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APPLICATION OF MACHINE LEARNING METHODS AND REMOTE SENSING DATA  

FOR CROP YIELD FORECASTING 
 

(Представлено членом редакційної колегії д-ром геол. наук, ст. дослідником Олександром МЕНЬШОВИМ) 
 
B a c k g r o u n d .  Forecasting agricultural crop yields has always been a complex task, particularly in the context of climate 

instability and increasing pressure on resources. Given the limitations of classical mathematical models in such a complex field as 
agricultural analytics, data-driven approaches and machine learning-based methods are becoming increasingly important. The 
combination of satellite imagery, agrochemical soil analysis, and artificial intelligence algorithms is particularly promising for 
building flexible and accurate forecasts. 

M e t h o d s .  This study analyzes two agricultural fields located in different regions of Ukraine with varying natural conditions. 
A comprehensive dataset was collected, including topographic features (elevation, slope, topographic wetness index), spectral 
indices from Sentinel-2A and Landsat 8 satellites (specifically, NDMI and GNDVI), and soil chemical composition. Correlation 
analysis was used to identify which indicators are most closely associated with yield levels. Yield prediction models were developed 
using Random Forest and Gradient Boosting algorithms, adapted to field subplots of 5 ha and 1 ha. 

R e s u l t s .  The analysis revealed that vegetation condition and crop water balance (NDMI, GNDVI) are the most effective 
indicators in explaining yield variability. Meanwhile, surface temperature showed a clearly negative impact, suggesting potential 
heat stress during the grain filling periods. Gradient Boosting demonstrated particularly high sensitivity to spatial detail, reaching 
a prediction accuracy of R²=0.801 at the 1 ha grid level. In contrast, Random Forest proved to be a robust method with lower 
sensitivity to data scale. 

C o n c l u s i o n s .  The study demonstrates that combining satellite imagery, soil analysis results, and machine learning 
methods can significantly improve the accuracy of crop yield prediction. The developed models incorporate vegetation indices 
along with factors describing crop growing conditions. A comparison of various algorithms was also conducted under different 
levels of spatial detail. The results indicate that the proposed approach can be effectively applied in precision agriculture, 
particularly for agronomic planning and crop monitoring. 

 
K e y w o r d s :  artificial intelligence (AI), machine learning (ML), remote sensing (RS), random forest (RF), gradient 

boosting (GB), normalized difference moisture index (NDMI), green normalized difference vegetation index (GNDVI), precision 
agriculture (PA), Correlation Analysis (CA). 

 
Background 
Predicting potential crop yields, selecting suitable 

crops, assessing their profitability, and minimizing 
associated risks have been fundamental challenges in 
agriculture since its inception. 

Forecasting is a crucial component of modern 
information technologies and decision support systems, 
applied both in the design of complex systems (such as 
energy, agrotechnical, and information and communication 
systems) and in their management under uncertainty. 
Subsequent agricultural planning involves developing crop 
rotation systems, pasture management plans, soil cultivation 
methods, fertilizer application strategies, and packages of 
agrotechnologies adapted to different intensification levels 
(Semeniaka et al., 2024). 

Currently, preference is given to advanced technologies, 
particularly precision agriculture systems for crop 
management, which are based on satellite and computer 

technologies (Makedonska, Zatserkovnyi, & Tustanovska, 
2018). Therefore, yield assessment and prediction can be 
approached in various ways. The application of traditional 
classical mathematical modeling approaches (such as 
systems of econometric equations, adaptive models, methods 
of nonlinear dynamics, etc.) does not always allow for 
obtaining adequate results, as they may lead to problems that 
cannot be solved by known methods or algorithms. 
Consequently, researching new classes of mathematical 
models is a relevant and promising task. In this context, 
artificial intelligence and machine learning algorithms present 
one of the most effective approaches. It is an approach in 
which historical data or examples are utilized to initially 
develop and subsequently improve the predictive model. 

In Ukrainian studies, the effectiveness of indices like 
NDVI and NDMI as key yield predictors has been 
demonstrated (Kravchenko, & Danylenko, 2022; Ivanenko, 
& Sakhno, 2021). Their use enables the timely identification 
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of drought-affected areas that impact crop yields. Similar 
conclusions are supported by international research as well. 
For instance, a model based on deep Gaussian processes 
achieved high accuracy in maize yield prediction (You et al., 
2017), while the integration of NDVI, surface temperature, 
and field parameters have been justified as a foundational 
approach to predictive analytics (Lobell et al., 2015). 

