deviation to detect anomalies:

$$x \mid x > \mu + k \sigma, \quad (1)$$

where μ denotes the mean value, σ the standard deviation, and k a coefficient defining the anomaly level.

This method accounts for statistical properties of the data distribution, thereby improving detection accuracy (Folini, Lenzi, & Biraghi, 2022).

Numerous statistical methods for anomaly detection are based on conventional statistical thresholds, classifying anomalies into weak (approximately 5 %) and strong (approximately 0.3 %) categories. These classifications rely on standard deviation metrics and the assumption of normal distribution (Cleveland, 1993; Zhukov, 2008; Meng et al., 2017), and form the basis for data classification. These principles underpin the proposed plugin algorithm for detecting anomalous zones in satellite imagery.

The algorithm is implemented in the QGIS plugin using several Python libraries:

- NumPy – for efficient statistical computations and array processing;
- SciPy – for mathematical analysis and spatial filtering techniques;
- GDAL – for handling geospatial data and raster image processing.

In addition to these statistical analysis libraries, the developed plugin also utilizes a number of other Python packages to ensure full functionality and seamless integration with QGIS. Notably, components from the PyQt library are imported to construct the graphical user interface for parameter configuration (QSettings), translations (QTranslator), core functionality (QCoreApplication), icon management (QIcon), and dialog windows (QAction).

For spatial data handling, the plugin uses QGIS libraries such as QgsProject, QgsRasterLayer, and QgsVectorLayer for managing projects and layers, QgsRasterBandStats for computing statistics, and QgsMessageLog for message logging. Additionally, the GDAL, OGR, and OSR libraries support the manipulation of raster and vector data, while NumPy provides the

computational backend. The plugin also integrates resources from an external file (resources.py) and implements a dialog window to facilitate user interaction (Fig. 2).

All raster and vector data processed within the system adhere to a unified coordinate reference system, which is essential for accurate integration and geospatial analysis. To ensure consistency, the plugin retrieves the coordinate system and projection information of the selected raster

layer. Initially, the active raster layer is identified via the map layer control element (mMapLayerComboBox). The data source path of the selected layer is then obtained, and the corresponding raster file is opened using the GDAL library. The *GetProjection()* method is employed to extract the layer's projection description in Well-Known Text (WKT) format, which enables precise identification of the spatial parameters and coordinate system of the data.

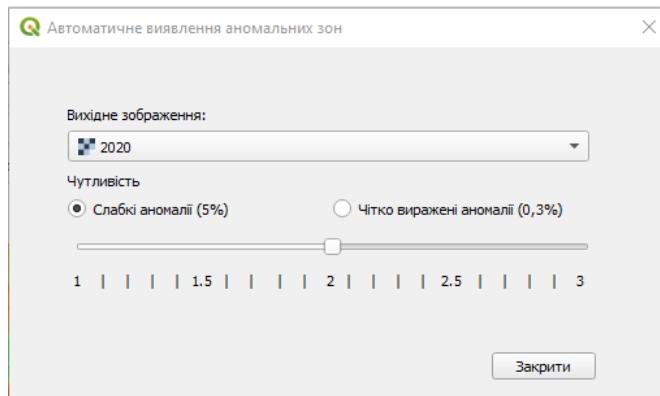


Fig. 2. User interaction dialog in the developed plugin

A detailed breakdown of the AutoContour plugin's functionality is provided to elucidate its underlying principles by separating it into distinct logical modules.

Plugin Initialization

The initialization process of the AutoContour plugin involves the import of essential libraries, including PyQt, the QGIS API, GDAL, OGR, and NumPy. At this stage, a reference to the QGIS interface is stored, enabling access to data and the ability to manage map layers. The plugin directory is also defined, and localization is configured based on the user's system settings. Variables are declared to store the paths of temporary raster and vector files that are generated and processed throughout the algorithm's execution. This design enhances the plugin's modularity and performance within the QGIS environment, while also preventing unnecessary file accumulation.

Graphical Interface and QGIS Integration

The integration of the plugin with the QGIS graphical interface is achieved through its registration in the software menu and the addition of the corresponding tools to the toolbar. This process is implemented using the *initGui()* method, which creates control elements such as buttons and menus, providing the user with access to the plugin's functionalities. The main element is the action (QAction), which is added to the toolbar and the 'Raster' menu, enabling the execution of the automatic contouring algorithm from the graphical interface. The plugin also supports the dynamic loading of localized resources, ensuring the correct display of interface elements according to the user's language settings.

For proper management of the plugin's operation, a mechanism for unloading is provided through the *unload()* method, which is responsible for clearing the interface and removing the corresponding menu items and buttons from the toolbar. User interaction with the algorithm is facilitated through the AutocountourDialog window, which allows the user to set processing parameters, such as the segmentation threshold. The window supports interactive adjustment of parameters, enabling real-time control over the analysis results. Thus, the developed architecture ensures flexible integration of the plugin into the QGIS environment and facilitates its use for spatial data analysis.

Raster Data Processing

The algorithm for processing raster data is based on their mathematical representation as a discrete two-dimensional function (Kotsiubivska, & Tymoshenko, 2019):

$$R: Z^2 \rightarrow R, R(i,j) = r_{ij}, \quad (2)$$

where $R(i,j)$ is the pixel value at position (i,j) , r_{ij} is the pixel intensity (e.g., reflectance, spectral brightness in a certain wavelength range, or another parameter).

The statistical analysis of the raster image begins with the calculation of its key characteristics, such as the average brightness value. The average brightness value for the entire raster image is calculated using the formula:

$$\mu = \frac{1}{N} \sum_{i=1}^M \sum_{j=1}^N r_{ij}, \quad (3)$$

where M and N correspond to the dimensions of the raster image (rows and columns, respectively), and the product $M \times N$ defines the total number of pixels in the image.

The average value defines the background of the image, enabling the identification of local deviations.

The standard deviation is determined using the formula:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (I_i - \mu)^2}. \quad (4)$$

This parameter indicates the variability of brightness and is critical for the subsequent identification of anomalous zones.

Anomalous zones are identified using a statistical criterion based on deviations from the mean value to detect anomalous values in the case of a normal distribution of a random variable. This approach is widely used in the processing of satellite images and geospatial data analysis (Gavade, & Rajpurohit, 2021). According to this approach, values of the random variable that fall outside the range

$$\mu \pm k\sigma, \quad (5)$$

where μ is the expected value, σ is the standard deviation, and k is the anomaly coefficient, are considered potentially anomalous.

In this context, for raster data processing, this rule allows for the identification of areas where the intensity values significantly differ from the mean level, which may indicate the presence of natural or anthropogenic anomalies (Folini, Lenzi, & Biraghi, 2022). This method is based on the assumption of a Gaussian distribution of pixel intensity, which is typical for many natural phenomena and remote sensing of

the Earth (Hytla et al., 2009). Thus, the determination of anomalous zones is described by the formula:

$$I_i = \mu + k\sigma. \quad (6)$$

This allows for the identification of regions where the values substantially exceed the background level. The approach relies on the assumption of a normal distribution of pixel intensities, which is typical for natural processes and satellite data.

Raster image binarization involves obtaining a mask $M(i,j)$, which is converted into a new raster file, where 1 corresponds to anomalous zones and 0 to the normal background:

$$M_{bin}(i,j) = \begin{cases} 255, & \text{if } M(i,j) = 1, \\ 0, & \text{if } M(i,j) = 0. \end{cases} \quad (7)$$

This mask allows for the visualization of anomalous areas and their storage in a standard format, such as GeoTIFF. At this stage, the projection and coordinate system of the input raster are assigned to the resulting mask.

Vectorization and Processing of Anomalous Zones

The process of vectorizing anomalous zones in a raster image is based on the *gdal.Polygonize()* algorithm, a function in the GDAL library that converts pixel regions with identical values into a set of closed polygons. Mathematically, this process can be represented as the construction of the set

$$P = \{A_i\}_{i=1}^N, \quad (8)$$

where A_i denotes individual regions formed by connected pixels with the same intensity value, and N represents the total number of identified anomalous zones.

Vectorization allows the conversion of a discrete representation of spatial data into a more suitable form for further analysis, ensuring effective processing and storage of information in geospatial vector formats such as Shapefile or GeoJSON.

The vectorization algorithm consists of several key stages. The first stage employs a scan-line algorithm, which identifies the boundaries of anomalous objects through the sequential scanning of the raster image. Next, the connected components of each object are determined and grouped into closed contours based on the topological properties of pixel connections. The final stage involves saving the resulting contours in vector form, enabling further spatial analysis, such as the calculation of geometric characteristics, the determination of the area and perimeter of anomalous zones, and integration with other geospatial data. This approach ensures high analysis accuracy and enables the automation of the anomaly identification process in satellite images and other geospatial data.

Upon completion of the polygonization stage, the obtained vector objects undergo filtering to eliminate

potential artifacts or noise that may have been generated during the analysis. The primary criterion for identifying such artifacts is the area of the polygon, which is determined using Gauss's formula (Gavade, & Rajpurohit, 2021):

$$S_i = \frac{1}{2} \left| \sum_{j=1}^n (x_j y_{j+1} - x_{j+1} y_j) \right|, \quad (9)$$

where S_i is the area of the polygon, x_j, y_j are the coordinates of its vertices, and n is the number of vertices of the polygon.

Among all identified anomalous zones, the polygon with the largest area is selected, as it is most likely to be an artifact or noise formation. If its area significantly exceeds the average area of other objects, it is removed from further analysis. The remaining polygons are preserved for further processing and interpretation, enhancing the accuracy and reliability of the geospatial analysis results.

The final step is to save the resulting vector objects as a new layer in Shapefile format.

Temporary File Management

During the operation of the plugin, temporary files are automatically created and managed, including the generation of directories for storing intermediate raster and vector data. This process may increase memory load and impact data processing performance. To ensure optimal use of system resources, all temporary files are automatically deleted either after their utilization is complete or upon the closure of QGIS. This approach helps prevent the accumulation of redundant data, enhances disk space efficiency, and minimizes memory usage, which is particularly critical when processing large volumes of geospatial data.

The aforementioned data processing sequence on the system side relies on active modules for raster and vector data that are executed each time user-defined parameters are modified (Fig. 3). These parameters include the selection of the raster layer and the specification of a sensitivity threshold (Jain, Duin, & Mao, 2000). The defined sensitivity threshold determines the subset of data that satisfies the following expression:

$$\left| \frac{raster_{array} - \mu}{\sigma} \right| > \theta, \quad (10)$$

where the expression considers only positive values, as the modulus (interpreted by the system as the *abs* function) denotes the absolute value function. Here, *raster_{array}* refers to the data matrix, μ is the mean of the matrix, σ is the standard deviation, and θ is the sensitivity coefficient (threshold). The computed results are immediately made available to the user in the form of polygons representing anomalous values within the data array.

Thus, each change in user parameters triggers a processing cycle of raster and vector modules in sequence, enabling the visual evaluation of anomalous values based on the specified threshold.

Fig. 3. Schematic representation of the sequence of processes executed on the system side

Results

The results produced by the developed plugin (Fig. 4) were analyzed based on three types of satellite imagery: InSAR images for detecting vertical surface displacements, thermal infrared (TIR) images for determining land surface temperature (LST), and multispectral images in the green and near-infrared (NIR) spectral bands used to calculate the

Normalized Difference Water Index (NDWI). The automated analysis of these imagery types using the plugin significantly simplifies the interpretation of spatial data, thereby enhancing research efficiency and supporting timely decision-making in the fields of environmental monitoring and land management.

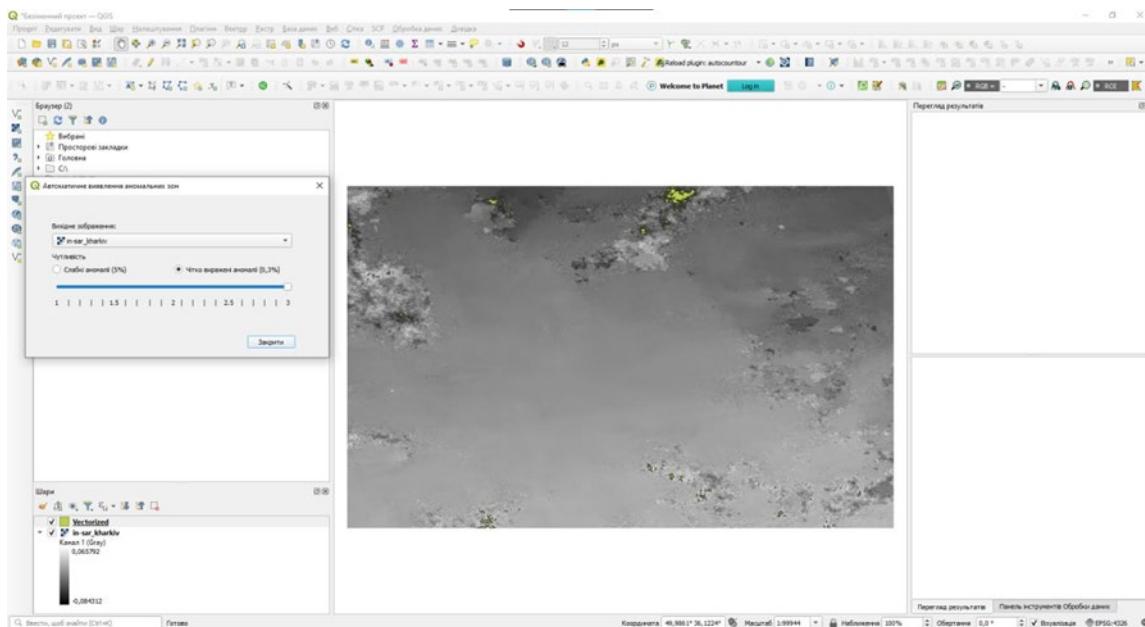


Fig. 4. General view of the developed plugin in QGIS software

Case 1: InSAR Imagery Analysis

The modern development of engineering infrastructure and urban areas is accompanied by substantial anthropogenic pressure on the Earth's surface. Construction of bridges, dams, underground utilities, and high-rise structures disturbs the natural equilibrium, potentially leading to vertical displacements of the Earth's crust, localized deformations, or even catastrophic failures (Kril, 2017). Accordingly, monitoring such processes is critically important for ensuring infrastructure safety and sustainable development.

