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САМОНАВЧАЛЬНІ НЕЙРОННІ КАРТИ В ЗАДАЧАХ ЕКОЛОГІЧНОГО МОНІТОРИНГУ 
 
(Представлено членом редакційної колегії д-ром техн. наук, проф. В.І. Зацерковним) 
При проведенні екологічного моніторингу стану довкілля за виміряними значеннями деякого абіотичного фактору існує 

проблема: як на підставі результатів вимірювань, що були проведені в кінцевому числі точок, побудувати цілісну неперервну 
карту забруднення на всій контрольованій території. Мета роботи: дослідити можливості застосування методу самонав-
чальних нейронних карт (Self Organizing Map – SOM) для завдань екологічного моніторингу довкілля, а саме для побудови де-
тальної безперервної карти екологічних забруднень на місцевості. Алгоритм роботи SOM включає: 1) розташування на 
карті контрольованої території активної нейронної мережі заданої топології із заздалегідь визначеною кількістю вузлів-
нейронів; 2) вибір вхідного вектора з набору даних спостережень; 3) знаходження найбільш близького значення вектора ву-
зла-нейрона ("нейрона-переможця") на карті; 4) визначення кількості найближчих сусідніх нейронів до нейрона-переможця; 
5) навчання мережі, в ході якого значення вектора нейрона-переможця і найближчих сусідніх нейронів поступово змінюються, 
наближаючись до значення векторів вхідних нейронів – даних спостережень; 6) визначення помилки карти. Методи дослі-
джень: вимірювання амбієнтного еквівалента потужності дози безперервного рентгенівського і гамма-випромінювання за 
допомогою дозиметра МКС-05 "ТЕРРА"; як матеріали досліджень було використано результати вимірювань потужності 
дози на території історичного центру м. Харкова; обробка отриманих даних методами SOM за допомогою комп'ютерних 
програм MatLab 8.1 та STATISTICA 10. Результати: у процесі 1000 циклів самонавчання нейронної мережі з 100 активних ней-
ронів, розташованих випадковим чином на карті контрольованої території, було одержано 25 вихідних нейронних кластерів, 
координати центрів яких практично збігалися з координатами точок спостережень. Таким чином була отримана безпере-
рвна карта радіаційного фону на контрольованій території. Точність карти становила не гірше за 0,25 мкР/год. Висновки: у 
роботі доведено можливість застосування методу самонавчальних нейронних карт (SOM) для побудови детальної карти 
рівня екологічних забруднень на місцевості за результатами вимірювань значень деякого абіотичного фактору в кінцевому 
числі точок спостережень. Доведено, що даний метод є більш точним та надійним порівняно з методами регресійної кар-
тографії та кластерного аналізу, від яких він принципово відрізняється. Можливості істотного поліпшення точності ме-
тоду полягають у збільшенні кількості початкових нейронів на карті місцевості і кількості ітерацій у процесі їх навчання. 

Ключові слова: екологічний моніторинг, рентгенівське та гамма-випромінювання, нейромережеві алгоритми, самонавча-
льні нейронні карти, SOM. 

 
Вступ. При проведенні екологічного моніторингу 

стану довкілля за виміряними значеннями деякого абіо-
тичного фактору, наприклад, рівня радіації, хімічного за-
бруднення будь-якою речовиною, рівня акустичного 
шуму, інтенсивності фонового електричного або магніт-
ного поля та ін., існує така проблема: як на підставі ре-
зультатів вимірювань, що були проведені в кінцевому 
числі точок, розташованих всередині контрольованої 
зони, побудувати цілісну карту забруднення на всій кон-
трольованій території. Багато в чому це завдання є ана-
логічним до завдання відновлення зображення за його 
точковими фрагментами (наприклад, Василенко та Та-
раторин, 1986; Некос та ін., 2007, 2008). 

