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APPLICATION OF MACHINE LEARNING METHODS AND REMOTE SENSING DATA
FOR CROP YIELD FORECASTING

(lMpedcmaeneHo YneHoM pedakuyiliHoi kKosezii 0-pomM 2eos. Hayk, cm. docslidHukom OnexkcaHOpom MEHbLLOBUM)

Background. Forecasting agricultural crop yields has always been a complex task, particularly in the context of climate
instability and increasing pressure on resources. Given the limitations of classical mathematical models in such a complex field as
agricultural analytics, data-driven approaches and machine learning-based methods are becoming increasingly important. The
combination of satellite imagery, agrochemical soil analysis, and artificial intelligence algorithms is particularly promising for
building flexible and accurate forecasts.

Methods. This study analyzes two agricultural fields located in different regions of Ukraine with varying natural conditions.
A comprehensive dataset was collected, including topographic features (elevation, slope, topographic wetness index), spectral
indices from Sentinel-2A and Landsat 8 satellites (specifically, NDMI and GNDVI), and soil chemical composition. Correlation
analysis was used to identify which indicators are most closely associated with yield levels. Yield prediction models were developed
using Random Forest and Gradient Boosting algorithms, adapted to field subplots of 5 ha and 1 ha.

Results. The analysis revealed that vegetation condition and crop water balance (NDMI, GNDVI) are the most effective
indicators in explaining yield variability. Meanwhile, surface temperature showed a clearly negative impact, suggesting potential
heat stress during the grain filling periods. Gradient Boosting demonstrated particularly high sensitivity to spatial detail, reaching
a prediction accuracy of R?*=0.801 at the 1 ha grid level. In contrast, Random Forest proved to be a robust method with lower
sensitivity to data scale.

Conclusions. The study demonstrates that combining satellite imagery, soil analysis results, and machine learning
methods can significantly improve the accuracy of crop yield prediction. The developed models incorporate vegetation indices
along with factors describing crop growing conditions. A comparison of various algorithms was also conducted under different
levels of spatial detail. The results indicate that the proposed approach can be effectively applied in precision agriculture,
particularly for agronomic planning and crop monitoring.

Keywords: artificial intelligence (Al), machine learning (ML), remote sensing (RS), random forest (RF), gradient
boosting (GB), normalized difference moisture index (NDMI), green normalized difference vegetation index (GNDVI), precision

agriculture (PA), Correlation Analysis (CA).

Background

Predicting potential crop vyields, selecting suitable
crops, assessing their profitability, and minimizing
associated risks have been fundamental challenges in
agriculture since its inception.

Forecasting is a crucial component of modern
information technologies and decision support systems,
applied both in the design of complex systems (such as
energy, agrotechnical, and information and communication
systems) and in their management under uncertainty.
Subsequent agricultural planning involves developing crop
rotation systems, pasture management plans, soil cultivation
methods, fertilizer application strategies, and packages of
agrotechnologies adapted to different intensification levels
(Semeniaka et al., 2024).

Currently, preference is given to advanced technologies,
particularly  precision agriculture systems for crop
management, which are based on satellite and computer

technologies (Makedonska, Zatserkovnyi, & Tustanovska,
2018). Therefore, yield assessment and prediction can be
approached in various ways. The application of traditional
classical mathematical modeling approaches (such as
systems of econometric equations, adaptive models, methods
of nonlinear dynamics, etc.) does not always allow for
obtaining adequate results, as they may lead to problems that
cannot be solved by known methods or algorithms.
Consequently, researching new classes of mathematical
models is a relevant and promising task. In this context,
artificial intelligence and machine learning algorithms present
one of the most effective approaches. It is an approach in
which historical data or examples are utilized to initially
develop and subsequently improve the predictive model.

In Ukrainian studies, the effectiveness of indices like
NDVI and NDMI as key yield predictors has been
demonstrated (Kravchenko, & Danylenko, 2022; Ivanenko,
& Sakhno, 2021). Their use enables the timely identification
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of drought-affected areas that impact crop yields. Similar
conclusions are supported by international research as well.
For instance, a model based on deep Gaussian processes
achieved high accuracy in maize yield prediction (You et al.,
2017), while the integration of NDVI, surface temperature,
and field parameters have been justified as a foundational
approach to predictive analytics (Lobell et al., 2015).