The analysis of Sentinel-1 satellite imagery using the Differential Interferometric Synthetic Aperture Radar (D-InSAR) method serves as a powerful tool for detecting vertical surface displacements, particularly in urbanized environments (Minh, Hanssen, & Rocca, 2020). This method enables the detection of even minor topographic changes with high precision, making it indispensable for assessing geodynamic processes, risk forecasting, and informed decision-making in urban planning and engineering geology. The application of D-InSAR is especially relevant in zones of active construction, seismically hazardous areas, regions of underground resource extraction, and locations prone to subsidence or landslides (Kruglov, Hudak, & Kruhlov, 2025). The use of Sentinel-1 radar imagery facilitates the observation of displacement dynamics over time and the identification of long-term deformation trends.

In this case, the plugin was supplied with an InSAR satellite image of the city of Kharkiv (Fig. 5a), processed using the D-InSAR technique. After processing, the plugin automatically identified anomalous values indicating the presence of surface changes within the study area. These anomalies may correspond to vertical crustal deformations caused by either natural or anthropogenic factors. The resulting output provides a visualization of elevation

changes, enabling detailed examination of geodynamic processes in the region and further analysis of zones exhibiting anomalous displacements (Fig. 5b). The statistical characteristics derived from the processed InSAR imagery demonstrate significant variability in surface displacement values (Table 1). The largest anomalous area (polygon ID 193) shows a minimum displacement of -0.11 m, a maximum of -0.05 m, and an average of -0.07 m. Such negative values may indicate ground subsidence. Other significant polygons, such as ID 205 and ID 400, exhibit similar average values, pointing to the existence of subsiding areas in the region. The range of values in most cases does not exceed 0.03 m, indicating the localized nature of the detected changes.

Displacements with positive values (e.g., polygons ID 799, 632, and 596) indicate uplift of the Earth's surface. For instance, polygon ID 632 demonstrates a minimum value of 0.05 m, a maximum of 0.08 m, and a mean value of 0.05 m. Such values may reflect specific geodynamic processes, including ground uplift or deformation driven by anthropogenic or natural factors. In all cases, the standard deviation remains relatively low (0.01 – 0.004 m), confirming the uniformity of changes within each identified polygon. Overall, the resulting characteristics allow for a quantitative assessment of the extent of surface changes and facilitate the identification of zones requiring continued monitoring.

Thus, the automation of D-InSAR data analysis within QGIS significantly enhances the efficiency of deformation monitoring while ensuring a more objective, reproducible, and scalable approach to assessing geodynamic processes across various territories. This enables timely detection of potentially hazardous zones, which is especially important for areas undergoing intensive urban development or those with complex engineering and geological conditions.

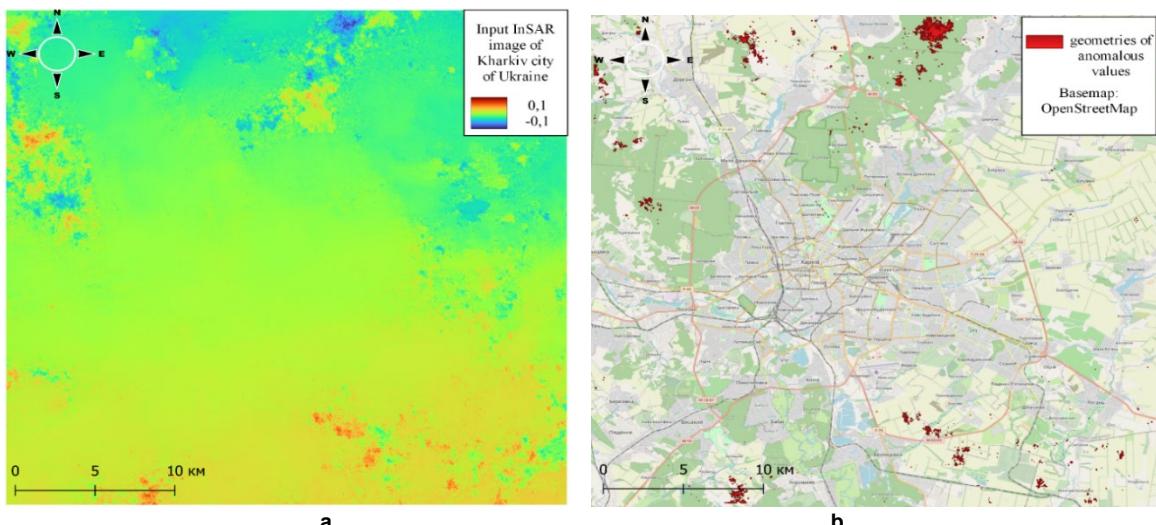


Fig. 5. Input image processed using the D-InSAR method (a); detected anomalous zones of vertical displacement (b)

Table 1

Polygon ID	Area, m ²	Min	Max	Mean	Standart deviation	Range	Sum of squares
193	1536244	-0,11	-0,05	-0,07	0,01	0,05	1,87
205	169109	-0,09	-0,05	-0,07	0,01	0,03	0,1
799	147380	0,05	0,07	0,05	0,01	0,03	0,08
400	131831	-0,08	-0,05	-0,07	0,01	0,03	0,09
632	93853	0,05	0,08	0,05	0,01	0,03	0,05
82	66415	-0,08	-0,05	-0,06	0,01	0,03	0,03
369	60226	-0,09	-0,05	-0,07	0,01	0,03	0,07
596	59012	0,05	0,08	0,06	0,01	0,03	0,05
308	49301	-0,08	-0,05	-0,06	0,004	0,02	0,02
840	42160	0,05	0,07	0,06	0,01	0,03	0,02
269	41401	-0,08	-0,05	-0,06	0,004	0,02	0,02
506	40645	-0,08	-0,05	-0,06	0,004	0,02	0,01

Case 2: Landsat 8/9 (Thermal Infrared Sensor)

Satellite imagery acquired via the Thermal Infrared Sensor (TIRS) onboard Landsat 8/9 satellites serves as a critical data source for monitoring temperature variations on the Earth's surface. This is particularly relevant in the context of climate change, as such data enable the identification of warming trends, overheating in urbanized areas, and fluctuations in soil moisture (Lischenko, Pazynych, & Filipovich, 2017; Filipovich, & Shevchuk, 2018).

Thermal sensor data, especially from TIRS, are employed for the monitoring of geothermal resources, detection of elevated temperatures in zones of volcanic activity, and analysis of terrain changes related to geological displacements and ground deformation. Furthermore, these data are valuable for assessing the ecological state of landscapes – particularly in areas affected by mining – where surface temperature shifts may indicate land degradation. Thermal imagery is also instrumental in detecting and forecasting exogenous processes such as erosion or landslides, as well as in evaluating anthropogenic impacts and pollution caused by human activities (Vivaldi et al., 2022). Additionally, thermal data contribute to climate change modeling and the analysis of urbanization effects, especially in detecting urban heat islands.

The analysis of Land Surface Temperature (LST) using the developed plugin includes the application of criteria for detecting minor anomalies, comprising no more than 5 % of the total dataset. The input image (Fig. 6a) is an atmospherically corrected Landsat product representing LST in degrees Celsius for the year 2020. The study area is located in the central part of Kyiv Oblast and is characterized by extensive agricultural land use, which has a notable environmental impact on

surrounding ecosystems – particularly the Supiy River – and features a clearly defined urban heat island in the city of Yahotyn, Kyiv Oblast, Ukraine.

The input thermal image (Fig. 6a) has the following characteristics: maximum temperature of 32.79 °C, mean temperature of 23.08 °C, minimum temperature of 14.07 °C, temperature range of 18.72 °C, and a standard deviation of 3.37 °C. Based on these metrics, 182 anomalous polygons were identified, each containing values that meet the predefined anomaly criteria. In total, the number of pixels with anomalous values amounts to 21.62 out of 455.60 (4.75 %).

The analyzed image exhibits a distinct spatial heterogeneity in thermal conditions, reflecting the complex interaction of natural and anthropogenic factors. The maximum recorded temperature is 32.79°C, the minimum is 14.07 °C, and the mean value is 23.08 °C, with a temperature range of 18.72 °C and a standard deviation of 3.37 °C (Tab. 2). In total, 182 anomalous figures were identified, occupying 21.62 pixels out of 455.60, representing 4.75 % of the total image area. All anomalous areas were classified into two categories: low-temperature anomalies (ranging from 14.06 °C to 16.33 °C), primarily associated with reservoirs and water bodies, and high-temperature anomalies (ranging from 29.45 °C to 32.79 °C), typical for dry open surfaces such as farmland and urban areas.

This thermal segmentation is also evident in the detailed analysis of selected features: for example, ID 159 and 88 show average temperatures of 14.81 °C and 15.37 °C, respectively, characteristic of moist or aquatic surfaces, whereas areas such as ID 109, 160, and 139 display elevated mean values above 30 °C, corresponding to dry open territories or urban zones. The variation in

standard deviation within the range of 0.27–0.71 °C indicates differing levels of temperature uniformity across individual geospatial objects. Large spatial structures, such

as ID 159, exhibit stable temperature gradients, which are crucial for the comprehensive analysis of landscape thermal conditions (Fig. 6b).

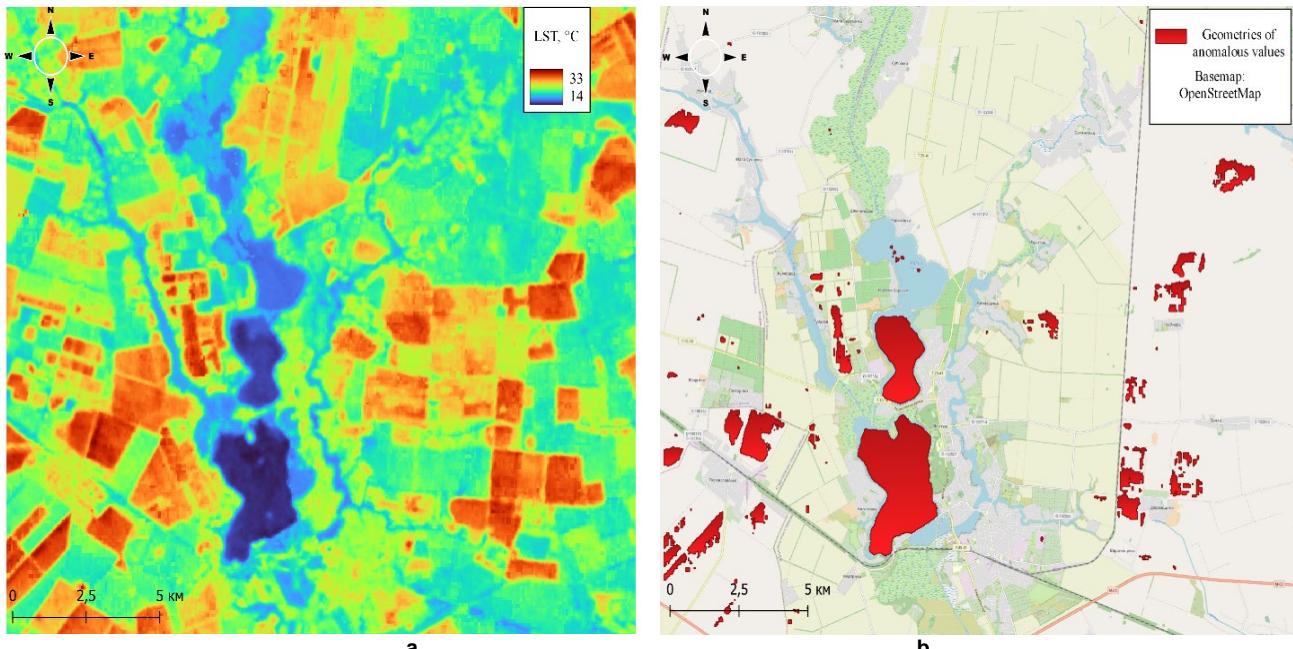


Fig. 6. Input LST image (a); detected anomalous zones of high and low temperature (b)

Table 2

Polygon ID	Area, m ²	Min	Max	Mean	Standart deviation	Range	Sum of squares
159	7453792	14,07	16,33	14,81	0,4	2,27	1344,38
88	3057343	14,49	16,33	15,37	0,38	1,85	492,43
109	1260731	29,83	32,79	30,76	0,65	2,96	581,46
26	683546	29,83	31,43	30,23	0,33	1,6	83,48
160	624957	29,83	32,47	30,68	0,71	2,64	345,52
17	454758	29,83	31,3	30,26	0,28	1,47	40,33
139	434077	29,83	31,96	30,5	0,44	2,13	93,28
102	433149	29,83	31,09	30,34	0,32	1,27	48
126	355727	29,83	31,21	30,25	0,35	1,38	48,54
79	329596	29,83	31,97	30,56	0,41	2,14	62,27
51	326010	29,83	31,49	30,24	0,38	1,66	50,99
113	285461	29,83	31,71	30,73	0,41	1,88	53,64

The application of the developed plugin significantly enhanced the efficiency of detecting geospatial objects with anomalous thermal characteristics based on user-defined criteria, thereby ensuring higher accuracy and timeliness in surface temperature monitoring. The obtained results can serve as a robust analytical foundation for forecasting climate trends, assessing ecological risks, and planning the rational use of land resources.