Існують різні підходи до вирішення цієї проблеми. Зна-
чна частина з них пов'язана з регресійною картографією – 
побудовою рівняння лінійної чи нелінійної регресії для за-
лежності чисельних значень показника абіотичного фак-
тору від координат довільної точки на карті 
контрольованої території в різних ступенях на підставі ре-
зультатів вимірювань в кінцевому числі контрольних точок 
із застосуванням методу найменших квадратів (напри-
клад, Некос та ін., 2009; Гетманець та ін., 2010; Антро-
пов та ін., 2010). Якщо кількість точок спостережень 
досить велика, то цей підхід дає доволі добрі результати 
всередині контрольованої зони, але призводить до суттє-
вих похибок прогнозів поблизу її кордонів, де абсолютні 
значення координат (відносно центру зони) значні, до того 
ж вони підносяться до різних додатних ступенів. 

Можна будувати рівняння регресії не за абсолют-
ними значеннями координат, а за координатами, які від-
ліковуються як найменша відстань від довільної точки 
зони до деякої ламаної лінії, що послідовно з'єднує усі 
точки спостережень (Гетманець та Пеліхатий, 2016; 
Гетманець та ін., 2017; Гетманець, 2018). Тоді анома-
лії поблизу кордонів контрольованої зони усуваються, 

але передбачення рівняння регресії є нестійкими відно-
сно малих зміщень положення точки на карті далеко від 
точок спостережень, коли відстані від цієї точки до декі-
лькох з них приблизно рівні, і передбачення рівняння ре-
гресії навіть за незначних зсувів точок на карті 
змінюються стрибкоподібно. 

У роботі (Гетманець та ін., 2019) було досліджено 
можливість застосування кластерного аналізу для побу-
дови карт радіаційного забруднення довкілля. Після об-
робки результатів вимірювань із застосуванням різних 
методів кластеризації було встановлено, що результати 
аналізу якісно збігаються між собою, і доведено можли-
вість застосування кластерного аналізу для побудови ка-
рти забруднень. Однак ці карти є недостатньо 
детальними, оскільки проєкції "радіаційних кластерів", 
які являють собою кулі в тривимірному просторі (дві ко-
ординати – це декартові координати х і у точки на місце-
вості, а третя – рівень забруднення z у даній точці), на 
двовимірну поверхню контрольованої зони є колами, що 
перетинаються, радіуси яких достатньо великі. 

У наш час інтенсивно розвиваються нейромережеві 
алгоритми (наприклад, Уоссермен, 1992; Ежов та 
Шумский, 1998). Один з них – самонавчальні або самоо-
рганізаційні нейронні карти (Self Organizing Map або 
SOM) (Kohonen, 1995). Алгоритм SOM базується на двох 
основних механізмах – векторному квантуванні і проєк-
туванні, тому цей метод можна використовувати для 
кластеризації, пошуку та аналізу закономірностей у вихі-
дних даних, а також для заповнення пропусків у даних. 
Як і будь-яка нейромережа, SOM складається з вузлів-
нейронів. Кожен вузол нейромережі описується двома 
векторами: вектором ваги m, який має розмірність вихід-
них даних (показник рівня забруднення), і вектором ко-
ординат вузла на карті r (x ,y ) . Алгоритм роботи SOM 
складається з таких кроків: 1) розташування на карті 
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всієї контрольованої території активної нейронної ме-
режі заданої топології із заздалегідь визначеною кількі-
стю вузлів-нейронів; 2) вибір вхідного вектора з набору 
даних спостережень; 3) знаходження найбільш близь-
кого значення вектора вузла-нейрона (так званого, ней-
рона-переможця) на карті; 4) визначення кількості 
найближчих сусідніх нейронів до нейрона-переможця; 
5) навчання мережі, в ході якого значення вектора ней-
рона-переможця і найближчих сусідніх нейронів посту-
пово змінюються, наближаючись до значення вхідних 
векторів – даних спостережень; 6) визначення помилки 
карти. Цикл закінчується або при виконанні певної кіль-
кості ітерацій, або при досягненні наперед визначеної 
похибки карти. 