Machine learning (ML) approaches are applied across
diverse domains-from retail (for analyzing customer behavior)
(Ayodele, 2010) to agriculture (McQueen etal., 1995) and
even telecommunications usage prediction (Witten etal.,
2016). ML is a branch of artificial intelligence focused on
developing algorithms that allow computers to learn from data
without explicit programming. Within ML, computers "learn" to
make predictions, recognize patterns, and support decision-
making based on input data. ML is a valuable tool for
determining which crops to cultivate and what agricultural
operations to perform during the growing season. Under the
pressures of global climate change and economic constraints,
highly accurate crop yield forecasting becomes critical to
effective farming. However, natural, biological, and
technological factors exert complex and sometimes opposing
influences on prediction outcomes, at times leading to
forecast errors exceeding 15 %.

Depending on the research objective, ML models can be
either descriptive or predictive. Descriptive models are used
to gain insight from data and explain past events, while
predictive models are intended to forecast future outcomes
(Alpaydin, 2010). It is important to recognize that forecasting
in precision agriculture is not a trivial task, as it depends on
multiple datasets, including climatic conditions, weather, soil
properties, fertilizer use, and seed variety (Xu et al., 2019).

ML, as a branch of Al, emphasizes learning and offers a
practical approach for improving predictions, discovering
patterns and correlations, and extracting knowledge from
existing datasets. The application of ML algorithms to the
analysis of these high-dimensional agricultural data opens
new possibilities for enhancing forecast accuracy and
optimizing agrotechnical operations.

Among spatial modeling approaches, Gradient Boosting
and Random Forest methods have proven to be the most
effective (Gnatienko, Sorochynskyi, & Derkach, 2024; Shin,
Kim, & Lee, 2021), showing high resilience across varying
spatial scales and adaptability to specific field conditions. Other
researchers have employed multimodal approaches that
integrate drone and satellite imagery (Maimaitijiang et al.,
2020), or deep neural networks, which improved forecast
accuracy by 10-15 % (Kuwata, & Shibasaki, 2015; Melnyk,
2023). The use of LSTM architectures has also shown promise
in regional yield assessments (Melnyk, 2023), while a satellite
image-based approach to crop classification in Ukraine
achieved over 88 % accuracy (Kussul et al., 2017).

Precision agriculture includes Variable Rate Seeding,
which allows for the site-specific adjustment of seeding and
fertilization rates based on soil and field properties (Samko
et al., 2025). Indeed, the correlation analysis of collected
data in yield forecasting is a complex task requiring
processing numerous parameters and precisely identifying
the key factors that determine final outcomes. Crop yield is
also significantly influenced by the topographical features of
the site — such as elevation and slope, which determine the
distribution of surface and groundwater, as well as local
water balance and erosion conditions.

Methods

This study employs two machine learning methods:
Random Forest and Gradient Boosting.

Random Forest (RF) is an ensemble method that
constructs numerous individual decision trees, each trained on
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random subsets of features and data samples. The method
operates as follows: for each tree, a random subset of the data
(with replacement) and a subset of features are selected; the
predictions of all trees are averaged (for regression) or
determined by majority vote (for classification). Key advantages
of this method include resistance to overfitting due to the result
averaging, robustness when dealing with noisy or non-
representative data, automatic handling of missing values,
insensitivity to feature scaling, and the ability to assess the
importance of individual features, thereby enhancing model
interpretability (Breiman, 2001).