Case 3: Normalized Indices from Multispectral Imagery

As in the previously discussed cases, anomalous values help to identify the most affected zones characterized by specific index responses. In this instance, the Normalized Difference Water Index (NDWI) was used to detect surface water bodies (McFeeters, 1996); however, the use of other indices – such as NDVI, NDSI, NDDI, among others – can be beneficial for a wide range of thematic applications.

The area under investigation is located near the city of Yahotyn in Kyiv Oblast (Fig. 7a), along the Supiy River (Ukraine), which is known to experience periodic suffusion-induced subsidence (Marhes, 2024). The study of such

physical processes in this region is of high relevance, as they are widespread on the left bank of the Dnipro River and exert a negative impact on agricultural productivity. NDWI was specifically selected due to its sensitivity to moisture accumulation in microdepressions formed by subsidence (Trofymenko et al., 2024).

NDWI values were derived from a PlanetScope satellite image (Planet Team, 2025), revealing predominantly dry or minimally moist areas with only limited evidence of water presence. Using the developed plugin, it was possible to visualize local terrain depressions – particularly bowl-shaped formations – where moisture accumulation was detected (Fig. 7b). In some instances, weakly expressed forms of linear erosion were also observed, further indicating irregularities in the surface hydrological regime. NDWI, which is responsive to the moisture content of vegetation and open water bodies, yielded uniformly negative values across the sample, ranging from -0.72 to -0.37. This confirms the predominance of dry soils or vegetation lacking free surface water.

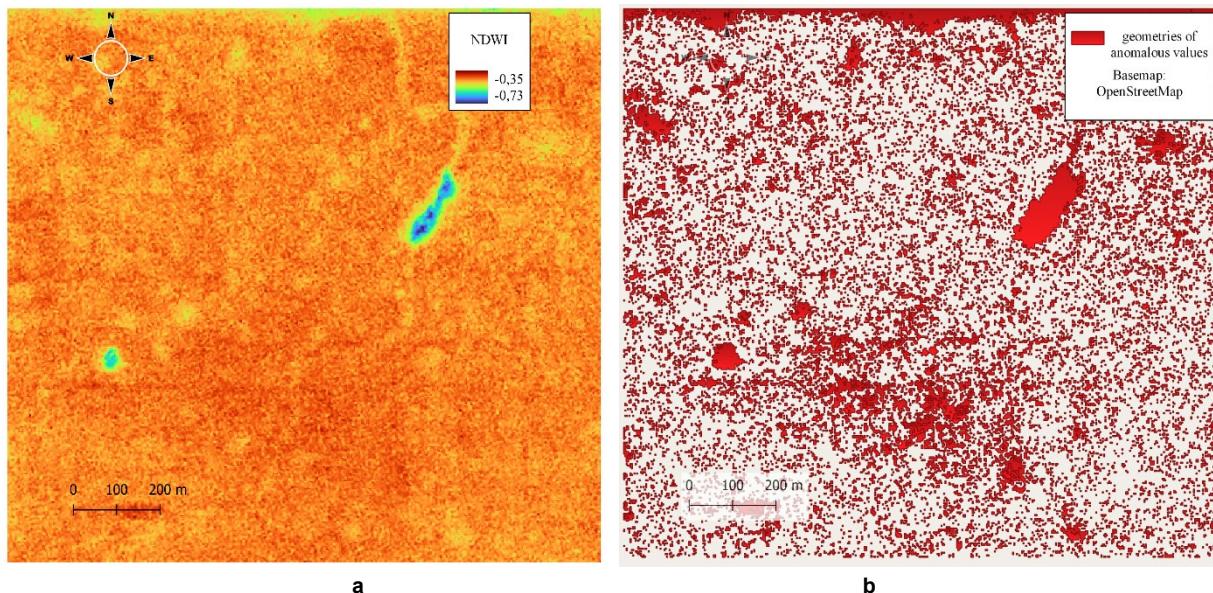


Fig. 7. Input NDWI image (a); Detected anomalous (critical) zones in the image (b)

Analysis of the statistical data (Table 3) reveals a degree of heterogeneity across the studied areas. The largest zone is represented by object ID 580, covering 35,057 pixels, with an average NDWI value of -0.5 and a relatively narrow range (0.2), indicating a relatively homogeneous moisture condition. In contrast, object ID 4294 is characterized by the highest standard deviation (0.07) and a broader range

(0.31), likely due to the presence of varying surface types or local hydrological contrasts. Other zones, particularly those with an area below 2,500 pixels (e.g., ID 6228), display stable NDWI values with minimal dispersion, which is typical for small, homogeneous micro-landscapes. The dominance of negative NDWI values across the dataset further confirms the prevalence of arid or low-moisture microenvironments.

Table 3

Polygon ID	Area, m ²	Min	Max	Mean	Standart deviation	Range	Sum of squares
580	35057	-0,6	-0,41	-0,5	0,02	0,2	1,3
4294	15426	-0,72	-0,42	-0,54	0,07	0,31	7,47
7362	4007	-0,43	-0,38	-0,41	0,01	0,05	0,05
2375	3836	-0,54	-0,43	-0,49	0,01	0,11	0,08
2636	3710	-0,55	-0,42	-0,49	0,01	0,13	0,06
6457	3071	-0,64	-0,47	-0,53	0,05	0,17	0,8
7820	2756	-0,43	-0,39	-0,42	0,01	0,04	0,03
7170	2630	-0,43	-0,39	-0,42	0,01	0,04	0,02
8608	2467	-0,43	-0,39	-0,42	0,01	0,04	0,02
6217	2062	-0,43	-0,38	-0,42	0,01	0,05	0,02
8962	2044	-0,43	-0,37	-0,41	0,01	0,06	0,03
6228	2008	-0,48	-0,39	-0,42	0,01	0,09	0,02

The statistical analysis of NDWI values indicates an overall low moisture content throughout the entire study area. These data may be used to identify drought-prone zones, track seasonal fluctuations in moisture regimes, or compare with other indices such as NDVI or NDBI. The most analytically valuable areas are those exhibiting high variability, which may serve as indicators of local environmental changes or anthropogenic impacts.

Discussion and conclusions

The development of effective methods for analyzing satellite imagery represents a key challenge in monitoring both natural and anthropogenic environmental changes. The proposed approach to automated anomaly detection is grounded in the application of statistical methods, enabling high accuracy and processing speed.

Traditional approaches to image analysis typically rely on visual interpretation and manual digitization of anomalous zones. However, this method is time-consuming, particularly when dealing with large datasets containing numerous anomalies. Manual identification becomes increasingly difficult over extensive or densely built-up areas. Moreover,

the results of such analysis often depend on the researcher's expertise and subjective interpretation, introducing potential error. The lack of a standardized algorithm further complicates reproducibility, which is critical for long-term environmental monitoring. Visual methods also fall short in handling large volumes of spatial data and accounting for spatial deformation patterns.

Given these limitations, the development of a plugin for QGIS that automates the identification of anomalous displacement zones is a timely and relevant solution. Automation allows for the standardization of analytical procedures, increased anomaly detection accuracy, and significant time savings. The integration of machine learning algorithms and geostatistical methods within the plugin enhances the precision of anomaly recognition and helps reduce data noise. Moreover, coupling the plugin with other geoinformation modules facilitates comprehensive analysis of interactions between surface deformations and influencing factors such as hydrogeological conditions or anthropogenic pressure.

The developed QGIS plugin streamlines satellite image analysis and greatly simplifies the identification of anomalous

zones. Its core functionality includes the use of threshold and statistical analysis methods to detect changes in geospatial data, contributing to more objective assessments and standardized outcomes. In addition, the plugin supports various types of satellite imagery – including InSAR, thermal infrared, and normalized index data – making it a versatile tool for a broad spectrum of researchers.

The algorithmic implementation is based on Python libraries such as NumPy, SciPy, and GDAL, which enable complex analytical computations to be seamlessly integrated into the QGIS environment. The use of thresholding and standard deviation calculations permits adaptive parameter tuning for anomaly detection, thereby reducing the likelihood of false positives.

Practical testing of the plugin has demonstrated its effectiveness in the context of automated surface change monitoring and hydrogeological assessment. Thanks to its intuitive graphical interface, users can easily configure analysis parameters and obtain results in the form of vector data, ready for further processing.

The testing process also generated ideas for future improvements. In particular, it was suggested to implement separate processing of positive and negative index or displacement values. This approach allows for consideration of the differing nature of physical processes or phenomena that produce anomalies of opposite signs – for example, ground subsidence versus surface uplift caused by anthropogenic or natural factors. Segregating these zones would enhance the accuracy of interpretation and improve decision-making based on the analytical results.

In summary, the developed plugin is an efficient tool for remote sensing research. It reduces the time required for satellite image analysis, increases accuracy, and standardizes approaches to environmental change assessment. Its integration into QGIS opens new avenues for geoinformation analysis, representing a promising direction for advancing monitoring methods for both natural and anthropogenic processes.

Authors' contribution: Vasyl Hudak – methodology, writing (review and editing), databases and data analysis, methodology; Serhii Marhes – conceptualization, data validation, graphic materials, writing (original draft); Vitalii Zatserkovnyi – formal analysis, revising of the manuscript, Mauro De Donatis – revision and editing.

Sources of funding. This research was conducted within the framework of the state-funded project "Integrated Models and Forecasting of Natural and Military Geohazards and Assessment of Their Impact on Critical Infrastructure" (State Registration No. 25BP049-01(M)).

References

Cleveland, W. S. (1993). *Visualizing data*. Hobart Press. <https://www.hobartpress.com/visualizing-data>

Filipovich, V., & Shevchuk, R. (2018). *Satellite technology for determining the heat load on the city in summer and ways to overcome it through green planning*. [Preprint]. <https://doi.org/10.13140/RG.2.2.17113.08807>

Folini, A., Lenzi, E., & Biraghi, C. A. (2022). Cluster analysis: A comprehensive and versatile QGIS plugin for pattern recognition in geospatial data. *International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLVIII-4/W1-2022, 151–157. <https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-151-2022>

Gavade, A. B., & Rajpurohit, V. S. (2021). Systematic analysis of satellite image-based land cover classification techniques: literature review and challenges. *International Journal of Computers and Applications*, 43(6), 514–523. <https://doi.org/10.1080/1206212X.2019.1573946>

Hytla, P. C., Hardie, R. C., Eismann, M. T., & Meola, J. (2009). Anomaly detection in hyperspectral imagery: Comparison of methods using diurnal and seasonal data. *Journal of Applied Remote Sensing*, 3(1), 033546.

Ivanik, O., Menshov, O., Bondar, K., Vyzhva, S., Khomenko, R., Hadiatska, K., Kravchenko, D., & Tustanovska, L. (2022). Integrated approach to modelling and assessing the landslide hazards at the regional and local scale in Kyiv urbanized area, Ukraine. *Modeling Earth Systems and Environment*. <https://doi.org/10.1007/s40808-022-01447-x>

Jain, A., Duin, R., & Mao, J. (2000). Statistical pattern recognition: A review. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(1), 4–37. <https://doi.org/10.1109/34.824819>

Janz, A., Jakimow, B., van der Linden, S., Thiel, F., & Dierkes, H. (2021). AVHYAS: A free and open-source QGIS plugin for advanced hyperspectral image analysis. In *2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI)*. IEEE. <https://doi.org/10.1109/ICETCI51973.2021.9574057>

Kotsiubivska, K., & Tymoshenko, V. (2019). Mathematical methods of image processing. *Digital Platform Information Technologies in Sociocultural Sphere*, 2(1), 41–54. [in Ukrainian]. [Коцюбівська, К., & Тимошенко, В. (2019). Математичні методи обробки зображень. Цифрова платформа. Інформаційні технології в соціокультурній сфері, 2(1), 41–54]. <https://doi.org/10.31866/2617-796x.2.1.2019.175653>

Kril, T. (2017). Causes of some hazardous engineering geological processes on urban territories. In *E3S Web of Conferences* (Vol. 24). EDP Sciences. <https://doi.org/10.1051/e3sconf/20172401009>

Kruglov, O., Hudak, V., & Kruhlov, B. (2025, April). *Exploring D-InSAR Technology for Monitoring Soil Erosion: Case Study in Kharkiv Region*. Paper presented at the 18th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, European Association of Geoscientists & Engineers.