Метою даної роботи є дослідження можливості за-
стосування методу SOM для побудови детальної карти 
екологічних забруднень на місцевості на основі даних 
локальних вимірювань, що були проведені в кінцевому 
числі точок всередині контрольованої зони. Як приклад 
розглядається побудова карти поля радіаційного фону 
безперервного рентгенівського і гамма-випромінювання. 

Матеріали та методи досліджень. Як матеріали до-
сліджень були використані результати вимірювань амбі-
єнтного еквівалента потужності дози безперервного 
рентгенівського і гамма-випромінювання на території іс-
торичного центру м. Харкова, що обмежена річками Ло-
пань і Харків аж до їх злиття (Гетманець та ін., 2020). 
Вимірювання проводилися протягом жовтня 2019 р.  
щодня з 10-ї до 12-ї години за допомогою дозиметра 
МКС-05 "ТЕРРА" з абсолютною помилкою відліку 
0,01 мкЗв/год. Цей прилад призначений для дозиметри-
чного і радіометричного контролю на промислових підп-
риємствах; для екологічних досліджень; для контролю 
радіаційної чистоти житлових приміщень, будівель, спо-
руд та прилеглої до них території. 

Карту території, на якій проводилися вимірювання, 
наведено на рис. 1. На цій карті показано розташування 

усіх 25 точок спостережень. Карта вертикально орієнто-
вана з півдня на північ, а горизонтально – із заходу на 
схід. За початок відліку координат прийнято точку 1,  
розташовану навпроти центрального входу в будівлю 
Харківської міської держадміністрації.  

Як більш конкретний приклад будемо розглядати об-
робку результатів вимірювань потужності дози безпере-
рвного рентгенівського і гамма-випромінювання, що 
були виконані 1 жовтня 2019 р. Відповідні значення по-
тужності дози разом з координатами точок спостережень 
наведено в табл. 1. Для спрощення і більшої наочності 
аналізу потужність дози будемо визначати в позасисте-
мних одиницях – мкР/год, замість одиниць системи СІ – 
мкЗв/год (саме в одиницях мкЗв/год проградуйована 
шкала дозиметра МКС-05 "ТЕРРА"). Коефіцієнт перера-
хунку такий: 1 мкР/год = 0,01 мкЗв/год. Дані 2-го, 3-го та 
5-го стовпчиків табл. 1 для кожної точки спостережень в 
термінах SOM являють собою так звану вхідну або "на-
вчальну вибірку" з 25 3-вимірних векторів. 

Обробка цих даних проводилася методами SOM за 
допомогою пакета Neural Network Toolbox програми 
MatLab 8.1 (фірми MathWorks, US) (див., наприклад, 
Ефименко и Синица, 2017).  

Ініціалізація SOM здійснювалася таким чином. На рис. 2 
як приклад показано активну нейронну мережу, що склада-
лася з 100 нейронів-вузлів, розташованих випадковим чи-
ном (топологія "randtop") на площі розміром близько 
1,5 км2, яка перекривала всю контрольовану зону (рис. 1). 
Кожен активний нейрон характеризувався вектором ваги 
m, який мав розмірність вихідних векторів – даних 5-го сто-
впчика табл. 1 (мкР/год), і вектором розміщення r(x,y) на ка-
рті (рис. 2). Позиції активних нейронів на карті ініціювалися 
за допомогою коду: P = rands(2,100). Вектори ваги нейронів 
мали цілі значення в одиницях мкР/год, які обиралися ви-
падковим чином з інтервалу 8 мкР/год – 18 мкР/год. У цей 
діапазон потрапляли усі результатів вимірювань (табл. 1). 
Отже, активна нейронна мережа являла собою випадкову 
тривимірну вибірку. 