Machine learning (ML) approaches are applied across 
diverse domains-from retail (for analyzing customer behavior) 
(Ayodele, 2010) to agriculture (McQueen et al., 1995) and 
even telecommunications usage prediction (Witten et al., 
2016). ML is a branch of artificial intelligence focused on 
developing algorithms that allow computers to learn from data 
without explicit programming. Within ML, computers "learn" to 
make predictions, recognize patterns, and support decision-
making based on input data. ML is a valuable tool for 
determining which crops to cultivate and what agricultural 
operations to perform during the growing season. Under the 
pressures of global climate change and economic constraints, 
highly accurate crop yield forecasting becomes critical to 
effective farming. However, natural, biological, and 
technological factors exert complex and sometimes opposing 
influences on prediction outcomes, at times leading to 
forecast errors exceeding 15 %. 

Depending on the research objective, ML models can be 
either descriptive or predictive. Descriptive models are used 
to gain insight from data and explain past events, while 
predictive models are intended to forecast future outcomes 
(Alpaydin, 2010). It is important to recognize that forecasting 
in precision agriculture is not a trivial task, as it depends on 
multiple datasets, including climatic conditions, weather, soil 
properties, fertilizer use, and seed variety (Xu et al., 2019). 

ML, as a branch of AI, emphasizes learning and offers a 
practical approach for improving predictions, discovering 
patterns and correlations, and extracting knowledge from 
existing datasets. The application of ML algorithms to the 
analysis of these high-dimensional agricultural data opens 
new possibilities for enhancing forecast accuracy and 
optimizing agrotechnical operations. 

Among spatial modeling approaches, Gradient Boosting 
and Random Forest methods have proven to be the most 
effective (Gnatienko, Sorochynskyi, & Derkach, 2024; Shin, 
Kim, & Lee, 2021), showing high resilience across varying 
spatial scales and adaptability to specific field conditions. Other 
researchers have employed multimodal approaches that 
integrate drone and satellite imagery (Maimaitijiang et al., 
2020), or deep neural networks, which improved forecast 
accuracy by 10–15 % (Kuwata, & Shibasaki, 2015; Melnyk, 
2023). The use of LSTM architectures has also shown promise 
in regional yield assessments (Melnyk, 2023), while a satellite 
image-based approach to crop classification in Ukraine 
achieved over 88 % accuracy (Kussul et al., 2017). 

Precision agriculture includes Variable Rate Seeding, 
which allows for the site-specific adjustment of seeding and 
fertilization rates based on soil and field properties (Samko 
et al., 2025). Indeed, the correlation analysis of collected 
data in yield forecasting is a complex task requiring 
processing numerous parameters and precisely identifying 
the key factors that determine final outcomes. Crop yield is 
also significantly influenced by the topographical features of 
the site – such as elevation and slope, which determine the 
distribution of surface and groundwater, as well as local 
water balance and erosion conditions. 

Methods 
This study employs two machine learning methods: 

Random Forest and Gradient Boosting. 
Random Forest (RF) is an ensemble method that 

constructs numerous individual decision trees, each trained on 

random subsets of features and data samples. The method 
operates as follows: for each tree, a random subset of the data 
(with replacement) and a subset of features are selected; the 
predictions of all trees are averaged (for regression) or 
determined by majority vote (for classification). Key advantages 
of this method include resistance to overfitting due to the result 
averaging, robustness when dealing with noisy or non-
representative data, automatic handling of missing values, 
insensitivity to feature scaling, and the ability to assess the 
importance of individual features, thereby enhancing model 
interpretability (Breiman, 2001). 