Lischenko, L., Pazynych, N., & Filipovich, V. (2017). Satellite monitoring of landslide development in the Pridneprovsk zone of Kyiv. *Ukrainian Journal of Remote Sensing*, 15, 111–120 [in Ukrainian]. [Ліщенко, Л., Пазинич, Н., & Філіпович, В. (2017). Супутниковий моніторинг розвитку зсувів у Придніпровській зоні м. Києва. Український журнал дистанційного зондування, 15, 111–120]. <https://doi.org/10.36023/ujsr.2017.15.111>

Marhes, S. (2024). Satellite geoecological analysis of the peat-swamp system of the Supi River. *Ideas and Innovations in Earth Sciences*, 24, 74–75. <https://doi.org/10.30836/igs.ies.2024.34>

Marhes, S. (2025). *Autocountour QGIS Plugin* (Version 1.0) [Computer software]. GitHub. https://github.com/rnrhs/autocountour_qgis_plugin

MASAI Project. (n.d.). *MASAI: Pioneering damage assessment through AI and satellite technology*. Retrieved July 8, 2025, from <https://masai-project.eu/masai-pioneering-damage-assessment-through-ai-and-satellite-technology/>

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. *International Journal of Remote Sensing*, 17(7), 1425–1432. <https://doi.org/10.1080/0143116960894874>

Meng, C., Wang, Y., Zhang, X., Mandal, A., Zhong, W., & Ma, P. (2017). Effective statistical methods for big data analytics. In *Handbook of research on applied cybernetics and systems science* (pp. 280–299). IGI Global.

Minh, D. H. T., Hanssen, R., & Rocca, F. (2020). Radar interferometry: 20 years of development in time series techniques and future perspectives. *Remote Sensing*, 12(9), 1364. <https://doi.org/10.3390/rs12091364>

Planet Team. (2025). *PlanetScope NDWI image 20241024_090954_85_250a_3B_AnalyticMS_SR_8b_harmonized_clip*. Planet Labs PBC. <https://www.planet.com/nextgenplanetscope/>

QGIS Project. (2024). *Fetching plugins*. QGIS Documentation. https://docs.qgis.org/3.40/en/docs/training_manual/qgis_plugins/fetching_plugins.html

Tempa, K., & Aryal, K. R. (2022). Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery. *SN Applied Sciences*, 4(1), 141. <https://doi.org/10.1007/s42452-022-05028-6>

Trofymenko, P., Tomchenko, O., Poralo, R., Zatserkovnyi, V., & Stakhiv, I. (2024). Remote identification of micro-depression relief forms and soil cover areas of agro-landscapes in the Polissya region of Ukraine with signs of hydromorphism. *Bulletin of Taras Shevchenko National University of Kyiv. Geography*, 1(104), 98–106. <https://doi.org/10.17721/1728-2713.104.12>

Vivaldi, V., Bordoni, M., Mineo, S., Crozi, M., Pappalardo, G., & Meisina, C. (2022). Airborne combined photogrammetry—thermal thermography applied to landslide remote monitoring. *Landslides*, 20(2), 547–560. <https://doi.org/10.1007/s10346-022-01970-z>

Zhukov, M. N. (2008). *Mathematical statistics and processing of geological data*. Vyscha Shkola [in Ukrainian]. [Жуков, М. Н. (2008). *Математична статистика та обробка геологічних даних*. Вища школа].

Отримано редакцію журналу / Received: 26.02.25
Прорецензовано / Revised: 19.03.25
Схвалено до друку / Accepted: 30.06.25

Василь ГУДАК¹, асп.
ORCID ID: 0009-0002-7333-0409
e-mail: gudak_vasyl@knu.ua

Сергій МАРГЕС², асп.
ORCID ID: 0009-0004-2942-9406
e-mail: sergmarhes@gmail.com

Віталій ЗАЦЕРКОВНИЙ¹, д-р техн. наук, проф.
ORCID ID: 0009-0003-5187-6125
e-mail: vitalii.zatserkovnyi@knu.ua

Мауро ДЕ ДОНАТИС³, канд. геол. наук, доц.
ORCID ID: 0000-0002-9721-1095
e-mail: mauro.dedonatis@uniurb.it

¹Київський національний університет імені Тараса Шевченка, Київ, Україна

²Центр аерокосмічних досліджень Землі Інституту геологічних наук,

Національна академія наук України, Київ, Україна

³Університет Урбіно "Карла Бо", Урбіно, Італія

МЕТОДОЛОГІЯ АВТОМАТИЗОВАНОГО ВИЯВЛЕННЯ АНОМАЛЬНИХ ГЕОПРОСТОРОВИХ ЗОН НА СУПУТНИКОВИХ ЗНІМКАХ ІЗ ВИКОРИСТАННЯМ СТАТИСТИЧНОГО АНАЛІЗУ ТА СПЕЦІАЛІЗОВАНОГО ПЛАГІНА ДЛЯ QGIS

В ступ. Представлено методологію автоматизованого виявлення аномальних геопросторових зон, реалізовану у вигляді плагіна для геоінформаційної системи QGIS. Розроблений інструмент підвищує ефективність просторового аналізу та забезпечує швидку ідентифікацію територій з потенційними змінами для моніторингу природних і техногенних процесів.

Методи. Запропонований підхід базується на використанні порогового та статистичного аналізу супутникових знімків у середовищі QGIS. Плагін забезпечує інтерактивне налаштування параметрів обробки зображень та автоматично виявляє геодинамічні аномалії, які після векторизації надаються користувачу для подальшого аналізу. Алгоритм використовує бібліотеки Python (NumPy, SciPy, GDAL, PyQt, QGIS API) для обробки різних типів супутникових даних і застосовує критерії на основі стандартного відхилення для виявлення аномальних ділянок.

Результати. Тестування розробленого авторами плагіна підтвердило його ефективність під час обробки супутникових знімків типів InSAR, теплових інфрачервоних (TIR) та знімків на основі індексу NDWI. Плагін успішно ідентифікував зони вертикальних зміщень земної поверхні, виявив температурні аномалії та окреслив області з дефіцитом вологи. Такий підхід суттєво покращує точність геоінформаційного аналізу.

Висновки. Розроблений плагін є ефективним інструментом для автоматизованого моніторингу змін земної поверхні та оцінки гідрогеологічних умов. Його інтеграція в середовищі QGIS дає змогу оперативно налаштовувати параметри аналізу та отримувати результи у форматі векторних даних. Тестування плагіна підтвердило його практичну цінність і виявило потенційні напрями для подальшого вдосконалення, зокрема щодо роздільної обробки додатних і від'ємних значень зміщень для підвищення точності інтерпретації аномалій.

Ключові слова: автоматизоване виявлення, геопросторові зони, плагін QGIS, супутникові зображення, геодинамічні аномалії, просторовий аналіз.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Vitalii ZATSERKOVNYI¹, DSc (Techn.), Prof.
ORCID ID: 0009-0003-5187-6125
e-mail: vitalii.zatserkovnyi@knu.ua

Irina TSIUPA¹, PhD (Geol.)
ORCID ID: 0000-0002-8350-6685
e-mail: irynatsiupa@knu.ua

Mauro DE DONATIS², PhD (Geol.), Assoc. Prof.
ORCID ID: 0000-0002-9721-1095
e-mail: mauro.dedonatis@uniurb.it

Igor NIKOLIUK¹, PhD Student
ORCID ID: 0009-0006-0750-2603
e-mail: Histerias@ukr.net

Valentin KRAVCHENIA¹, PhD Student
ORCID ID: 0009-0002-4160-361X
e-mail: valentyn.kravchenia@knu.ua

Oleksandr TSVYK¹, DSc (Geogr.), PhD Student
ORCID ID: 0009-0006-5464-2078
e-mail: oleksandr.tsvyk@knu.ua

Tetiana MIRONCHUK¹, PhD (Philol.), Assoc. Prof.
ORCID ID: 0000-0002-5923-1028
e-mail: t.mironchuk@knu.ua

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
²University of Urbino Carlo Bo, Urbino, Italy

METHODS TO DETECT EXPLOSIVE HAZARDS IN AGRICULTURAL AREAS

(Представлено членом редакційної колегії д-ром геол. наук, ст. дослідником О.І. Меньшовим)

Background. Contamination of agricultural land with explosive ordnance (EO) following the war unleashed by the Russian Federation poses a significant threat to the life and health of farmers and hinders the restoration of agricultural activities. Detection and neutralization of EO is a complex and dangerous process that requires a comprehensive approach.

This article examines the main types of landmines found in Ukraine, outlines the main revealing factors of explosive ordnance, analyzes existing methods and technologies for detecting EO on agricultural land, and evaluates their advantages and disadvantages.

Results. The application of UAVs in humanitarian demining demonstrates significant potential for risk reduction and accelerated clearance of affected territories from explosive ordnance. Specifically, aerial photography and thermal imaging scanning via UAVs prove effective for the initial inspection of extensive areas and the identification of potentially hazardous zones. The application of metal detectors and geophysical methods allows for the optimization of further efforts.

The integration of geographic information systems (GIS) with artificial intelligence (AI) offers a promising auxiliary approach. By leveraging satellite imagery and machine learning, AI can analyze extensive datasets to detect and classify changes in land resources resulting from military actions. Besides, it plays a crucial role in rapid and accurate monitoring of affected territories.

Based on the test plots in the Kyiv and Kharkiv regions, this study demonstrates the practical application of Earth remote sensing data, GIS spatial analysis, and machine learning for EO detection on agricultural lands.

Conclusions. Traditional methods of mine detection and disposal are labour-intensive, dangerous, and often ineffective. Applying a combination of diverse EO detection methods (metal detectors, mechanical methods, geophysical methods, biophysical methods, UAVs with aerial photography and thermal imaging scanning, and other sensors) and integrating modern technologies (remote sensing tools and artificial intelligence) allows for achieving maximum survey efficiency and increasing safety. Each method has its advantages and limitations, and combining them promotes compensating for the shortcomings of individual methods.

Keywords: danger explosives, Russo-Ukrainian War, mine contamination, agricultural territories.

Background

Mine contamination of territories is one of the most serious problems following armed conflicts. Mines and other explosive ordnance (EO) pose a significant threat to the civilian population, hinder economic development, and complicate humanitarian operations.

Due to the Russo-Ukrainian war, which actually began in 2014 and subsequently developed into a full-scale aggression in February 2022, Ukraine has become the most mined country in the world. The number of landmines and other explosive ordnance contaminating new territories has significantly increased including agricultural regions in the north, east, and south of the country. In August 2022 alone during the period of intense hostilities, the Russian army

fired between 40,000 and 60,000 shells at Ukraine almost daily. Fortunately, some of them did not explode and remained in the ground carrying an invisible but deadly legacy and an extremely high threat to the lives of the population. According to various estimates, up to 20 % of the fired ammunition failed and continues to fail to detonate (Miroshnychenko, 2023). Furthermore, while occupying territories for some time, Russian aggressors deliberately mined forests and agricultural fields.

Ukraine suffers from contamination by mines and explosive objects. In terms of the area of mined land, the UN classifies Ukraine as one of the most heavily mined countries. The scale of mining surpasses countries where military conflicts used to last for decades. According to

D. Shmyhal, the Prime Minister of Ukraine, the area of mined land in Ukraine as of September 2023, according to preliminary estimates, is approximately 174,000 km² including maritime areas, which is about 30 % of the country's territory (Fig. 1).

Of these – over 67,000 km² are contaminated with explosive ordnance (EO). Approximately 5 million people live near dangerous zones. EO can cause and does cause casualties including severe injuries and death to a significant number of people, especially among civilians and children.