 

 
Рис. 1. Карта-схема розташування точок спостережень на території історичного центру м. Харкова 
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Таблиця  1  
Результати вимірювань амбієнтного еквівалента потужності дози неперервного рентгенівського  

та гамма-випромінювання станом на 1 жовтня 2019 року 

№ точки спостережень Координати, м Потужність дози 
Х Y мкЗв/год мкР/год 

1 0 0 0,13 13 
2 -5 255 0,13 13 
3 -262 270 0,14 14 
4 -259 4 0,14 14 
5 -275 -247 0,11 11 
6 -2 -253 0,13 13 
7 269 -244 0,13 13 
8 235 17 0,12 12 
9 255 285 0,13 13 

10 249 589 0,15 15 
11 -8 517 0,14 14 
12 -263 533 0,14 14 
13 -526 522 0,12 12 
14 -505 282 0,12 12 
15 -518 13 0,15 15 
16 -516 -250 0,11 11 
17 -527 -507 0,14 14 
18 -251 -501 0,11 11 
19 -3 -517 0,14 14 
20 258 -506 0,13 13 
21 512 -502 0,11 11 
22 518 -241 0,12 12 
23 512 12 0,17 17 
24 509 276 0,15 15 
25 505 533 0,14 14 

 

 
Рис. 2. Активна нейронна мережа з 100 нейронів-вузлів (хрестики). Шкала значень векторів ваги нейронів у мкР/год  

 
Недоліком візуалізації результатів процесу самонав-

чання нейронів у середовищі MatLab є те, що нейронна 
мережа має вигляд багатокольорової "мозаїки" з багато-
кутників типу Вороного-Діріхле, де кожен колір відповідає 
певному значенню вектора ваги. Тому на рис. 2 і всіх по-
дальших картах нейронних мереж і нейронних кластерів 
для поліпшення візуалізації використовувався метод ада-
птивного згладжування Брауна (Neter et al.,1985; Hill et al., 
2006) у вигляді зваженого методу найменших квадратів 
(Weighted Least Squares). Цей метод був реалізований на 
підставі даних обчислень у MatLab за допомогою про-
грами STATISTICA 10 (фірми StatSoft Inc, US). 

Самонавчання нейронної мережі здійснювалося в 
два етапи: етапу впорядкування векторів вагових коефі-
цієнтів і етапу підстроювання ваг активних нейронів 
щодо набору векторів входу – даних вимірювань. 

SOM створювалася за допомогою команди: net = 
newsom(PR,[d1,d2,...], tfcn, dfcn, olr, osteps, tlr, tnd), де PR 
– (R×2)-матриця мінімальних і максимальних значень 

R=100 активних нейронів; di – розмірність шару ([8; 18], 
[100]) в одиницях мкР/год; tfcn – вибір топології (для ви-
падкової топології рис. 2 застосовувалася функція 
"randtop"); dfcn – функція відстані (було обрана "linkdist" 
– відстань зв'язку); olr – параметр швидкості навчання на 
етапі впорядкування; osteps – кількість циклів навчання 
на етапі підстроювання; tlr – параметр швидкості нав-
чання на етапі підстроювання; tnd – розмір околу актив-
ного нейрона на етапі підстроювання.  

На етапі впорядкування використовувалося фіксоване 
число кроків (20). Початковий розмір околу нейрона приз-
начався рівним максимальній відстані між нейронами і по-
тім зменшувався до величини, яка застосовувалася на 
наступному етапі. Окіл визначався згідно з формулою: nd = 
1,00001 + (max(d) – 1) · (1 – s/S), де max(d) – максимальна 
відстань між активними нейронами; s – номер поточного 
кроку; S – кількість кроків на етапі впорядкування (20). Па-
раметр швидкості навчання змінювався згідно з правилом: 
lr = tlr + (olr – tlr) · (1 – s/S). 
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На етапі підстроювання, який тривав протягом всієї 
останньої частини процедури навчання, розмір околу за-
лишався сталим і дорівнював: nd = tnd + 0,00001, а па-
раметр швидкості навчання змінювався згідно з 
правилом: l r  =  t l r ·S/s . Параметр швидкості навчання 
продовжував зменшуватися, але дуже повільно. Мале 
значення околу і повільне зменшення параметру швид-
кості навчання добре налаштовують нейронну мережу 
при збереженні розміщення, яке було знайдено на попе-
редньому етапі. Число кроків на етапі підстроювання по-
винно значно перевищувати число кроків на етапі 
розміщення. На цьому етапі відбувалося тонке настрою-
вання ваг нейронів щодо набору векторів входів – даних 
спостережень. На етапі підстроювання корегувалися 
ваги не тільки нейронів-переможців, а й групи нейронів з 
їх деякого просторового околу (в 1 нейрон). При цьому 
значення векторів нейрона-переможця і найближчих су-
сідніх нейронів змінювалися, наближаючись до значення 
векторів входу – даних спостережень. 