Gradient Boosting is a sequential ensemble technique
where each new tree is trained to minimize the errors of the
previous one by optimizing a loss function using gradient
descent. Initially, a simple tree (e.g., with a depth of 1-3) is
built, and at each step, a new tree is added that is trained on
the residual errors of the model. This method achieves high
predictive accuracy even on complex datasets and offers
flexibility through hyperparameter tuning (learning rate, tree
depth, number of iterations), making it effective for yield
prediction tasks (Friedman, 2001). Crop condition, assessed
using spectral indices (calculated from Sentinel-2A and
Landsat 8 satellite imagery) and band combinations, reflects
the growth stage and physiological status of crops in various
zones of the field. Agronomic soil characteristics — such as the
chemical composition of macro- and micronutrients, pH, and
organic matter create the foundational conditions for plant
nutrition. The integration of these three data groups provides
a comprehensive overview of productivity factors and can
serve as a basis for accurate yield forecasting and the
optimization of differentiated agronomic measures (Table 1).

Field 1, with an area exceeding 309.6 hectares, is
located in Varva settlement of the Pryluky district, Chernihiv
region, near the village of Berizka (Fig. 1). The soils in the
study area are predominantly typical low humus chernozems
and degraded light loam chernozems, which require
particular attention to the preservation of their fertility and
structure. The terrain within the study area is
heterogeneous, with elevation differences of up to 20 meters
and gentle slopes with inclinations up to 4° (Zatserkovnyi
et al., 2025a). The levels of potassium and phosphorus are
moderately high. In terms of quality, the soils are average,
with an average organic matter content of 3.7 %. The field is
managed by the agricultural company "Kernel". The average
corn grain yield on this field ranges from 7 to 9 t/ha.

Field 2, covering 119.2 hectares, is located near the
village of Lysivtsi in the Tovste community of the Chortkiv
district, Ternopil region (Fig. 2), and is cultivated by the
scientific-production agri-enterprise "El Gaucho". The field
mainly consists of podzolized chernozems, primarily formed
on loess soils. The slope gradient ranges from 1° to 5°. The
soils are of high quality (scoring between 70 and 80 points),
with an estimated organic matter content of approximately
5.5 %. The potassium and phosphorus levels are high, and
the soil pH is moderately alkaline.

To reduce the dimensionality of the input dataset and
improve prediction efficiency, a preliminary analysis of the
collected data is conducted to select the most informative
parameters. One of the main methods used for this purpose
is correlation analysis, which helps establish statistical
relationships between different indicators. The correlation
matrix reflects the degree of linear association between pairs
of variables and is based on the Pearson correlation
coefficient, which is calculated using formula (1).

2?21(9(1‘_2)(3/1'_37) (1 )
o s o
where x; and y; — are individual observations (values) for the
two variables X and Y, respectively. x and y — are the mean

Txy =
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values of all observations for the variables X and Y (Pearson
correlation coefficient, n.d.).

Table 1
List of attributes to be used for calculations and modeling
Parameter Description [ Acronym
Relief
Elevation Absolute height above sea level, m. El
Slope gradient Surface slope angle (°) Sl
T . o Difference between the elevation of a point and the mean elevation
opographic Position Index ) ) TPI
of its surrounding area
Topographic Wetness Index The ratio of the specific ce_itchment area to the tange_nt of the slope angle, Wi
used to assess the potential for moisture accumulation
Soil
Exchangeable calcium. Calcium concentration in soil exchangeable cations, mg/kg Ca
Exchangeable potassium Concentration of potassium in soil exchangeable cations, mg/kg. K
Mobile phosphorus Concentration of available phosphorus in soil, mg/kg P
Exchangeable sodium Concentration of sodium in soil exchangeable cations, mg/kg Na
Exchangeable magnesium Concentration of magnesium in soil exchangeable cations, mg/kg Mg
Organic matter Content of organic matter in soil, % Org M
pH (KCI) Soil acidity extracted with KCI solution, pH units pH_KCI
Crop condition
Green vegetation index Vegetation activity indicator, (NIR — GREEN) / (NIR + GREEN) GNDVI
s Temperature of the land surface or vegetation derived from the satellite thermal
urface temperature channel (°C) LST
Moisture index Indicator of leaf moisture content in plants, (NIR — SWIR) / (NIR + SWIR) NDMI