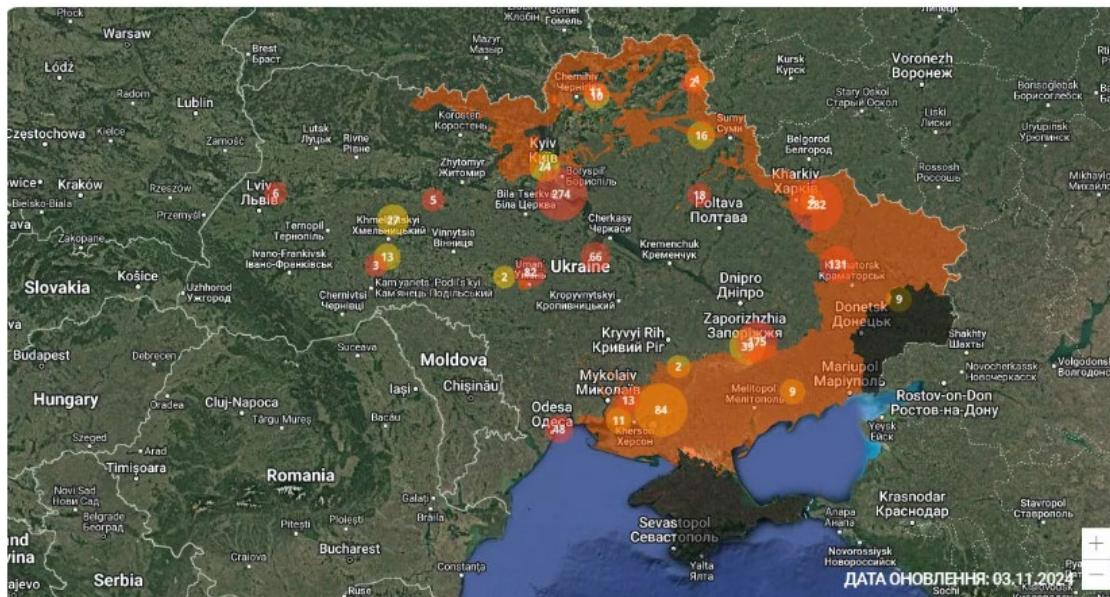


Fig 1. Map of mine contamination in Ukraine as of November 03.11.2024
(The Ukrainian Association..., 2024)

This significantly limits the possibilities for movement through such territories and their use in active farming.

The vast majority of mined territories are agricultural lands (chernozem soils). According to the Ministry of Defence, as of March 2025, 52,089 hectares of agricultural land were contaminated with mines and explosive remnants of war (Semeniuk, 2025).

Problem Statement. The detection of EO in Ukraine is a very pressing issue, the resolution of which will ensure the life and safety of the population and the ability to use their territories; however, this requires the application of effective and reliable methods. Currently, about 470 hectares of agricultural land in the country are mined, which makes it completely impossible to conduct agricultural activities. According to the Ukrainian Agribusiness Club assessment, each year of downtime for these lands costs the country's economy up to 800 million USD. Additionally, 6 million hectares are under temporary occupation, which will also require inspection after liberation (Miroshnychenko, 2023).

Traditional methods of mine detection and disposal are labor-intensive, dangerous, and often ineffective. To date, none of the existing demining methods provides a 100 % guarantee of territory clearance. The focus of the Spring Innovation Contest is on the remote recognition and neutralization of the territories contaminated with explosive substances, otherwise known as remote demining operations.

The integration of modern technologies, such as remote sensing (RS) data and artificial intelligence (AI), offers new approaches to monitoring and detecting minefields, increasing the efficiency and safety of these processes.

The purpose of this study is to analyze existing methods and technologies for detecting EO on agricultural land, evaluate their advantages and disadvantages, as well as the prospects for the development of these methods and technologies.

The process of detecting, demining, and removing EO is associated with a number of problems, which are detailed in Fig. 2.

PROBLEMS ARISING DURING THE PROCESS OF DETECTION, DEMINING, AND REMOVAL OF EO

Loss (absence) of maps and other information about EO locations

The lack of information regarding EO is not always meticulously recorded. Even when maps are available, they can only serve as a guide due to inherent uncertainty.

In some cases, EO is deployed chaotically via drops from aircraft and drones

Change in EO location in the soil due to climatic factors and the influence of time

Natural disasters (floods, earthquakes, sandstorms, etc.) can shift mines and unexploded ordnance or cover markers indicating mined areas. Soil type can also pose a problem for the detection and neutralization of landmines

Long term persistence of explosive ordnance hazards

The high sensitivity of EO to detonation over time presents a great danger to people

Lack of precise information regarding the quantity and types of mines laid

There are hundreds of types of landmines, which can have metal, plastic, wooden, and other casings

High cost of demining

Demining 1 km² of territory is estimated to cost \$3 million

Fig. 2. Problems in EO detection, demining, and removal

Demining of fields does not guarantee a quick return to agricultural activities on these lands for farmers. The surface still

needs to be levelled and recultivated, soil fertility to be restored, etc. (Miroshnychenko, 2023). This significantly

weakens the state of food security within the country and the share of its agricultural production and sales on global markets.

Explosive Ordnance (EO) encompasses industrial-grade explosive materials, improvised explosive devices, and ammunition containing explosive substances, as well as biological and chemical substances (Mine Safety, 2025). This category comprises items such as artillery and rocket projectiles, warheads of missiles and torpedoes, cartridges for military small arms, grenades, aerial and depth bombs,

anti-personnel blast mines and fragmentation mines, booby traps, engineering and naval mines, demolition charges, anti-tank guided missiles, remotely controlled anti-tank mines, cluster bombs, and submunitions. These also include electrical explosive devices and other assembled items equipped with explosive substances intended for firing from firearms or causing an explosion. Some of them are represented in Fig. 3.

Fig. 3. Examples of EO in the territory and waters of Ukraine

According to the Ministry of Defence of Ukraine, as a result of detonations of mines and other EO just in the period 2014–2019, 833 civilians were affected, of whom 269 died, and the rest suffered injuries of varying severity and mutilations. Every tenth victim was a child (Ministry of Defence of Ukraine, 2019). Explosive ordnance does not distinguish between soldiers and civilians or children.

Demining efforts in these territories currently involve collaboration between the military, domestic specialists and scientists, and foreign experts for explosive ordnance detection and neutralization. Ukraine closely cooperates with various international organizations – the UN, OSCE, NATO, the Geneva International Centre for Humanitarian Demining (GICHD), demining centres in Denmark, France, Croatia, Estonia, and several others. The global community has not remained indifferent to Ukraine's problems. The USA, Canada, Great Britain, Denmark, Norway, Estonia, Austria, Poland, Japan, Switzerland, Sweden, Slovakia, and other countries provide both financial assistance and vehicles, equipment to search for explosive ordnance, gear, and protective equipment. Furthermore, they are training Ukrainian military personnel in advanced technologies for demining and ordnance disposal.

The detection of explosive ordnance on agricultural lands is a complex task that requires consideration of several factors directly impacting the effectiveness of search operations. Understanding these factors is critically important for ensuring the safety and success of demining operations.

The detection of EO is influenced by:

- physical and chemical properties of the soil (Density, moisture, and composition of the soil determine the

penetration of electromagnetic and other waves and signals used in detection methods);

- morphological characteristics and condition of EO (The depth of burial, size, degree of corrosion, deformation, and fragmentation of explosive ordnance affect signal strength complicating their identification.);
- meteorological conditions (Weather conditions and extreme temperatures hamper search operations and can affect equipment performance.);
- vegetation (Tall and dense vegetation cover can obstruct access to the territory; seasonal changes in vegetation conceal previously visible EO).

The inherent complexity of demining is increased by the wide variety of mines used. Currently, over 700 types of EO which have been developed, are manufactured, and are employed (Neroba, 2019; Hutsul, Tkach, & Khobzei, 2024).

Based on their intended purpose, mines are divided into anti-personnel and anti-tank (Bhuiyan, & Nath, 2006). The types of anti-tank mines are presented in Tab. 1.

Each landmine consists of three components:

1. a casing (which can be metal, wooden, plastic, or a combination thereof);
2. an explosive charge (TNT, RDX, a mixture of RDX with TNT, Tetral, or other explosive substances);
3. an initiator / fuse (pressure sensor, electronic, or any other type of sensor).

Landmines can be classified by their construction and intended purpose. By construction, landmines are divided into three categories: blast mines, bounding mines (like the Bouncing Betty), and fragmentation mines.

Table 1

Types of anti-tank mines

Name	Appearance	Specifications
TM-62M Anti-Tank Mine		<i>Material: Metal. Weight: 9.5 – 10 kg. Explosive weight (TNT, TGA, MS): 7.5 – 8 kg. Diameter: 32 cm. Height with MVSh-62: 12.8 cm. Height without MVSh-62: 10.2 cm. Sensor diameter: 9 cm. Sensitivity: 200 – 500 kg</i>
TM-62P Anti-Tank (Anti-Track) Mine		<i>Material: Plastic. Weight: 9.0 – 11 kg. Explosive weight (TNT, TGA, MS): 7.5 – 8 kg. Diameter: 34 cm. Height with MV-62: 12.8 cm. Height without MVSh-62: 33.0 cm. Sensor diameter: 12 cm. Sensitivity: 200 – 500 kg. Detection: Not detectable by metal detectors. Can be detected by radio-frequency mine detectors, sniffers, or search dogs</i>
TM-62P2 Anti-Tank (Anti-Track) Mine		<i>Material: AG-4V plastic. Weight: 9.35 – 10 kg. Explosive weight (TNT, TGA, MS): 6.5 – 7 kg. Diameter: 32 cm. Height with MV-62: 12.8 cm. Height without MVSh-62: 33.0 cm. Sensor diameter: 12.5 cm. Sensitivity: 80 – 750 kg. Hard to detect with metal detectors</i>
TM-62P3 Anti-Tank (Anti-Track) Mine		<i>Material: Polyethylene. Weight: 7.5 – 8 kg. Explosive weight (TNT, TGA, MS): 6.5 – 7.2 kg. Diameter: 32 cm. Height with MV-62: 12.8 cm. Height without MVSh-62: 33.0 cm. Sensor diameter: 12.5 cm. Sensitivity: 120 – 750 kg. Hard to detect with metal detectors</i>
TM-62B Anti-Tank (Anti-Track) Mine		<i>Material: No casing. Reinforced outer layer of explosive used as body. Weight: 8.6 kg. Explosive weight (TNT, TGA, MS): 8 kg. Diameter: 31.5 cm. Height with MV-62: 12.8 cm. Height without MVSh-62: 33.0 cm. Sensor diameter: 12.5 cm. Sensitivity: 120 – 750 kg. Hard to detect with metal detectors</i>
TM-62T Anti-Track Blast Mine		<i>Material: Capron Weight: 8.3 – 9 kg Explosive charge weight (TNT, TGA, MS): 7.0 – 7.9 kg Diameter: 32 cm Height with MV-62 fuse: 12.8 cm Sensor diameter: 12.5 cm Sensitivity: 120 – 750 kg Detection: Hard to detect with metal detectors</i>
TM-62D Anti-tank Mine		<i>Body material: Wood Weight: 11.3 – 12 kg Explosive charge weight (TNT, MS): 5.8 – 11 kg Length: 34 cm Width: 29 cm Height with MV-62 fuse: 12.8 cm Sensor diameter: 12.5 cm Sensitivity: 120 – 750 kg Detection: Hard to detect with metal detectors</i>

Blast mines are buried close to the soil surface and are triggered by pressure (when driven over or stepped on, or when handled / damaged). For pressure-activated mines to detonate, typically 5 to 16 kg of pressure is required. The main purpose of these mines is to destroy an object in the immediate vicinity, for example, a person's foot or leg. A blast mine is designed to shatter the target object into fragments, causing secondary damage – amputation or infection (Abujarad, 2007).

Bounding mines are usually buried with only a small part of the initiator protruding from the ground. Upon activation, the initiator sets off a propelling charge that launches the mine approximately 1 meter into the air aiming to cause injury to a person's head and chest (Abujarad, 2007).

At present, numerous means, technologies, and devices for detecting EO are known. The application of a particular device depends on many factors, one of which may be the type of casing, the type of explosive ordnance, the depth of burial, the quantity, the presence of natural and artificial obstacles, etc. The general algorithm for the EO detection process is presented in Fig. 4.

To clear EO from the affected territories, various demining methodologies are used worldwide, including manual demining, the use of metal detectors, trained dogs or rats, drones, robots, and specialized demining machines. The choice of methodology depends on the type and quantity of mines, the geography of the mined territory, available resources, and technologies.

The classification of EO detection methods according to data from Mentus, Jasko, and Saprykin (2024) is presented in Fig. 5.

The choice of methods depends on the demining conditions, the type of mine casing, the explosive substance, the soil where they are located, etc. The detector (sensor)

can be mechanical, acoustic, optical, electromagnetic, nuclear, biological one, etc.

A characterization of mechanical methods (manual and mechanized) for the detection and neutralization of EO is presented in Tab. 2.