Налаштування SOM здійснювалося по кожному вхід-
ному вектору з вагою P. Спочатку визначався нейрон-пе-
реможець і корегувався його вектор ваги W, а також 
вектори сусідніх нейронів відповідно до співвідношення: 
dW = lr · A2 · (P – W), де lr – параметр швидкості нав-
чання, який дорівнював o l r  для етапу впорядкування 
нейронів і  t l r  – для етапу підстроювання; A2 – масив су-
сідства для нейронів з номером q, розташованих в околі 
нейрона-переможця з номером i :   








≤=

=
=

випадках.інших  в       0
nd,j)D(i,  1,q)a(i,    0,5

1,q)a(i,       1
q)A2(i,  

де q)a(i, – елемент виходу нейронної мережі; D(i, j) – ві-
дстань між нейронами з номерами i та j відповідно; nd – 
розмір околу нейрона-переможця. Таким чином, вага 
нейрона-переможця змінювалася пропорційно половині 
значення параметру швидкості навчання, а вага сусідніх 
нейронів – пропорційно половині значення цього пара-
метру для нейрона-переможця. Параметр швидкості на-
вчання нейронів на етапі впорядкування дорівнював 
olr =0,9; число циклів навчання на етапі підстроювання 
було обрано: osteps =1000; параметр швидкості на етапі 
підстроювання дорівнював tlr =0,02; розмір околу на 
етапі підстроювання tnd =1 (один нейрон); відстань між 
нейронами (dist) було обрано евклідовою; максимальне 
координатне зміщення boxdist =250 м відповідало топо-
логії розміщення нейронів на рис. 2. На етапі підстрою-
вання проводилося точне підстроювання ваг, коли 
значення параметрів швидкості навчання були набагато 
менше початкових, так що наприкінці навчання вчилися 
лише нейрони-переможці. 

На рис.  3 показано нейронну карту на етапі впоряд-
кування після 10 циклів навчання.  

Рис. 3 свідчить про те, що SOM почала організовува-
тися в 25 кластерів відповідно до топології вхідного про-
стору, який обмежений 25 вхідними векторами – даними 
спостережень. 

На рис. 4 наведено нейронну карту на етапі підстро-
ювання після 200 циклів навчання. Ця карта більш рівно-
мірно розподілена по вхідному простору. 

 

        
Рис. 3. Один з початкових етапів впорядкування  
нейронної мережі. Точки – центри кластерів.  

Шкала в мкР/год 

Рис. 4. Один з етапів процесу підстроювання  
нейронної мережі. Точки – центри кластерів.  

Шкала в мкР/год 
 

Результати та їх обговорення. Завершення всього 
процесу навчання нейронної мережі ілюструє рис. 5 – ка-
рта вихідного топологічного шару активних нейронів пі-
сля 1000 циклів підстроювання. Нейрони об'єдналися в 
25 кластерів, координати центрів яких практично збіга-
ються з координатами 25 точок спостережень на рис. 1.  