Gradient Boosting is a sequential ensemble technique 
where each new tree is trained to minimize the errors of the 
previous one by optimizing a loss function using gradient 
descent. Initially, a simple tree (e.g., with a depth of 1–3) is 
built, and at each step, a new tree is added that is trained on 
the residual errors of the model. This method achieves high 
predictive accuracy even on complex datasets and offers 
flexibility through hyperparameter tuning (learning rate, tree 
depth, number of iterations), making it effective for yield 
prediction tasks (Friedman, 2001). Crop condition, assessed 
using spectral indices (calculated from Sentinel-2A and 
Landsat 8 satellite imagery) and band combinations, reflects 
the growth stage and physiological status of crops in various 
zones of the field. Agronomic soil characteristics – such as the 
chemical composition of macro- and micronutrients, pH, and 
organic matter create the foundational conditions for plant 
nutrition. The integration of these three data groups provides 
a comprehensive overview of productivity factors and can 
serve as a basis for accurate yield forecasting and the 
optimization of differentiated agronomic measures (Table 1). 

Field 1, with an area exceeding 309.6 hectares, is 
located in Varva settlement of the Pryluky district, Chernihiv 
region, near the village of Berizka (Fig. 1). The soils in the 
study area are predominantly typical low humus chernozems 
and degraded light loam chernozems, which require 
particular attention to the preservation of their fertility and 
structure. The terrain within the study area is 
heterogeneous, with elevation differences of up to 20 meters 
and gentle slopes with inclinations up to 4° (Zatserkovnyi 
et al., 2025a). The levels of potassium and phosphorus are 
moderately high. In terms of quality, the soils are average, 
with an average organic matter content of 3.7 %. The field is 
managed by the agricultural company "Kernel". The average 
corn grain yield on this field ranges from 7 to 9 t/ha. 

Field 2, covering 119.2 hectares, is located near the 
village of Lysivtsi in the Tovste community of the Chortkiv 
district, Ternopil region (Fig. 2), and is cultivated by the 
scientific-production agri-enterprise "El Gaucho". The field 
mainly consists of podzolized chernozems, primarily formed 
on loess soils. The slope gradient ranges from 1° to 5°. The 
soils are of high quality (scoring between 70 and 80 points), 
with an estimated organic matter content of approximately 
5.5 %. The potassium and phosphorus levels are high, and 
the soil pH is moderately alkaline. 

To reduce the dimensionality of the input dataset and 
improve prediction efficiency, a preliminary analysis of the 
collected data is conducted to select the most informative 
parameters. One of the main methods used for this purpose 
is correlation analysis, which helps establish statistical 
relationships between different indicators. The correlation 
matrix reflects the degree of linear association between pairs 
of variables and is based on the Pearson correlation 
coefficient, which is calculated using formula (1). 𝑟௫௬ = ∑ (௫೔ି௫̅)(௬೔ି௬ത)೙೔సభට∑ (௫೔ି௫̅)మ೙೔సభ ∑ (௬೔ି௬ത)మ೙೔సభ  (1) 

where 𝑥௜ and 𝑦௜ – are individual observations (values) for the 
two variables X and Y, respectively. 𝑥̅ and 𝑦ത – are the mean 
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values of all observations for the variables X and Y (Pearson 
correlation coefficient, n.d.). 

Table  1  
List of attributes to be used for calculations and modeling 

Parameter Description Acronym 
Relief 

Elevation Absolute height above sea level, m. El 
Slope gradient  Surface slope angle (°) Sl 

Topographic Position Index  Difference between the elevation of a point and the mean elevation  
of its surrounding area TPI 

Topographic Wetness Index The ratio of the specific catchment area to the tangent of the slope angle,  
used to assess the potential for moisture accumulation TWI 

Soil 
Exchangeable calcium. Calcium concentration in soil exchangeable cations, mg/kg Ca 
Exchangeable potassium Concentration of potassium in soil exchangeable cations, mg/kg. K 
Mobile phosphorus Concentration of available phosphorus in soil, mg/kg P 
Exchangeable sodium Concentration of sodium in soil exchangeable cations, mg/kg Na 
Exchangeable magnesium Concentration of magnesium in soil exchangeable cations, mg/kg Mg 
Organic matter Content of organic matter in soil, % Org_M 
pH (KCl) Soil acidity extracted with KCl solution, pH units pH_KCl 