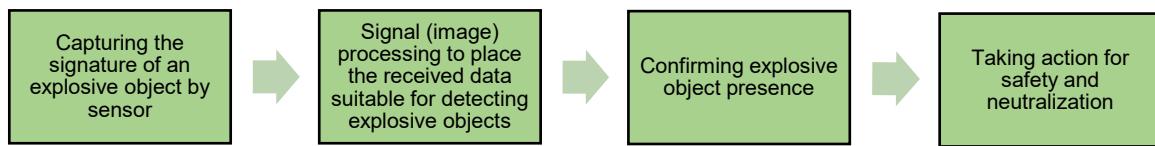


Fig. 4. Stages of the explosives detection process

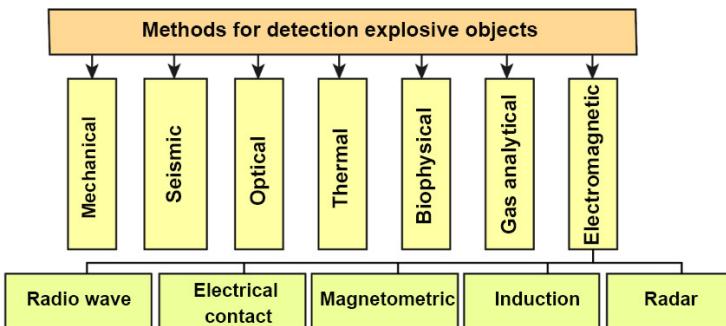


Fig. 5. Methods for the detection and identification of potentially explosive objects

Table 2

Characteristics of EO detection and neutralization methods

	Method Description	Safety and Effectiveness
	Manual methods. A person using probes (prodders) performs a search and demining. Probes are included with army mine detectors. The detectors themselves are divided into many types and differ in the method of searching for explosive devices (metal detectors, thermal imagers, chemical, radiation, acoustic mine detectors) (Velichko, 2023)	Although dangerous for humans and time-consuming, in some cases this may be the only option, especially in complex or hard-to-reach terrains
	Mechanized methods are based on mechanical search followed by neutralization of EO that involves the use of special armored vehicles. To improve quality, combined systems are used (e.g., cultivator and flail). Various tools, search systems, navigation, remote control, etc. are installed on multifunctional platforms. Disadvantages: high equipment cost and operational expenses, environmental consequences. Technical characteristics: weight – up to 23 tons; clearing width – 2.75 m; clearing depth – up to 350 mm; clearing speed – up to 2.3 km/h; demining productivity – up to 30,000 m ² /day; fuel consumption – 40-50 L/h; remote control distance – up to 1000 m	Safe, fast, and effective for demining mines, improvised explosive devices (IEDs), cluster munitions with explosive content up to 15 kg, and over large areas. Cannot always be used, e.g. steep slopes over 35°, or the areas with numerous natural obstacles
	Seismic and acoustic methods stem from the difference in seismo-acoustic signals reflected from the searched object in the audible and infrasound frequency ranges. These methods allow detecting inhomogeneities in the medium that arise between the material of the searched object and the surrounding environment	
	Optical and visual methods. Optical and visual methods for detecting explosive ordnance draw on the use of light waves and images to identify objects. They include the use of special devices, such as optical instruments, lasers, or thermal imagers, which enable spotting the objects by their physical properties, contrast, or anomalies in the environment (vegetation color, soil, micro relief). Advantages: simplicity, accessibility, non-requirement of complex equipment, territorial universality and machine learning use (Popov, et al., 2022). LiDAR technology creates three-dimensional surface models permitting the identification of anomalies that may indicate the presence of dangerous objects, such as mines or improvised explosive devices	Depend on the human factor, experience, attentiveness, and qualifications of the specialist. Support the exposure of only EO found on the surface, while being indispensable for detecting threats at a distance or in visually accessible places. Methods are effective with aerial photography (recognition by geometric outline), but dangerous for humans (in case of visual search). LiDAR scanning is safe; allows for scanning large areas; is capable of detecting both metal and non-metal objects, and is independent of climatic conditions or time of the day
	Thermal methods rely on the ability of the objects to emit or absorb heat and create a temperature contrast with the surrounding environment. The main disadvantages include a significant number of interferences caused by the heterogeneity of the topsoil layer and vegetation, the presence of a large time gap during the day (up to 6-8 hours) in the absence of contrast, and a high cost of thermal imaging equipment	They facilitate scanning large areas at a safe distance minimizing risk to humans, with being effective for detecting objects in darkness. The latter depends on the material of the explosive ordnance

Ending Tab. 2

	Method Description	Safety and Effectiveness
	<p>Biophysical methods employ technical means to analyze biophysical signals. Biophysical methods (biosensors) depend on the possibility of direct sensing of explosive compounds (Habit, 2007) and also include the help of living creatures (dogs, rodents, bees, some types of plants and bacteria) capable of sensing odours and chemical traces of explosive substances (Hutsul, Tkach, & Khobzei, 2024; Rebuilding lives through mine clearance, 2024). One of the most effective sensors for detecting landmines is dogs. They can be trained and precisely taught to find the scent of any explosive filler, casing material, or container buried in the ground up to 60 cm deep. The sensitivity of dogs to mine-related substances is estimated to be 10,000 times higher than that of artificial detectors (Sieber, 1995)</p>	<p>One animal can survey an area the size of a tennis court in 30 minutes. (Implied safety advantage for the operator compared to manual methods)</p>
	<p>Gas analytical and chemical methods are grounded on detecting gaseous vapours from the slow decomposition or evaporation of the explosive substance (EO usually contains from several tens of grams to kilograms of explosive). Detection is carried out using chemical, mass-spectrometric, and other methods. A gas analytical detector is capable of identifying molecules characteristic of explosives in the air (e.g., searching for TNT or nitro-glycerine vapours). The chemical method involves the use of reagents or special test systems that change colour or other properties upon contact with certain hazardous explosive chemical compounds. The concentration of explosive vapours reaches 10^{-7}–10^{-8} g/L near the soil surface above the location of an anti-tank mine buried at a depth of 5 cm (at positive temperatures)</p>	<p>Methods are characterized by high accuracy, but may require specific equipment and conditions for their implementation</p>
	<p>Electromagnetic methods operate via the use of electromagnetic waves to identify materials with different physical properties by detecting distortions of an external electric or magnetic field.</p> <p>Electrical Resistivity Tomography (ERT) method runs on the principle of measuring the electrical properties of the medium, such as conductivity or resistance. It is used to detect small objects in the soil by creating an external electric field in the studied area and analyzing field changes caused by inhomogeneities in the material or structure of the soil.</p> <p>Metal detectors are the most common example. They work on the principle of detecting changes in the electromagnetic field caused by the metallic components of explosive devices.</p> <p>Induction methods employ inductive sensors to measure the electromagnetic response of objects and identify potentially dangerous ones among them.</p> <p>Radio wave method is built around detecting differences in dielectric permittivity between the object (EO) and the soil. Ground Penetrating Radar (GPR) methods use radio waves to scan the soil and detect hidden objects. These systems allow detecting explosives through the analysis of material structure and density</p>	<p>Methods are quite accurate and applied both in open areas and in urban conditions. They provide effective detection even at significant depths and in any natural environments. Magnetic methods prove effective for detecting ferromagnetic objects in any natural environments, while being unable to identify plastic and wooden EO or substances with dielectric properties. Radio wave methods can detect non-metal objects, are independent of weather conditions and lighting. Searches are operative in natural environments (soil, vegetation, water, ice, etc.), and provide detection of engineering mines at depths up to 10 cm</p>

In practice, no single method is universal or 100 % effective; only their combination allows for increased demining efficiency.

One promising direction to search for and neutralize EO is the development of demining robots (sapper robots), which can be used in conjunction with UAVs to improve the efficiency of mine search and neutralization. Such robots can operate in complex terrain conditions, as well as over large areas.

To detect EO, it is necessary to know their demasking features (tell-tale signs), which are determined by a number of factors:

- a) presence of explosive substance;
- b) discovery of a metal concentrated locally (even so-called "non-metallic" mines contain up to 0.1 g of aluminium);
- c) characteristic shape of the EO (mine, shell, bomb, missile, etc.);
- d) inhomogeneities in the environment (disturbance of the soil surface, road surface, building wall, changes in vegetation colour or snow cover, etc.);
- e) existence of the objects unfamiliar or uncharacteristic of the area;
- f) prominence of certain sounds coming from the object (ticking clock, signals at intervals) or flashing indicator on the object;
- g) appearance of power sources on or near the mechanism (batteries, accumulators, etc.);

h)manifestation of tripwires or wires extending a long distance from the mechanism;

- i) discovery of an object left in an unusual place for it;
- j) occurrence of plastic bottles (trash) and other items.

A mine is primarily demasked by three factors:

- presence of a concentrated mass of explosives;
- characteristic mine construction (shape, casing material, etc.);
- disruption of the homogeneity of the surrounding background (vegetation colour, soil density, etc.).

Application of Unmanned Aerial Vehicles (UAVs)

The use of UAVs opens new possibilities for detecting EO and significantly reduces risks in dangerous situations saving human lives. The United Nations has recognized UAVs as a real tool in mine action. Currently, UAVs are the most promising technology.

To solve demining tasks, various types of sensors are installed on UAVs (Cherednychenko, et al., 2023), such as:

- hyperspectral remote sensing cameras for detecting changes in vegetation cover caused by the presence of mines;
- infrared (thermal) cameras for identifying temperature anomalies associated with EO;
- radar locators to search for EO (Ground Penetrating Radar – GPR);
- mobile metal detectors that allow remote scanning of the Earth's surface;
- magnetometers.

Improving demining methods involves integrating various technologies into a unified system. The use of artificial intelligence and geographic information technologies allows for the creation of minefield maps based on the analysis of satellite images and data from UAVs. Furthermore, the development of autonomous demining systems that can operate without direct human involvement is a promising direction.

UAVs promote a rapid and effective survey of large territories and obtaining of high-quality data that can be used for detecting and identifying EO.

UAVs equipped with high-resolution cameras are capable of performing aerial photography from various altitudes and angles. This enables obtaining orthophotos and 3D models of the terrain which can be analyzed in detail. Experienced analysts can detect visual signs of EO presence, namely:

- changes in relief caused by explosions even if partially covered by vegetation;

- atypical depressions, mounds, or other changes in landforms that may indicate the presence of buried EO;

- damage to vegetation, changes in its colour or structure, which may result from explosions or falling ordnance;

- parts of EO located on the soil surface that can be detected on aerial photographs.

UAVs equipped with thermal cameras are capable of detecting temperature anomalies on the soil surface that may be related to the presence of EO (owing to thermal conductivity different from the surrounding soil).

Combining aerial photography and thermal scanning enables obtaining a comprehensive picture of the territory characteristics significantly increasing the probability of detecting EO. The obtained data can be used to create mine hazard maps, plan demining operations, and evaluate the effectiveness of conducted measures.

Comparative analysis of EO detection methods

Detection Methods	Detection Effectiveness	Survey Speed	Cost and Availability	Safety of Application
Visual Inspection	Low (only surface objects)	High (rapid overview)	Low (minimal costs)	High (remote survey)
Metal Detectors	Medium (depends on soil type and depth)	Medium (depends on territory size)	Medium (includes cost of equipment and training)	Medium (requires qualified specialists)
Geophysical Methods (magnetic survey)	High (detection of metal objects at depth)	Medium (depends on territory size)	High (includes cost of equipment and data analysis)	Medium (requires qualified specialists)
GPR Survey (Ground Penetrating Radar)	High (detection of metal and non-metal objects)	Low (requires detailed scanning)	High (includes cost of equipment and data analysis)	Medium (requires qualified specialists)
UAV (aerial photography)	Medium (detection of visual signs)	High (rapid survey of large territories)	Medium (includes cost of equipment and data analysis)	High (remote survey)
UAV (thermal imaging survey)	Medium (detection of thermal anomalies)	High (rapid survey of large territories)	High (includes cost of thermal imaging equipment)	High (remote survey)

Application of Geographic Information Systems (GIS) and Artificial Intelligence

Geographic Information Systems (GIS) play a significant role in researching the impact of military actions, providing tools for data analysis, visualization and modelling, event documentation, assessing the scale of infrastructure destruction consequences, environmental impact, and recovery planning. GIS technologies provide a multidimensional approach to analyzing the impact of military conflicts allowing for more informed decision-making.

There is a growing number of trials combining GIS methods with geostatistical methods for modelling mine risks to supplement data on demining activities (Alegria, et al., 2017). GIS are used to create risk maps that delineate high-danger zones requiring priority demining (Hutsul, Tkach, & Khobzei, 2024). The use of information management can enhance the safety and effectiveness of mine action. Mine action involves collecting large amounts of data from various sources and data required for different processing steps. High spatial resolution satellite images (up to 1 m) are useful for working in minefields as they do not require interpretation. Images with spatial resolution up to 10–30 m are useful as regional maps for team planning.


Using high spatial resolution satellite imagery data and computer vision algorithms, it is possible to automatically identify and analyze damage to land plots, infrastructure, forests, agricultural lands, and even residential areas. Such algorithms can learn to recognize specific signs of combat impact: explosion craters, destroyed buildings, lost or damaged vegetation cover, and other traces of destructive influence.

A growing trend today is the combination of GIS and machine learning, which involves training algorithms based on input data and optimizing their performance over time. Neural networks are effective for detecting landmines due to their ability to process large volumes of data, recognize complex patterns, and adapt to diverse environmental conditions. Due to neural networks, the process of landmine detection has undergone significant changes as they provide effective tools for pattern recognition and classification.

Practical aspects of detecting EO on agricultural lands

The presence of EO on agricultural lands poses a serious threat to the life and health of farmers working in these areas. A sudden explosion can lead to numerous injuries including traumas and fatalities. Furthermore, the mine hazard complicates agricultural work negatively affecting the region's economy.