Fig. 1. Location of the study field No. 1
(authors' own elaboration based on OpenStreetMap data)

Results

In the case of the study field No. 1, the correlation matrix
(Fig. 3) shows the strongest positive relationship between
yield and GNDVI (r = 0.78), as well as between yield and
NDMI (r=0.77), highlighting the significant role of water
balance and vegetation status in yield formation. During the
active grain filling phase, these indices are directly related to
the crop condition, which explains the high correlation
coefficients. The TWI index shows a moderate positive
correlation (r = 0.36). Soil water availability is a key factor;
however, TWI is not a direct indicator of moisture but rather
reflects the potential for its accumulation (depending on
topography, drainage, etc.). Therefore, even if a location has
the potential to retain water, it does not necessarily mean
that moisture will actually be available, as this depends on
rainfall, evaporation, and other factors.

Potassium (r = -0.49) shows a moderate negative
correlation with yield. The surface temperature of the corn
crops grown for grain (r=-0.59) indicates a strong
negative correlation. Higher surface temperatures of
crops often signal water stress. When a plant experiences
water deficiency, its leaf and surface temperature rise.
Thus, this strong negative relationship is entirely
expected. Exchangeable magnesium, organic matter, and
slope steepness indicators show the weakest correlations
with yield. High potassium values may result from uneven
fertilizer distribution or poor availability due to other
factors, meaning that potassium is present but not
effectively utilized. As a result, an inverse relationship
may be observed: a high amount of potassium in certain
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Fig. 2. Location of the study field No. 2
(authors' own elaboration based on OpenStreetMap data)

areas does not indicate better yields and may, in fact,
indicate the opposite.

Correlation matrix of the study field No. 2 (Fig. 4): The
strongest positive correlation with yield is observed for NDMI
(r = 0.50) and GNDVI (r = 0.52).

The terrain, specifically slope steepness (r = —0.45), shows
a noticeable correlation with yield. This likely indicates that field
No. 2 has more pronounced topographic contrasts, which have
a stronger impact on yield compared to field No. 1. The surface
temperature of the crops during the full grain filling period is
negatively correlated with corn yield (r=-0.41), which is a
typical result for corn under high-temperature conditions during
this critical growth phase. Unlike in the previous field,
magnesium shows a strong positive correlation here (r = 0.52).
The weakest correlations with grain corn yield are observed for
exchangeable sodium and mobile phosphorus.

The analysis of the correlation results revealed that
mobile phosphorus, as well as exchangeable magnesium
and sodium, exhibit weak correlations with corn yield in the
study fields No.1 or No. 2. Specifically, the correlation
coefficients for these indicators fall within low ranges,
indicating their limited explanatory power in the context of
the selected dataset. According to standard statistical
analysis procedures, variables showing weak correlation
would typically be excluded from further modeling or
forecasting schemes to improve accuracy. However,
considering that these parameters are fundamental in
agrochemical soil analysis and are traditionally used to
assess yield potential, the decision was made to retain them
in the study. It is likely that the weak correlation is due to the
limited data volume or data quality. This suggests that with
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a more representative dataset, collected over broader
spatial or temporal scales, these indicators may
demonstrate a more significant influence on corn yield.

CORRELATION MATRIX 1.00
Ca m
K - 002 ) 0.75
Mg - 038 033 Y
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Fig. 3. Matrix of linear correlation coefficients for the study field No. 1
(authors' own elaboration)
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Fig. 4. Matrix of linear correlation coefficients for the study field No. 2
(authors' own elaboration)

Construction of yield prediction models for grain
corn based on collected data from the fields studied.

To build a high-resolution yield prediction model, the
study fields are divided into a certain number of subplots,
and a separate forecast is generated for each. Let the actual
yield value of the i-th subplot be denoted as y;, the predicted
value as — y, (formula (2)).