Crop condition 
Green vegetation index Vegetation activity indicator, (NIR – GREEN) / (NIR + GREEN) GNDVI 
Surface temperature Temperature of the land surface or vegetation derived from the satellite thermal 

channel (°C) LST 

Moisture index Indicator of leaf moisture content in plants, (NIR – SWIR) / (NIR + SWIR) NDMI 
 

 
Fig. 1. Location of the study field No. 1 

(authors' own elaboration based on OpenStreetMap data) 
Fig. 2. Location of the study field No. 2 

(authors' own elaboration based on OpenStreetMap data) 
 
Results 
In the case of the study field No. 1, the correlation matrix 

(Fig. 3) shows the strongest positive relationship between 
yield and GNDVI (r = 0.78), as well as between yield and 
NDMI (r = 0.77), highlighting the significant role of water 
balance and vegetation status in yield formation. During the 
active grain filling phase, these indices are directly related to 
the crop condition, which explains the high correlation 
coefficients. The TWI index shows a moderate positive 
correlation (r = 0.36). Soil water availability is a key factor; 
however, TWI is not a direct indicator of moisture but rather 
reflects the potential for its accumulation (depending on 
topography, drainage, etc.). Therefore, even if a location has 
the potential to retain water, it does not necessarily mean 
that moisture will actually be available, as this depends on 
rainfall, evaporation, and other factors. 

Potassium (r = –0.49) shows a moderate negative 
correlation with yield. The surface temperature of the corn 
crops grown for grain (r = –0.59) indicates a strong 
negative correlation. Higher surface temperatures of 
crops often signal water stress. When a plant experiences 
water deficiency, its leaf and surface temperature rise. 
Thus, this strong negative relationship is entirely 
expected. Exchangeable magnesium, organic matter, and 
slope steepness indicators show the weakest correlations 
with yield. High potassium values may result from uneven 
fertilizer distribution or poor availability due to other 
factors, meaning that potassium is present but not 
effectively utilized. As a result, an inverse relationship 
may be observed: a high amount of potassium in certain 

areas does not indicate better yields and may, in fact, 
indicate the opposite. 

Correlation matrix of the study field No. 2 (Fig. 4): The 
strongest positive correlation with yield is observed for NDMI 
(r = 0.50) and GNDVI (r = 0.52). 

The terrain, specifically slope steepness (r = –0.45), shows 
a noticeable correlation with yield. This likely indicates that field 
No. 2 has more pronounced topographic contrasts, which have 
a stronger impact on yield compared to field No. 1. The surface 
temperature of the crops during the full grain filling period is 
negatively correlated with corn yield (r = –0.41), which is a 
typical result for corn under high-temperature conditions during 
this critical growth phase. Unlike in the previous field, 
magnesium shows a strong positive correlation here (r = 0.52). 
The weakest correlations with grain corn yield are observed for 
exchangeable sodium and mobile phosphorus. 

The analysis of the correlation results revealed that 
mobile phosphorus, as well as exchangeable magnesium 
and sodium, exhibit weak correlations with corn yield in the 
study fields No. 1 or No. 2. Specifically, the correlation 
coefficients for these indicators fall within low ranges, 
indicating their limited explanatory power in the context of 
the selected dataset. According to standard statistical 
analysis procedures, variables showing weak correlation 
would typically be excluded from further modeling or 
forecasting schemes to improve accuracy. However, 
considering that these parameters are fundamental in 
agrochemical soil analysis and are traditionally used to 
assess yield potential, the decision was made to retain them 
in the study. It is likely that the weak correlation is due to the 
limited data volume or data quality. This suggests that with 



ГЕОЛОГІЯ. 4(111)/2025 ~ 117 ~ 

 

 
ISSN 1728-2713 (Print), ISSN 2079-9063 (Online) 

a more representative dataset, collected over broader 
spatial or temporal scales, these indicators may 
demonstrate a more significant influence on corn yield. 

 

 
Fig. 3. Matrix of linear correlation coefficients for the study field No. 1  

(authors' own elaboration) 
 

 
Fig. 4. Matrix of linear correlation coefficients for the study field No. 2  

(authors' own elaboration) 
 

Construction of yield prediction models for grain 
corn based on collected data from the fields studied. 