Study Object № 1. For the study, agricultural lands located in the vicinity of the city of Izium (Fig. 6a), Kharkiv Oblast, were selected. This territory suffered significant destruction during the Russian occupation, which lasted from April 2022 until September 10, 2022. The city of Izium, being a strategically important point, was at the epicenter of active hostilities involving artillery, aviation, mining, and other types of weapon, which led to a large-scale contamination of the territory with EO. Despite the city's liberation, the threat of mine danger remains extremely high, especially on agricultural lands (Fig. 6b), where areas are mined with anti-personnel and anti-tank mines. Besides, there is a likelihood of remnants of unexploded artillery shells, cluster munitions, mines, aerial bombs, improvised explosive devices, etc.

a) Plot 1: territory of agricultural lands of Izium city; b) Plot 2: agricultural lands of the Hostomel community territory

The city of Izium is located on the banks of the Siverskyi Donets River. The M03 and P79 highways and a railway pass through the city. The city is surrounded by very dense forests interspersed with numerous hills and steppe ploughed plots. The territory's relief is varied, from flat areas to hills and ravines, which complicates demining operations. Absolute elevation marks range from 57 m to 183 m.

Surveying the selected territory

Preparatory stage. To begin operation, it is necessary to familiarize oneself with the geological conditions of the study area, create a plan with images of the search zone, and plot the movement trajectory. Zones can be divided into squares with corresponding values by applying a grid to the map. An example of zoning for surveying the territory is shown in Fig. 7.



Fig. 7. Zoning scheme for the study of agricultural lands in the territory of Izium city (Kharkiv Oblast) for detecting explosive devices

Using such a map, sappers can document in which square EO was found and what it is. For example, EO found / not found in square C-7.

Aerial photography and results processing. A UAV equipped with a high-resolution camera performs a fly-over of the territory conducting surveys from different altitudes and angles. A schematic representation of the UAV route to be used for aerial photography of the area is presented in Fig. 8. Scanning is carried out along established routes with zone overlap to ensure full coverage of the territory. Upon detecting metal objects, sappers identify those using

additional tools. The obtained aerial photographs are processed using specialized software to create orthophotos and 3D models of the terrain. Afterward, the resulting images are carefully studied to identify visual signs of EO presence (craters, traces of explosions, relief anomalies, changes in vegetation, etc.).

Based on the analysis of satellite images and UAV data using artificial intelligence and geographic information technologies, maps of minefields can be created.

Image analysis using geographic information systems (GIS) and machine learning methods. First, image preprocessing is carried out, which includes correcting distortions, adjusting brightness, and enhancing contrast. Next, characteristic objects are extracted, which involves applying computer vision algorithms to search for circular or elliptical depressions on the surface (Fig. 9).

In the next stage, craters are classified using artificial neural networks or other recognition methods to separate them from natural formations such as ravines, depressions, or water bodies.

A key aspect of the study is the analysis of the spatial distribution of craters. A high density of such objects in a limited area may indicate intensive mining or artillery shelling. Using ArcGIS tools or other geographic information programs, one can identify clusters of craters that may indicate minefields, assess the probability of unexploded ordnance presence based on the uneven distribution of explosions, and build risk maps for further demining of territories.

Visual analysis using metal detectors involves a thorough inspection of the territory by qualified specialists to detect any signs that may indicate the presence of EO. Sappers equipped with pulse induction metal detectors carefully scan areas identified as potentially hazardous based on aerial photography and thermal scanning results.

This methodology is used in the military sphere to assess danger in deoccupied territories, in agriculture to minimize risks during soil cultivation, and in humanitarian demining missions. The use of UAVs significantly speeds up the process of surveying territories and reduces risks for sappers (Molochko et al., 2021).

Study Object № 2. Within the scope of the agricultural land study, the territory of the Hostomel community, which is located in the Bucha district of Kyiv Oblast, was selected. The territory is characterized by flat relief. The soil cover mainly consists of sod-podzolic and chernozem-meadow soils, which is favourable for agriculture (Fig. 6 B). Within the Hostomel community, there are significant areas of arable land, meadows, and pastures used for growing grain, vegetables, and fodder crops. Following the hostilities in the

Hostomel territory, there arose a need for a detailed analysis of agricultural lands.

A field near the outskirts of the Hostomel settlement was chosen as a test site, where shell craters could be identified

on an image from 2022. Subsequently, an unsupervised classification was performed (Fig. 10 a) and potentially hazardous areas were identified (Fig. 10 b).

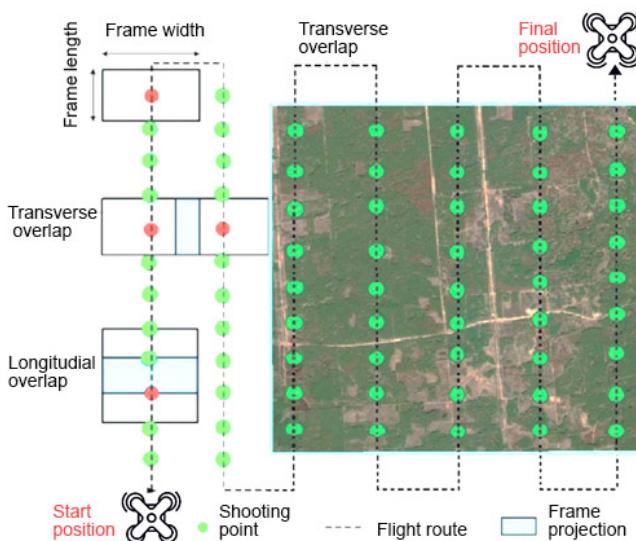


Fig. 8. UAV movement route for performing aerial photography of the area

Fig. 9. Example of identifying craters on agricultural lands based on an orthophoto

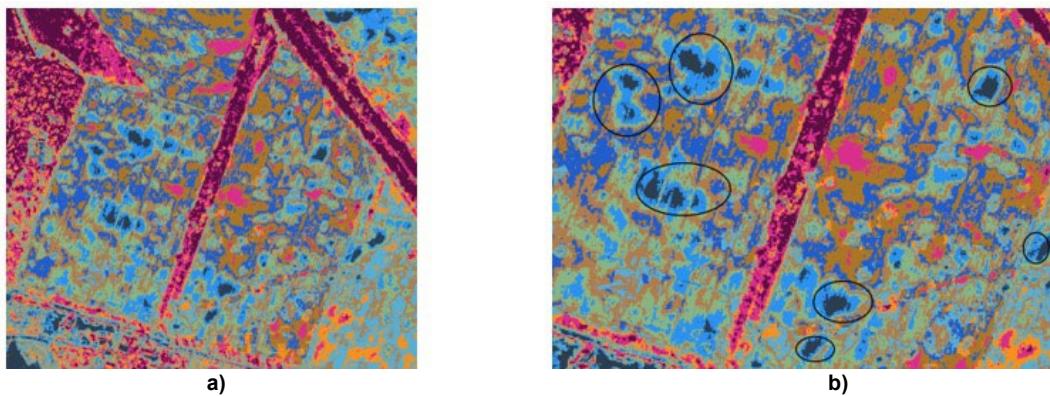


Fig. 10. Unsupervised classification findings:
a) identification of 10 classes and b) identification of hazardous areas

The conducted image classification using ArcGIS Pro tools is an effective method for the automated detection of shell craters on agricultural lands. Using unsupervised classification allows for rapid segmentation of the territory and identification of potential destruction zones. The use of GIS analysis facilitates not only identifying individual craters

but also determining patterns in their location, which can help predict high-risk zones.

To locate the most dangerous zones with a high probability of unexploded ordnance, craters are marked on the image as point features (Fig. 11).

Fig. 11. Manual identification of craters on a satellite image

The application of buffer zones is an effective tool for spatial analysis allowing for the determination of potentially hazardous territories around shell craters. Defining zones of different radii helps assess the level of risk in a specific area, considering possible fragment dispersion and the probability of unexploded ordnance presence. Next, a map of buffer zones around craters with shells was constructed with the following buffer zone radii (Fig. 12):

- minimum zone (~ 5 m) – the immediate location of the crater, useful for precise explosion localization;
- medium zone (30 m) – the zone of possible fragment dispersion for most artillery shells (122 mm, 152 mm, 155 mm);
- maximum zone (100 m) – a potentially hazardous zone for large munitions or cluster shells.

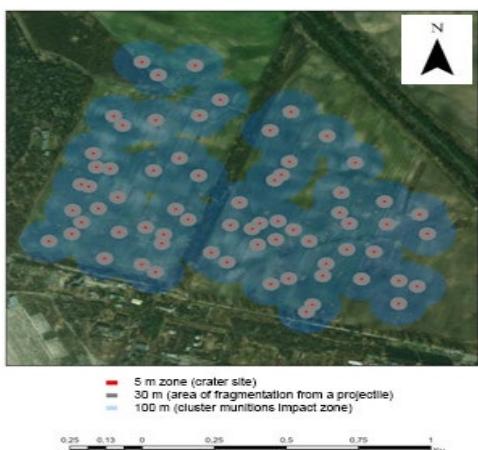


Fig. 12. Construction of buffer zones around craters

By optimizing both UAVs and sappers, this map can help in developing the routes for demining.

Results

Results Analysis and Effectiveness Evaluation. The analysis of the obtained results and the evaluation of the effectiveness of the applied methods is a necessary stage after completing a survey of agricultural lands. This stage is critically important for determining the degree of territory clearance and providing recommendations for its further use. Data obtained by different methods are correlated to confirm the presence of EO.

Survey of agricultural land territory

1. Data analysis using a complex of methods. Aerial photography and thermal scanning. Orthophotos and 3D models of the terrain are analyzed to detect visual signs of EO (craters, traces of explosions, relief anomalies). Thermal images are analyzed to detect temperature anomalies that may indicate the presence of buried EO. Detected anomalies are correlated with the data obtained by other methods.

Metal detectors. Data obtained from the metal detectors are analyzed to determine the location and type of metal objects. Detected metal objects are correlated with the data obtained by other methods.

Geophysical methods (magnetometric survey). Data from magnetometric surveys are analyzed to determine the location and size of metal objects at depth. Detected magnetic field anomalies are correlated with the data obtained by other methods.

Biophysical methods (service dogs). Data obtained from canine teams are analyzed to determine locations suspected of containing explosive substances. These data are correlated with the data obtained by other methods.

2. Data correlation and verification. Data obtained by different methods are correlated to confirm the presence of EO. Anomalies confirmed by multiple methods are identified as priorities for further verification. Data verification is carried out through visual inspection and the use of additional tools.

3. Determination of type, quantity, and location of EO. Based on data analysis, the type, quantity, and location of detected EO are determined. A mine hazard map is created indicating detected EO and hazardous zones.

4. Evaluation of the effectiveness of applied methods. The speed of survey, detection accuracy, and cost of each method are assessed. The advantages and disadvantages of each method under the conditions of the specific study object are determined. The effectiveness of combining different methods is evaluated. The time spent on the survey is assessed.

5. Analysis of identified problems and shortcomings. There are problems encountered during the research (weather conditions, technical malfunctions, and human factor). Shortcomings in the planning and organization of operations are identified. Recommendations for improving the demining process in the future are developed.

Discussion and conclusions

Contamination of agricultural land with EO as a result of the war unleashed by the Russian Federation poses a significant threat to the life and health of farmers and hinders the restoration of agricultural activities. Detection and neutralization of EO is a complex and dangerous process requiring a comprehensive approach. Applying a combination of different detection methods (UAVs with aerial photography and thermal scanning and other sensors, metal detectors, geophysical methods, service dogs) combined with GIS allows achieving maximum survey efficiency. Each method has its advantages and limitations, while combining them compensates for the shortcomings of individual methods.

The use of UAVs in humanitarian demining has a great potential for reducing risks and accelerating the process of clearing territories from explosive ordnance. Aerial photography and thermal scanning using UAVs are effective for the initial inspection of large territories and identifying potentially dangerous zones. This allows optimizing subsequent operations using metal detectors and geophysical methods. The development of geographic information systems combined with artificial intelligence technology is also complementary and promising. Using satellite imagery and machine learning technologies, artificial intelligence can analyze large datasets to detect and classify changes in the structure of land resources caused by military actions and play a key role in the operational and accurate monitoring of affected territories.

The conducted research confirms the effectiveness of a comprehensive approach to detecting EO on agricultural lands. The research results can be used for planning and conducting demining work in other territories contaminated with EO.

Authors' contribution: Vitalii Zatserkovnyi – conceptualization, formulation of research goals and objectives, methodology, editing; Irina Tsiupa – analysis, verification of results, editing, and adding supplements; Mauro de Donatis – writing (review), data validation; Igor Nikoliuk – analysis and systematization of literature sources, writing (original draft). Valentin Kravchenia – calculations and GIS analysis of study object 1, data validation; Oleksandr Tsvykh – calculations and GIS analysis of study object 2, data validation; Tetiana Mironchuk – translation, editing.

References

Abujarad, F. (2007). *Ground penetrating radar signal processing for landmine detection*. [M. Sc. Thesis. University of Magdeburg].