Y= fo(x), (2)
where x; € X — is the input data vector describing the
condition of the i-th subplot, 6 — represents the parameters
of the yield prediction model, f —is the functional relationship
between the input field condition data and the crop yield of
the agricultural crop (Hnatiienko et al., 2024)

Training and validation of the model will be performed
using training datasets, namely, data collected from fields
No. 1 and No. 2, where each field plot includes yield data in
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tons per hectare. Since the study fields No. 1 and No. 2 are
in different geographic zones and are managed by different
agricultural producers, separate yield prediction models will
be developed for each field, considering the parameter
values (Table 1) for subplots with areas of 5 ha and 1 ha.

The code listings for the presented models are provided
in the supplementary materials.

Validation of grain corn yield prediction models.

To ensure an objective assessment of the accuracy of
the yield prediction models, validation of the results must be
performed using statistical metrics. The application of
quantitative accuracy indicators is a key stage in the study,
as it enables the comparison of different models and the
identification of the most effective prediction approaches.

In this study, the following commonly used metrics are
applied to evaluate model performance: Root Mean Square
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Error (RMSE) (formula (3)), Mean Absolute Error (MAE)
(formula (4)), Mean Absolute Percentage Error (MAPE)
(formula (5)), and Coefficient of Determination (R2)
(formula (6)) (Kumar, 2024).

n T 2
RMSE = Zi (y‘Ln ) (3)
MAE = Zﬁy‘;—ﬁl 4)
_ l n Vi—¥,
MAPE =23 |—yi | (5)
2 _ 4 _ Zi0i=3)
k=1 Sri-7) ©)

As part of the study on the effectiveness of the grain corn
yield prediction system, the results obtained are presented
in Tables 2 and 3.

Analyzing the results, it can be noted that the Random
Forest model demonstrates more stable accuracy when the
scale of input data changes, compared to Gradient Boosting.
Specifically, when transitioning from 5-hectare to 1-hectare
subplots, the coefficient of determination R? for Random
Forest increased from 0.614 to 0.776 (+0.162), whereas for
Gradient Boosting, the increase was more significant — from
0.562 to 0.801 (+0.239).

A similar trend in performance improvement is observed
across other accuracy metrics for the study field No. 1. The
Mean Squared Error (MSE) for the Random Forest model
decreased from 0.101 to 0.079 (approximately a 22%
improvement), while for Gradient Boosting it decreased from
0.115 to 0.071 (approximately a 38 % improvement). This

indicates that Gradient Boosting responds more strongly to
an increase in data volume, showing a more substantial
reduction in error when using a finer grid (1 ha).

It is also worth noting that the Mean Absolute Error
(MAE) for Random Forest decreased from 0.276 to 0.234
(around a 15 % improvement), whereas for Gradient
Boosting it dropped from 0.294 to 0.235 (around a 20 %
improvement). Similarly, the Mean Absolute Percentage
Error (MAPE) for both models declined to approximately the
same level (0.029), though Gradient Boosting showed a
greater improvement.

Therefore, the grid resolution (subplot size) matters
when predicting yield, but its effect depends on the chosen
machine learning algorithm.

The analysis of results for the study, field No. 2 confirms
the patterns observed for field No. 1 (Table 3). Specifically,
the Random Forest model (Fig.5) demonstrates high
accuracy stability regardless of subplot size: the increase in
the coefficient of determination when reducing the grid scale
is minimal (from 0.571 to 0.575). In contrast, Gradient
Boosting remains more sensitive to spatial granularity: when
moving from 5 ha to 1 ha subplots, the model's accuracy
increases more significantly (from 0.480 to 0.647).

In conclusion, a finer grid generally improves prediction
results, but the degree of this effect depends on the selected
algorithm. This implies that the optimal subplot size should
be chosen considering both the model's performance and
the practical capabilities for data collection.