To build a high-resolution yield prediction model, the 
study fields are divided into a certain number of subplots, 
and a separate forecast is generated for each. Let the actual 
yield value of the i-th subplot be denoted as  𝑦௜, the predicted 
value as – 𝑦పഥ  (formula (2)). 𝑦పഥ  = 𝑓଴(𝑥௜), (2) 
where 𝑥௜ ∈ 𝑋 – is the input data vector describing the 
condition of the i-th subplot, θ – represents the parameters 
of the yield prediction model, 𝑓 – is the functional relationship 
between the input field condition data and the crop yield of 
the agricultural crop (Hnatiienko et al., 2024) 

Training and validation of the model will be performed 
using training datasets, namely, data collected from fields 
No. 1 and No. 2, where each field plot includes yield data in 

tons per hectare. Since the study fields No. 1 and No. 2 are 
in different geographic zones and are managed by different 
agricultural producers, separate yield prediction models will 
be developed for each field, considering the parameter 
values (Table 1) for subplots with areas of 5 ha and 1 ha. 

The code listings for the presented models are provided 
in the supplementary materials. 

Validation of grain corn yield prediction models. 
To ensure an objective assessment of the accuracy of 

the yield prediction models, validation of the results must be 
performed using statistical metrics. The application of 
quantitative accuracy indicators is a key stage in the study, 
as it enables the comparison of different models and the 
identification of the most effective prediction approaches. 

In this study, the following commonly used metrics are 
applied to evaluate model performance: Root Mean Square 
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Error (𝑅𝑀𝑆𝐸) (formula (3)), Mean Absolute Error (𝑀𝐴𝐸) 
(formula (4)), Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) 
(formula (5)), and Coefficient of Determination (𝑅2) 
(formula (6)) (Kumar, 2024). 𝑅𝑀𝑆𝐸 = ට∑ (௬೔ି௬ഢഥ )೙೔ మ௡  (3) 𝑀𝐴𝐸 = ∑ |௬೔ି௬ഢഥ |೙೔ ௡  (4) 𝑀𝐴𝑃𝐸 = ଵ௡ ∑ ቚ௬೔ି௬ഢഥ௬೔ ቚ௡௜  (5) 𝑅ଶ = 1 − ∑ (௬೔ି௬ഢෝ )೙೔∑ (௬೔ି௬ഢഥ )೙೔  (6) 

As part of the study on the effectiveness of the grain corn 
yield prediction system, the results obtained are presented 
in Tables 2 and 3. 

Analyzing the results, it can be noted that the Random 
Forest model demonstrates more stable accuracy when the 
scale of input data changes, compared to Gradient Boosting. 
Specifically, when transitioning from 5-hectare to 1-hectare 
subplots, the coefficient of determination 𝑅² for Random 
Forest increased from 0.614 to 0.776 (+0.162), whereas for 
Gradient Boosting, the increase was more significant – from 
0.562 to 0.801 (+0.239). 

A similar trend in performance improvement is observed 
across other accuracy metrics for the study field No. 1. The 
Mean Squared Error (MSE) for the Random Forest model 
decreased from 0.101 to 0.079 (approximately a 22% 
improvement), while for Gradient Boosting it decreased from 
0.115 to 0.071 (approximately a 38 % improvement). This 

indicates that Gradient Boosting responds more strongly to 
an increase in data volume, showing a more substantial 
reduction in error when using a finer grid (1 ha). 

It is also worth noting that the Mean Absolute Error 
(𝑀𝐴𝐸) for Random Forest decreased from 0.276 to 0.234 
(around a 15 % improvement), whereas for Gradient 
Boosting it dropped from 0.294 to 0.235 (around a 20 % 
improvement). Similarly, the Mean Absolute Percentage 
Error (𝑀𝐴𝑃𝐸) for both models declined to approximately the 
same level (0.029), though Gradient Boosting showed a 
greater improvement. 

Therefore, the grid resolution (subplot size) matters 
when predicting yield, but its effect depends on the chosen 
machine learning algorithm. 

The analysis of results for the study, field No. 2 confirms 
the patterns observed for field No. 1 (Table 3). Specifically, 
the Random Forest model (Fig. 5) demonstrates high 
accuracy stability regardless of subplot size: the increase in 
the coefficient of determination when reducing the grid scale 
is minimal (from 0.571 to 0.575). In contrast, Gradient 
Boosting remains more sensitive to spatial granularity: when 
moving from 5 ha to 1 ha subplots, the model's accuracy 
increases more significantly (from 0.480 to 0.647). 