Alegria, A. C., Zimanyi, E., Cornelis, J., & Sahli, H. (2017). Hazard mapping of landmines and ERW using Geo-Spatial techniques. *Journal of Remote Sensing & GIS*, 06 (02). <https://doi.org/10.4172/2469-4134.1000197>

Bhuiyan, A., & Nath, B. (2006). Antipersonnel landmine detection based on GPR and IR Imaging: A review, technical report, computer science and software engineering. *University of Melbourne ePrints Repository* (UMER). <https://doi.org/10.1109/ICPR.2006.274>

Cherednychenko, N. A., Palamarchuk, O. K., Shemenduk, O. V., & Martyniuk, V. V. (2023). Shynthesis of the system for detection of explosive objects on the base of an unmanned aerial vehicle. *Systemy i Tekhnolohii Zviazku, Informatyzatsii ta Kiberbezpeky*. VITI, 3 [in Ukrainian]. [Чередниченко, Н. А., Паламарчук, О. К., Шемендюк, О. В., Мартинюк, В. В. (2023). Синтез системи виявлення вибухонебезпечних предметів на базі безпілотного літального апарату. *Системи і технології зв'язку, інформатизації та кібербезпеки*. ВІТІ, 3]. <https://doi.org/10.58254/viti.3.2023.18.163>

Habit, M. K. (2007). Controlled biological and biomimetic systems for landmine detection biosensors and bioelectronics. *Biosensors and Bioelectronics*, 23(1), 1–18. <https://doi.org/10.1016/j.bios.2007.05.005>

Hutsul, T. V., Tkach, V. O., & Khobzei, M. M. (2024). Classification and features of methods of humanitarian demining of territories at the present stage. Chernivtsi, Yuryi Fedkovych Chernivtsi National University [in Ukrainian]. [Гуцул, Т. В., Ткач, В. О., & Хобзей, М. М. (2024). Класифікація та особливості методів гуманітарного розмінування територій на сучасному етапі. Чернівець, нац. ун-т ім. Ю. Фед'ковича].

Mentus, I. E., Jasko, V. A., & Saprykin, I. Y. (2024). Methods of mine detection for humanitarian demining: survey. *Ukrainian Journal of Remote Sensing*, 11(3), 22–28 [in Ukrainian]. [Ментус, І. Е., Ясько, В. А., & Сапрікін, Є. Ю. (2024). Методи виявлення мін для гуманітарного розмінування: огляд, Український журнал дистанційного зондування Землі, 11(3), 22–28]. <https://doi.org/10.36023/ujrs.2024.11.3.271>

Mine Safety (2025). Territorial Defense Forces of the Armed Forces of Ukraine [in Ukrainian]. [Мінна безпека (2025). Сили територіальної оборони Збройних Сил України]. <https://sprotvvg7.com.ua/lesson/minna-bezpeka>

Віталій ЗАЦЕРКОВНИЙ¹, д-р техн. наук, проф.
ORCID ID: 0009-0003-5187-6125
e-mail: vitalii.zatserkovnyi@knu.ua

Ірина ЦЮПА¹, канд. геол. наук
ORCID ID: 0000-0002-8350-6685
e-mail: irytnatsiupa@knu.ua

Мауро ДЕ ДОНАТИС², канд. геол. наук, доц.
ORCID ID: 0000-0002-9721-1095
e-mail: mauro.donatis@uniurb.it

Ігор НІКОЛЮК¹, асп.
e-mail: Histerias@ukr.net

Валентин КРАВЧЕНЯ¹, асп.
ORCID ID: 0009-0002-4160-361X
e-mail: valentyn.kravchenia@knu.ua

Олександр ЦВІК¹, асп.
ORCID ID: 0009-0006-5464-2078
e-mail: oleksandr.tsvykh@knu.ua

Тетяна МІРОНЧУК¹, канд. філол. наук, доц.
ORCID ID: 0000-0002-5923-1028
e-mail: t.mironchuk@knu.ua

¹Київський національний університет імені Тараса Шевченка, Київ, Україна
²Університет Урбіно Карло Бо, Урбіно, Італія

**МЕТОДИ ВИЯВЛЕННЯ ВИБУХОНЕБЕЗПЕЧНИХ ДІЛЯНОК
ДЛЯ ДОСЛІДЖЕННЯ СІЛЬСЬКОГОСПОДАРСЬКИХ ТЕРИТОРІЙ**

В с т у п . Забруднення земель сільськогосподарського призначення вибухонебезпечними предметами (ВНП) внаслідок війни, роз'єданої РФ створює значну загрозу для життя та здоров'я аграріїв, а також перешкоджає відновленню сільськогосподарської діяльності. Виявлення та знешкодження ВНП є складним та небезпечним процесом, що вимагає комплексного підходу.

Розглянуто основні типи наземних мін, що трапляються в Україні. Наведено основні демаскувальні фактори вибухонебезпечних предметів, проведено аналіз існуючих методів і технологій виявлення ВНП на землях сільськогосподарського призначення, оцінено їх переваги та недоліки.

Miroshnychenko, B. (2023). Dozens of years and billions of dollars. When will Ukrainian fields and cities be demined? *Ekonomichna Pravda* [in Ukrainian]. [Мірошніченко, Б. (2023). Десятки років та мільярди доларів. Коли розмінюють українські поля та міста? *Економічна Правда*]. [www.epravda.com.ua/publications/2023/03/7/697737](https://epravda.com.ua/publications/2023/03/7/697737).

Molochko, S., Bashynskyi, V., Kalamurza, O., & Zhurakhov, V. (2021). Analysis of the current state, characteristics and prospects of development of explosive ordnance detection sensors mounted on unmanned aerial systems, *State Scientific Research Institute of Armament and Military Equipment Testing and Certification* 8(2), 80–90 [in Ukrainian]. [Молочко, С. М., Башинський, В. Г., Каламурза, О. Г., & Журахов, В. А. (2021). Аналіз сучасного стану, характеристик та перспектив розвитку датчиків виявлення вибухонебезпечних предметів, встановлених на БПЛА. *Збірник наукових праць державного науково-дослідного інституту випробувань і сертифікації зброєння та військової техніки*, 8(2), 80–90]. <https://doi.org/10.37701/DNDIVSOVT.8.2021.09>

Neroba, V. (2019) The Role of Mining Weapons in the Modern Wars and Border Conflicts 3(81), 155–170 [in Ukrainian]. [Нероба, В. (2019). Роль мінної зброї в сучасних війнах і прикордонних конфліктах: 36. *наук. пр. Національної академії державної прикордонної служби України. Військові та технічні науки*, 3(81), 155–170]. <https://www.mil.gov.ua/news/2019/02/06/minna-zagroza-shhodesyata-zhertva-pidriviv-ditina>

Popov, M. O., Stankevich, S. A., Mosov, S. P., Titarenko, O. V., Dugin, S. S., Golubov, S. I., & Andreev, A. A. (2022). Method for minefields mapping by imagery from unmanned aerial vehicle. *Advances in Military Technology*, 17(2), 211–229. <https://doi:10.3849/aimt.01722>.

Rebuilding lives through mine clearance (2024). APOPO. <https://apopo.org/what-we-do/detecting-landmines-and-explosives/where-we-work/apopo-in-ukraine/>

Saprykin, I. Y. (2024). Optical deep learning landmine detection based on limited dataset of aerial imagery. *Science-based Technologies*, 62(2). <https://doi:10.18372/2310-5461.62.18708>.

Semeniuk, T. (29.03.2025). How much land is mined in Ukraine and how much has already been demined? [in Ukrainian]. [Семенюк, Т. (29.03.2025). Скільки землі заміновано в Україні і скільки вже розмінували]. <https://therape.ua/ua/news/skilki-zemli-zaminovano-v-ukrayini-i-skilki-vzhe-rozminuvali>

Sieber, A. (1995). Localisation and identification of anti-personal mines. *Joint Research Centre, European Commission*. EUR 16329N.

The Ukrainian Association of Humanitarian Demining (2024). <https://deminingua.com/karta-rozminuvannya>

Velichko, R. (2023). *Demining Methods: Diversity of Approaches to Mine Threat* [in Ukrainian]. [Величко, Р. (2023). Методики розмінування: різноманітність підходів до мінної загрози]. <https://militarnyi.com/uk/blogs/metodyky-rozminuvannya-riznomanitnist-pidhodiv-do-minnoyi-zagrozy/>

Отримано редакцією журналу / Received: 07.03.25

Прорецензовано / Revised: 23.04.25

Схвалено до друку / Accepted: 30.06.25

Віталій ЗАЦЕРКОВНИЙ¹, д-р техн. наук, проф.
ORCID ID: 0009-0003-5187-6125
e-mail: vitalii.zatserkovnyi@knu.ua

Ірина ЦЮПА¹, канд. геол. наук
ORCID ID: 0000-0002-8350-6685
e-mail: irytnatsiupa@knu.ua

Мауро ДЕ ДОНАТИС², канд. геол. наук, доц.
ORCID ID: 0000-0002-9721-1095
e-mail: mauro.donatis@uniurb.it

Ігор НІКОЛЮК¹, асп.
e-mail: Histerias@ukr.net

Валентин КРАВЧЕНЯ¹, асп.
ORCID ID: 0009-0002-4160-361X
e-mail: valentyn.kravchenia@knu.ua

Олександр ЦВІК¹, асп.
ORCID ID: 0009-0006-5464-2078
e-mail: oleksandr.tsvykh@knu.ua

Тетяна МІРОНЧУК¹, канд. філол. наук, доц.
ORCID ID: 0000-0002-5923-1028
e-mail: t.mironchuk@knu.ua

¹Київський національний університет імені Тараса Шевченка, Київ, Україна
²Університет Урбіно Карло Бо, Урбіно, Італія

Результати. Традиційні методи виявлення та знешкодження мін є трудомісткими, небезпечними та часто неефективними. Застосування комбінації різних методів виявлення ВНП (металодетектори, механічні методи, геофізичні методи, біофізичні, БПЛА з аерофотозйомкою й тепловізійним скануванням та іншими датчиками) та інтеграція сучасних технологій (засоби дистанційного зондування і штучний інтелект) дає змогу досягти максимальної ефективності обстеження та підвищити безпеку. Кожен метод має свої переваги та обмеження, а їх комбінування дозволяє компенсувати недоліки окремих методів.

Наведено приклади практичного застосування виявлення ВНП за допомогою даних дистанційного зондування Землі, інструментів просторового аналізу ГС та машинного навчання для аналізу сільськогосподарських угідь на прикладі тестових ділянок у Київській та Харківській областях.

Висновки. Використання БПЛА в гуманітарному розмінуванні має великий потенціал для зменшення ризиків та прискорення процесу очищення територій від вибухонебезпечних предметів. Аерофотозйомка та тепловізійне сканування з використанням БПЛА є ефективними для первинного огляду великих територій та виявлення потенційно небезпечних зон. Це дає змогу оптимізувати подальші роботи з використанням металодетекторів і геофізичних методів. Розвиток геоінформаційних систем у поєднанні з технологією штучного інтелекту є також допоміжним та перспективним. Використовуючи супутникові зображення і технології машинного навчання, штучний інтелект здатен аналізувати великі масиви даних для виявлення і класифікації змін у структурі земельних ресурсів, спричинених військовими діями і відігравати ключову роль в оперативному та точному моніторингу постраждалих територій.

Ключові слова: вибухонебезпечні предмети, російсько-українська війна, мінне забруднення, сільськогосподарські території.

Автори заявляють про відсутність конфлікту інтересів. Спонсори не брали участі в розробленні дослідження; у зборі, аналізі чи інтерпретації даних; у написанні рукопису; в рішенні про публікацію результатів.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Наукове видання

ВІСНИК

КІЇВСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ГЕОЛОГІЯ

Випуск 3(110)

Відповідальний за випуск Олександр Меньшов
Chief publication manager Oleksandr Menshov

Комп'ютерна обробка статей Надія Тринос
Computer processing of the articles by Nadiya Trinos

Оригінал-макет виготовлено Видавничо-поліграфічним центром "Київський університет"

Автори опублікованих матеріалів несуть повну відповідальність за підбір, точність наведених фактів, цитат, економіко-статистичних даних, відповідної галузевої термінології, власних імен та інших відомостей. Редколегія залишає за собою право скорочувати та редактувати подані матеріали.

Opinions, statements, accuracy of the quotations, economic and statistical data, terminology, proper names and other information are made on the responsibility of the authors. The Editorial Board reserves the right to shorten and edit the submitted materials.

Формат 60x84^{1/8}. Обл.-вид. арк. 19,7. Ум. друк. арк. 16,3. Наклад 300. Зам. № 225-11470.
Гарнітура Arial. Папір офсетний. Друк офсетний. Вид. № Гл3.
Підписано до друку 29.08.25

Видавець і виготовлювач

ВПЦ "Київський університет"

Б-р Тараса Шевченка 14, м. Київ, 01030

телефон (38044) 239 32 22; (38044) 239 31 58; (38044) 239 31 28

е-mail: vpc@knu.ua; vpc_div.chief@univ.net.ua; redaktor@univ.net.ua

http: vpc.knu.ua

Свідоцтво суб'єкта видавничої справи ДК № 1103 від 31.10.02