Table 2

Validation results of grain corn yield prediction models for the study field No. 1 depending
on the subplot size and the machine learning method

Subplot size Machine learning method
P Random Forest Gradient Boosting
Random Forest: Expected vs Predicted (R? 0.61) Gradient Boosting: Expected vs Predicted (R 0.56)
9.0 — 9.0 /‘//
g 85 —— .:/// ~ g 85 B ::,//
= P o = P
= s 3 Pt
L 80 . e g 8o . T
5ha LS. . %75 o
7.5 8.0 85 9.0 7.5 8.0 85 9.0
Expected YIELD Expected YIELD
R?*:0,614 R?: 0,562
MSE: 0,101 MSE: 0,115
MAE: 0,276 MAE: 0,294
MAPE: 0,034 MAPE: 0,036
Random Forest: Expected vs Predicted (R? 0.78) Gradient Boosting: Expected vs Predicted (R? 0.80)
. /// //,
Q . a? 7
g - 820 o E g
3 s Rk S 1 g
B .o Ls N
3 3
~ g () -~
1 ha < L &
71T
7 8 9 7 8 9
Expected YIELD Expected YIELD
R?:0,776 R?: 0,801
MSE: 0,079 MSE: 0,071
MAE: 0,234 MAE: 0,235
MAPE: 0,029 MAPE: 0,029

Source: authors' own elaboration.
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Table 3

Validation results of grain corn yield prediction models for the study field No. 2 depending on the subplot size and the

machine learning method

Subblot size Machine learning method
P Random Forest Gradient Boosting
Random Forest: Expected vs Predicted (R*0.57) Gradient Boosting: Expected vs Predicted (R? 0.48)
- * " .
15.0 e 15.0 e
Q gl & e
] ~ = -~
= 145 el S 145 e
< R .~ > . -~
Y] o P S . 9
5 ha N 14.0 ’,/ & 14.0 //
14.0 14.5 15.0 14.0 14.5 15.0
Expected YIELD Expected YIELD
R%: 0,571 R?: 0,48
MSE: 0,176 MSE: 0,213
MAE: 0,344 MAE: 0,381
MAPE: 0,025 MAPE: 0,027
Gradient Boosting: Expected vs Predicted (R? 0.57) Gradient Boosting: Expected vs Predicted (R* 0.65)
15.5 . ~ 15.5
15.0 '/” 15.0 ’}/
Q 3 i
= -~ o -~ .
= - = . L
=145 e 3 145
3 ' :
1 ha E 14.0 . ,//’ & 140 7 .
Q e . e
13.51 8BS~
135 140 145 150 155 B35 140 145 150 155
Expected YIELD
Expected YIELD
R% 0,575 R?: 0,647
MSE: 0,146 MSE: 0,121
MAE: 0,283 MAE: 0,273
MAPE: 0,02 MAPE: 0,019
Source: authors' own elaboration.
RANDOM FOREST: TREE 0 (DEPTH = 3)
SLOPE <-1.467
squared_error = 0.147
True samples = 10 False
/ value = 14.633 \
NDMI £-0.218 TWI £-2.855
squared_error = 0.035 squared_error = 0.014
samples = 4 samples = 6
value = 15.097 . e value = 14.363 %
SLOPE <-1.029 TPI £ -1.608 K<192.5
squared_error = 0.0) squared_error = 0.007 squared_error = 0.001 squared_error = 0.006
samples = 1 samples = 3 samples =4 samples = 2
value = 13.315 value = 15.028 value = 14.426 value = 14.172

» 4 »

A » “

SLOPE 5 -1.029
squared_error = 0.001
samples = 2
value = 14.97

squared_error = 0.0
samples = 1
value = 15.134

squared_error = 0.0
samples = 1
value = 14.346

SLOPE <-1.752
squared_error = 0.0
samples = 3
value = 14.356

squared_error = 0.0
samples = 1
value = 14.281

squared_error = 0.0
samples = 1
value = 14.123

A A

Fig. 5. Example of the first decision tree for the study field No. 2 with 5 ha subplots
(authors' own elaboration)

Based on the developed machine learning models, grain
corn yield prediction was carried out for two agricultural
fields with different levels of spatial detail (grids of 1 ha, 2 ha,
and 5 ha). The predictors included the vegetation indices
GNDVI and NDMI, as well as concomitant variables: soil
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moisture indicators, soil types, temperature regime, and crop
rotation information. Model accuracy was evaluated by
comparing the predicted and actual yield values.