In conclusion, a finer grid generally improves prediction 
results, but the degree of this effect depends on the selected 
algorithm. This implies that the optimal subplot size should 
be chosen considering both the model's performance and 
the practical capabilities for data collection. 

 
Table  2  

Validation results of grain corn yield prediction models for the study field No. 1 depending  
on the subplot size and the machine learning method 

Subplot size Machine learning method 
Random Forest Gradient Boosting 

5 ha 

 𝑅²: 0,614 𝑀𝑆𝐸: 0,101 𝑀𝐴𝐸: 0,276 𝑀𝐴𝑃𝐸: 0,034 

 𝑅²: 0,562 𝑀𝑆𝐸: 0,115 𝑀𝐴𝐸: 0,294 𝑀𝐴𝑃𝐸: 0,036 

1 ha 

 𝑅²: 0,776 𝑀𝑆𝐸: 0,079 𝑀𝐴𝐸: 0,234 𝑀𝐴𝑃𝐸: 0,029 

 𝑅²: 0,801 𝑀𝑆𝐸: 0,071 𝑀𝐴𝐸: 0,235 𝑀𝐴𝑃𝐸: 0,029 
Source: authors' own elaboration. 
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Table  3  
Validation results of grain corn yield prediction models for the study field No. 2 depending on the subplot size and the 

machine learning method 

Subplot size Machine learning method 
Random Forest Gradient Boosting 

5 ha 

 𝑅²: 0,571 𝑀𝑆𝐸: 0,176 𝑀𝐴𝐸: 0,344 𝑀𝐴𝑃𝐸: 0,025 

 𝑅²: 0,48 𝑀𝑆𝐸: 0,213 𝑀𝐴𝐸: 0,381 𝑀𝐴𝑃𝐸: 0,027 

1 ha 

 𝑅²: 0,575 𝑀𝑆𝐸: 0,146 𝑀𝐴𝐸: 0,283 𝑀𝐴𝑃𝐸: 0,02 

 𝑅²: 0,647 𝑀𝑆𝐸: 0,121 𝑀𝐴𝐸: 0,273 𝑀𝐴𝑃𝐸: 0,019 
Source: authors' own elaboration. 

 

 
Fig. 5. Example of the first decision tree for the study field No. 2 with 5 ha subplots  

(authors' own elaboration) 
 

Based on the developed machine learning models, grain 
corn yield prediction was carried out for two agricultural 
fields with different levels of spatial detail (grids of 1 ha, 2 ha, 
and 5 ha). The predictors included the vegetation indices 
GNDVI and NDMI, as well as concomitant variables: soil 

moisture indicators, soil types, temperature regime, and crop 
rotation information. Model accuracy was evaluated by 
comparing the predicted and actual yield values. 

For field No. 1, the most accurate results were achieved 
by the Gradient Boosting model using a 1 ha grid: the 
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predicted yield was 5.67 t/ha, which was only 0.16 t/ha lower 
than the actual value of 5.83 t/ha. As the level of spatial 
aggregation increased, accuracy slightly decreased: 
5.60 t/ha at 2 ha and 5.63 t/ha at 5 ha. The Random Forest 
model, in turn, produced less accurate predictions ranging 
from 5.55 to 5.61 t/ha for the different grids, with a maximum 
deviation of 0.28 t/ha. 

For field No. 2, the Gradient Boosting model again 
proved to be the most effective at the 1 ha resolution: the 
predicted yield was 5.39 t/ha versus an actual yield of 
5.52 t/ha (an error of 0.13 t/ha). Other spatial resolutions 
produced similar results: 5.34 t/ha (2 ha) and 5.37 t/ha 
(5 ha). The Random Forest model's predictions ranged 
between 5.29 and 5.35 t/ha. 

The obtained results confirm the suitability of Gradient 
Boosting for accurate yield prediction, especially under 
conditions of high spatial resolution. In contrast, Random 
Forest provides stable yet slightly less precise estimates, 
which can be beneficial in situations with limited access to 
high-resolution data. 