На рис. 5 точками позначені центри кластерів, а хрести-
ками – нейрони вихідного топологічного шару (положення 
нейронів-переможців збігаються з центрами кластерів). Цю 
візуалізацію можна одержати за допомогою команди: "SOM 
Weight Positions". Таким чином, завдяки механізмам 
SOM, 100 нейронів активної мережі рис. 2 "cпроєктува-
лися" на 25 вхідних векторів – даних спостережень – зі 
збереженням топологічної подібності. Так було отри-
мано стійку (оскільки було проведено 1000 циклів навчання 
на етапі підстроювання) карту радіаційного фону на конт-
рольованій території. Нейрони вихідного топологічного 

шару допомогли доповнити дані спостережень (заповнити 
пропуски в даних). 

Рис. 5 свідчить про те, що точність карти радіаційного 
фону за кількістю ліній рівня не гірша за 0,25 мкР/год, що 
приблизно в чотири рази менше ціни відліку дозиметра. Це 
якісно можна пояснити тим, що кількість активних нейронів 
на рис. 2 у чотири рази перевищувала кількість точок спос-
тережень. Причому якість цієї карти набагато вища, ніж ка-
рти, побудованої на основі тих самих даних методом 
регресійної картографії (Гетманець та ін., 2020). Точність 
карти можна підвищити, збільшивши кількість початкових 
активних нейронів і кількість циклів навчання в програмі.  

Відзначимо, що найвища потужність дози 
(17 мкР/год) спостерігалася в точці № 23 на в'їзді на Ха-
рківський міст (причини цього пов'язані з транспортним 
потоком та вибором будівельних матеріалів і обговорю-
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ються окремо в роботі (Гетманець та ін., 2020)), а най-
нижча (11 мкР/год) у точці № 21 на Гімназійній набереж-
ній за річкою Харків. Був також виявлений "острівець" 
низької потужності дози між точками № 5, № 16 і № 18 у 
сквері на стрілці річок Лопань і Харків.  

Відмінність і перевага методу самонавчальних ней-
ронних мереж порівняно з методами регресійної картог-
рафії полягає в тому, що число початкових активних 
нейронів може бути вибрано дуже великим. Нейронні 
мережі в процесі навчання перебудовуються під впли-
вом векторів входу – результатів точкових вимірювань і 

об'єднуються в кластери, заповнюючи практично весь 
простір контрольованої зони, зберігаючи топологічну по-
дібність, і на кінцевому етапі навчання утворюють карту 
поля екологічних забруднень з будь-якою заданою точ-
ністю. Іншою відмінністю методу самонавчальних ней-
ронних мереж порівняно з методами кластерного 
аналізу є те, що він є динамічним, тому що в процесі на-
вчання значення вектора ваги нейрона-переможця і най-
ближчих сусідніх нейронів безперервно змінюються, 
наближаючись до значення вхідних векторів – даних 
спостережень. 

 

 
Рис. 5. Карта радіаційного фону на контрольованій території.  
Точки – центри кластерів; хрестики – нейрони вихідного шару.  

Цифрами позначені номери точок спостережень згідно з рис. 1. Шкала в мкР/год 
 
Висновки. Отже, у даній роботі доведено можли-

вість застосування методу самонавчальних нейронних 
карт (SOM) для побудови безперервної картини рівня 
екологічних забруднень на місцевості за результатами 
вимірювань значень показника деякого абіотичного фа-
ктора в кінцевому числі точок спостережень всередині 
контрольованої території. Показано, що даний метод є 
більш точним і надійним порівняно з методами регресій-
ної картографії та кластерного аналізу, від яких він прин-
ципово відрізняється своєю динамічністю. Можливості 
істотного поліпшення точності розглянутого методу по-
лягають у збільшенні кількості початкових активних вуз-
лів-нейронів на карті місцевості, а також числа ітерацій у 
процесі їх навчання 
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SELF ORGANIZING NEURAL MAPS IN THE PROBLEMS OF ECOLOGICAL MONITORING 