For field No. 1, the most accurate results were achieved
by the Gradient Boosting model using a 1 ha grid: the
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predicted yield was 5.67 t/ha, which was only 0.16 t/ha lower
than the actual value of 5.83 t/ha. As the level of spatial
aggregation increased, accuracy slightly decreased:
5.60 t/ha at 2 ha and 5.63 t/ha at 5 ha. The Random Forest
model, in turn, produced less accurate predictions ranging
from 5.55 to 5.61 t/ha for the different grids, with a maximum
deviation of 0.28 t/ha.

For field No. 2, the Gradient Boosting model again
proved to be the most effective at the 1 ha resolution: the
predicted yield was 5.39 t/ha versus an actual yield of
5.52 t/ha (an error of 0.13 t/ha). Other spatial resolutions
produced similar results: 5.34 t/hha (2 ha) and 5.37 t/ha
(5 ha). The Random Forest model's predictions ranged
between 5.29 and 5.35 t/ha.

The obtained results confirm the suitability of Gradient
Boosting for accurate yield prediction, especially under
conditions of high spatial resolution. In contrast, Random
Forest provides stable yet slightly less precise estimates,
which can be beneficial in situations with limited access to
high-resolution data.

Discussion and conclusions

A comprehensive analysis of the factors influencing grain
corn yield was conducted using remote sensing data,
agrochemical soil analysis results, and topographic
characteristics. Correlation analysis made it possible to
identify key indicators with the strongest impact on yield,
particularly the spectral indices (GNDVI, NDMI).

Yield prediction models were constructed using machine
learning methods — Random Forest and Gradient Boosting
— for two study fields, with subplot sizes of 5 ha and 1 ha.
Their performance was evaluated using the Mean Absolute
Error (MAE) and the Coefficient of Determination (R?),
enabling the identification of each method's advantages and
limitations under conditions of spatially heterogeneous
agrolandscapes. Validation results demonstrated that
Gradient Boosting is more sensitive to spatial data
granularity, significantly improving prediction accuracy with
finer grids (1 ha). On the other hand, Random Forest
provides consistent results even at coarser spatial
resolution, highlighting its robustness when data availability
is limited or data volume is smaller.

Overall, the study confirms the importance of integrating
multicomponent datasets and considering the field spatial
structure to improve vyield prediction accuracy. The
developed methodology has strong potential for
implementation in precision agriculture systems to optimize
agronomic practices and enhance resource management
efficiency.
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KuiBcbKkMM HauioHanbHMit yHiBepcuTeT imeHi Tapaca LLlesuyeHka, Kuie, YkpaiHa

3ACTOCYBAHHSA METOAIB MALUMHHOIO HABYAHHSA TA AAHUX ANCTAHUINHOIMO 30HAYBAHHSA 3EMI
B MPOrHO3YBAHHI BPOXXAUHOCTI

B ¢ Ty n. [lpo2Ho3yeaHHs epoxaliHocmi CinlbcbKo20cnodapcbKux Ky/bmyp 3aexou 6yso HenpocmuM 3agdaHHsAIM, 0cob/1u8o 8 yMoeax Kilima-
muyHoi HecmabinbHocmi ma 3pocmar4yo20 MUCKy Ha pecypcu. 3eaxaro4u Ha 06MeXeHHS KlacUYHUX MameMamuyHux modenel y makil cknaodHil
2anys3i, ik aepapHa aHasimuka, HUHi ece 6inbwoi eazu Habyearomsb nidxodu, ocHoeaHi Ha AaHuUX i MAaWUHHOMY Hag4YaHHIi. Oco6/1ueo nepcrneKMueHuUM
suansidae NoedHaHHs1 CynymHUKo8uUX 3HiIMKie, a2poxiMi4HO20 aHanily rpyHmie ma anzopummie wmy4yHo20 iHmenekmy Onsi no6ydoeu 2Hy4Kux i
MO4YHUX NMPO2Ho3i8.