Discussion and conclusions 
A comprehensive analysis of the factors influencing grain 

corn yield was conducted using remote sensing data, 
agrochemical soil analysis results, and topographic 
characteristics. Correlation analysis made it possible to 
identify key indicators with the strongest impact on yield, 
particularly the spectral indices (GNDVI, NDMI). 

Yield prediction models were constructed using machine 
learning methods – Random Forest and Gradient Boosting 
– for two study fields, with subplot sizes of 5 ha and 1 ha. 
Their performance was evaluated using the Mean Absolute 
Error (MAE) and the Coefficient of Determination (R²), 
enabling the identification of each method's advantages and 
limitations under conditions of spatially heterogeneous 
agrolandscapes. Validation results demonstrated that 
Gradient Boosting is more sensitive to spatial data 
granularity, significantly improving prediction accuracy with 
finer grids (1 ha). On the other hand, Random Forest 
provides consistent results even at coarser spatial 
resolution, highlighting its robustness when data availability 
is limited or data volume is smaller. 

Overall, the study confirms the importance of integrating 
multicomponent datasets and considering the field spatial 
structure to improve yield prediction accuracy. The 
developed methodology has strong potential for 
implementation in precision agriculture systems to optimize 
agronomic practices and enhance resource management 
efficiency. 
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ЗАСТОСУВАННЯ МЕТОДІВ МАШИННОГО НАВЧАННЯ ТА ДАНИХ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ 

В ПРОГНОЗУВАННІ ВРОЖАЙНОСТІ 
 
В с т у п . Прогнозування врожайності сільськогосподарських культур завжди було непростим завданням, особливо в умовах кліма-

тичної нестабільності та зростаючого тиску на ресурси. Зважаючи на обмеження класичних математичних моделей у такій складній 
галузі, як аграрна аналітика, нині все більшої ваги набувають підходи, основані на даних і машинному навчанні. Особливо перспективним 
виглядає поєднання супутникових знімків, агрохімічного аналізу ґрунтів та алгоритмів штучного інтелекту для побудови гнучких і 
точних прогнозів. 

М е т о д и .  Проаналізовано два сільськогосподарські поля, розташовані в різних регіонах України, із різними природними умовами. 
Було зібрано масив даних: топографічні параметри (висота, ухил, водозбірний потенціал), спектральні індекси із супутників Sentinel-2A 
та Landsat 8 (зокрема, NDMI, GNDVI), а також хімічний склад ґрунту. За допомогою кореляційного аналізу визначено, які саме показники 
тісніше пов'язані з рівнем урожайності. Побудовано моделі прогнозу врожайності на основі Random Forest та Gradient Boosting, з адап-
тацією під розділення полів на підділянки розміром 5 та 1 га. 

Р е з у л ь т а т и .  Аналіз показав, що стан вегетації та водний баланс культури (NDMI, GNDVI) найкраще пояснюють варіації врожай-
ності. Водночас такі показники, як температура поверхні, мають чіткий негативний вплив, що може вказувати на тепловий стрес у 
періоди наливу зерна. Gradient Boosting продемонстрував особливо добру чутливість до просторової деталізації – на сітці 1 га точність 
прогнозу досягала R² = 0,801. Натомість Random Forest показав себе як стійкий і менш чутливий до масштабу даних метод. 

В и с н о в к и .  У досліджені доведено, що поєднання супутникових знімків, результатів аналізу ґрунтів та методів машинного нав-
чання дає змогу поліпшити точність прогнозування врожайності. У моделі включено показники вегетації та характеристики умов ви-
рощування культур. Також проведено порівняння різних алгоритмів при різній деталізації просторових даних. Отримані результати 
свідчать про те, що запропонований підхід може бути корисним у практиці точного землеробства, особливо для агрономічного плану-
вання та моніторингу посівів. 

 
К л ю ч о в і  с л о в а :  штучний інтелект (ШІ), машинне навчання (ML), дистанційне зондування Землі (ДЗЗ), random forest (RF), 

gradient boosting (GB), normalized difference moisture index (NDMI), green normalized difference vegetation index (GNDVI), прецизійне землероб-
ство (PZ), кореляційний аналіз (КА). 
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