 
There is a certain problem in ecological monitoring of the environment state according to the measured values of a certain abiotic factor. Namely, 

how to build a continuous map of environmental pollution throughout the controlled area, based on the results of measurements carried out at a finite 
number of points inside the controlled territory. The aim of the work is to study the possibility of using the method of self organizing neural maps 
(SOM) for the problems of the ecological monitoring of the environment, and specifically for building an accurate continuous map of environmental 
pollution on the ground. The materials and methods of researches are the results of measurements the ambient equivalent of the continuous X-ray 
and gamma radiation dose rate  on a territory of the historical center of Kharkiv has been used as research materials; processing of the obtained data 
by SOM's methods using MatLab 8.1 and STATISTICA 10 computer programs has been done. Results: in the process of 1000 self-learning cycles of 
a neural network of 100 initial active neurons randomly located on the controlled area map, 25 neural clusters have been obtained, the coordinates of 
the centers of which practically coincided with the 25 control points coordinates. A continuous map of the background radiation on the controlled 
area has been built. The accuracy of this map was no worse than 0.25 μR/hour. Conclusions: the possibility of using the SOM methods to build a 
continuous map of the level of environmental pollution on the ground based on the results of measuring the values of a certain abiotic factor in a 
finite number of points has been proven. It has been proven that this method is more accurate compared to the methods of regression mapping and 
cluster analysis, from which it is essentially different. The possibilities for a significant improvement in the accuracy of the method lie in increasing 
the number of initial neurons on the terrain map and the number of iterations during their training. 
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САМООБУЧАЮЩИЕСЯ НЕЙРОННЫЕ КАРТЫ В ЗАДАЧАХ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА 

 
При проведении экологического мониторинга состояния окружающей среды по измеренным значениям некоторого абиотического 

фактора существует проблема: как на основании результатов измерений, проведенных в конечном числе точек внутри контролиру-
емой зоны, построить непрерывную карту экологических загрязнений на всей контролируемой территории. Цель работы: исследова-
ние возможности применения метода самообучающихся нейронных карт (Self Organizing Map – SOM) для задач экологического 
мониторинга окружающей среды, а именно – для построения точной непрерывной карты экологических загрязнений на местности. 
Алгоритм работы SOM включает следующие шаги: 1) размещение на карте всей контролируемой территории начальной активной 
нейронной сети заданной топологии с заранее определенным числом узлов-нейронов; 2) выбор входного вектора из набора данных на-
блюдений; 3) нахождение наиболее близкого значения вектора веса узла-нейрона ("нейрона-победителя") на карте; 4) определение коли-
чества ближайших соседних нейронов к нейрону-победителю; 5) непосредственное обучение сети, в ходе которого значения векторов 
веса нейрона-победителя и ближайших соседних нейронов постепенно меняются, приближаясь к значению векторов веса входных ней-
ронов – данных наблюдений; 6) определение ошибки карты. Материалы и методы исследований: в качестве материалов исследований 
были использованы результаты измерений амбиентного эквивалента мощности дозы непрерывного рентгеновского и гамма-излуче-
ния на территории исторического центра г. Харьков; обработка полученных данных проводилась методами SOM с помощью компью-
терных программ MatLab 8.1 и STATISTICA 10. Результаты: в процессе 1000 циклов самообучения нейронной карты из 100 начальных 
активных нейронов, размещенных случайным образом на карте контролируемой местности, было получено 25 нейронных кластеров, 
координаты центров которых практически совпадали с координатами 25 точек наблюдений. Таким образом, была построена непре-
рывная карта радиационного фона на контролируемой территории. Точность карты была не хуже 0,25 мкР/час. Выводы: в работе 
доказана возможность применения метода самообучающихся нейронных карт (SOM) для построения непрерывной карты уровня эко-
логических загрязнений на местности по результатам измерений значений некоторого абиотической фактора в конечном числе точек. 
Доказано, что данный метод является более точным по сравнению с методами регрессионной картографии и кластерного анализа, 
от которых он принципиально отличается. Возможности существенного улучшения точности метода заключаются в увеличении 
количества начальных нейронов на карте местности и количества итераций в процессе их обучения. 

Ключевые слова: экологический мониторинг, рентгеновское и гамма-излучение, нейросетевые алгоритмы, самообучающиеся ней-
ронные карты, SOM. 

 
 