Me Toawn. lpoaHanizoeaHo dea cinbcbko2ocnodapchKi Nosisi, po3mawosaHi 8 pi3HUXx pez2ioHax YKpaiHu, i3 pisHumu npupodHUMU ymMo8aMu.
Byno 3i6paHo Mmacue daHux: monozpagiyHi napamempu (ucoma, yxusi, 600036ipHuli nomeHyian), cnekmpanbHi iHdekcu i3 cynymHukie Sentinel-2A
ma Landsat 8 (3okpema, NDMI, GNDVI), a makox ximi4Huli cknad rpyHmy. 3a 0ornomMo20r0 KopesnsiyiliHo20 aHai3y eusHa4yeHo, siKi caMe NMoKa3HUKU
micHiwe noe'si3aHi 3 pieHem ypoxaliHocmi. [To6ydoeaHo Modesni Npo2HO3y epoxaliHocmi Ha ocHoei Random Forest ma Gradient Boosting, 3 adan-
mauyieto nid po3dineHHs1 nonie Ha NiddinsiHku po3mipom 5 ma 1 2a.

Pe3ynbTarTtu. AHani3z nokasas, ujo cmaH eeezemauii ma o0Huti 6anaHc kynbsmypu (NDMI, GNDVI) Halikpauie nosicHoromb 8apiauyii epoxxau-
Hocmi. BoAHo4ac maki nokasHuKu, ik memrnepamypa rnoeepxHi, Maromb Yimkuli HecamueHul ensiue, W0 MoXxe 8Kkazyeamu Ha mernsioeuli cmpec y
nepiodu Hanuegy 3epHa. Gradient Boosting npodemMmoHcmpyeae ocobsiugo 0o6py 4ymnusicms Ao npocmoposoi demaniszauii— Ha cimyi 1 2a moyHicmb
npozHo3y docsizana R? = 0,801. Hamomicmb Random Forest noka3sae cebe sik cmilikuii i MeHw Yymnueuli do macwmaby 0aHux Memoad.

BucHoBKku. Y docnidxeHi dosedeHo, ujo noedHaHHS CynymHUKo8UX 3HiMKie, pe3ysib ie aHanisy rpynmie ma memodie MaWuHHO20 Hae-
YaHHs1 0ae 3Mo_2y noJslinuwumu MoYHicMb NPO2HO3y8aHHS epoxkaliHocmi. Y Modesi eK/lro4YeHo NokKa3HUKU ee2emauyii ma xapakmepucmuKu yMO8 8u-
powyeaHHs1 Kynbmyp. Takox npoeedeHO MOopi8HSAHHS Pi3HUX anzopummie npu pi3Hil demanisayii npocmopoeux daHux. OmpumaHi pesynbmamu
ceidyamb npo me, w0 3anpornoHoeaHuli Nioxid Moxe 6ymu KOPUCHUM y npakmuyi moYyHo20 3emiepobcmea, ocob1ueo A1 a2pPOHOMIYHO20 NNaHy-
8aHHs1 ma MOHIMopuHay rnocisis.

KnwuyoBi cnoBa: wmy4Hul iHmenekm (LI), mawuHHe Hae4aHHs1 (ML), ducmaHuyiiiHe 3oHdyeaHHs1 3emni ([33), random forest (RF),
gradient boosting (GB), normalized difference moisture index (NDMI), green normalized difference vegetation index (GNDVI), npeyu3sitliHe 3emnepo6-
cmeo (PZ), kopensauyitiHul aHani3 (KA).

ABTOpM 3aaBNSAIOTb NPO BiACYTHICTb KOHMNIKTY iHTepeciB. CnoHcopu He Gpanu yyacTi B po3pobneHHi JocniaxeHHst; y 36opi, aHanisi un
iHTepnpeTaLii AaHVX; y HAaNMUCaHHi PyKOMuUCy; B pilLeHHi Mpo nybrikaLilo pe3ynbTaris.

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation
of data; in the writing of the manuscript; or in the decision to publish the results.

ISSN 1728-2713 (Print), ISSN 2079-9063 (Online)





