
ГЕОЛОГІЯ. 2(109)/2025 ~ 31 ~ 

 

 
ISSN 1728-2713 (Print), ISSN 2079-9063 (Online) 

УДК 550.8.056 
DOI: http://doi.org/10.17721/1728-2713.109.04 

 
Олег ПЕТРОКУШИН, асп. 

ORCID ID: 0000-0003-0953-2858 
e-mail: olehpetrokushyn22@gmail.com 

Київський національний університет імені Тараса Шевченка, Київ, Україна 
 

Ірина БЕЗРОДНА, канд. геол. наук, доц., ст. наук. співроб. 
ORCID ID: 0000-0002-6835-5276 
e-mail: irynabezrodna@knu.ua 

Київський національний університет імені Тараса Шевченка, Київ, Україна 
 

ІМПУЛЬСНИЙ НЕЙТРОННИЙ КАРОТАЖ У СВІТІ ТА В УКРАЇНІ:  
ВИТОКИ, СТАНОВЛЕННЯ, СУЧАСНІСТЬ 

 
(Представлено членом редакційної колегії д-ром геол. наук, проф., О.М. Карпенком) 
В с т у п .  Нині більшість нафтових і газових родовищ в Україні виснажені, що вимагає від операторських компаній в Ук-

раїні постійного моніторингу рівнів насичення та руху флюїду в колекторах, оскільки це є важливою інформацією для опти-
мізації та планування подальших стратегій видобутку. 

М е т о д .  Відображено розвиток та сучасний стан імпульсного нейтронного каротажу як одного з основних методів 
контролю за розробкою нафтових і газових родовищ. 

Р е з у л ь т а т и .  Акцентовано увагу на історії становлення ІНК починаючи з 1949 р. Подальший розвиток технології 
включає створення генераторів нейтронів, вдосконалення методик і апаратури, а також появу сучасних багатодетектор-
них приладів. Розглянуто два основні види ІНК: імпульсний нейтрон-нейтронний каротаж (ІННК) і імпульсний нейтронний 
гамма-каротаж (ІНГК), кожен з яких має свої переваги і недоліки. Важливим етапом розвитку імпульсного нейтронного каро-
тажу стало створення приладів Sigma-каротажу у 1960-х рр., які вимірюють поперечний перетин захоплення нейтронів і 
використовуються для оцінки нафтонасичення пластів. Значну увагу у статті приділено аналізу розвитку C/O-каротажу, 
що вперше застосований у 1971 р. і визначає відношення карбону до оксигену для оцінки нафтонасичення порід. Розвиток 
багатодетекторних приладів дав змогу здійснювати дослідження через насосно-компресорні труби, що значно розширило 
можливості імпульсного нейтронного каротажу. Також представлено здобутки вітчизняних геофізиків з розвитку імпульс-
ного нейтронного каротажу в Україні. Сучасні дослідження зосереджені на використанні багатодетекторних приладів і 
MCNP-моделей для кількісного визначення газонасиченості порід-колекторів. Використання цих приладів показало високу 
ефективність на родовищах Дніпровсько-Донецької западини та Передкарпатського прогину. 

В и с н о в к и .  І мпульсний нейтронний каротаж відіграє ключову роль у дослідженні та моніторингу обсаджених наф-
тогазових свердловин. Запропоновано подальші кроки для розвитку цієї технології в Україні, включаючи впровадження нових 
детекторів, збільшення кількості детекторів та використання MCNP-моделей для більш точного визначення насиченості 
пластів. 

 
К л ю ч о в і  с л о в а :  імпульсний нейтронний каротаж, Sigma-каротаж, С/O-каротаж, MCNP-моделювання, багатодете-

кторні імпульсні нейтронні прилади. 
 
Вступ 
Здійснення раціональної розробки нафтогазових ро-

довищ вимагає систематичного контролю, який забезпе-
чується отриманням інформації в реальному часі про 
характер насичення пластів, відбір нафти, газу та замі-
щення їх водою в пластах, що експлуатуються як на ок-
ремих ділянках, так і на конкретному родовищі загалом. 
Одним з основних засобів контролю над розробкою на-
фтових і газових родовищ є геофізичні методи дослі-
дження обсаджених свердловин і насамперед 
імпульсний нейтронний каротаж, який дає змогу визна-
чати поточний характер насичення пластів. 

Історія та хронологія застосування імпульсного нейт-
ронного каротажу для дослідження нафтогазових свердло-
вин нерозривно пов'язані з досягненнями у сфері ядерної 
фізики, появою нових вимірювальних систем, розвитком 
електроніки та обчислювальної мікропроцесорної техніки.  

Першим кроком до становлення імпульсного нейт-
ронного каротажу стало створення генератора нейтро-
нів, який би міг використовуватися у свердловинних 
умовах. У 1949 р. Р. Ферон і Дж. Тейер подали заявку на 
патент на генератор, який прискорював ядра дейтерію 
на тритієву мішень або навпаки (Fearon, & Thayer, 1955). 
Оскільки попередні конструкції потребували наявності 
безперервного вакуумного насоса, який був непрактич-
ним у свердловині, у 1952 р. А. Юманс подав заявку на 
патент на перший дейтерій-тритієвий генератор, який міг 
використовуватися у свердловині (Youmans, 1954).  
Варто зазначити, що у 50–60-х рр. ХХ ст. роботи зі 

створення імпульсних генераторів нейтронів проводи-
лися і в колишньому СРСР. Ці досягнення стали почат-
ком практичного застосування прискорювальних 
дейтерій-тритієвих імпульсних джерел нейтронів у дослі-
дженнях нафтогазових свердловин. 

Подальший розвиток методу імпульсного нейтрон-
ного каротажу йшов шляхом удосконалення методик і 
апаратури відповідно до завдань розвідки нафтогазових 
родовищ, підрахунку їх запасів і контролю над розробкою 
родовищ. 

На сьогодні розрізняють два основні різновиди імпульс-
ного нейтронного каротажу. Це імпульсний нейтронний 
каротаж з вимірюванням нестаціонарного імпульсно-пе-
ріодичного поля теплових нейтронів – імпульсний ней-
трон-нейтронний каротаж (ІННК) та імпульсний 
нейтронний каротаж з вимірюванням нестаціонарних по-
лів гамма-квантів радіаційного захоплення, непружного 
розсіювання або нейтронної активації – імпульсний ней-
тронний гамма-каротаж (ІНГК). За кордоном застосову-
вали переважно модифікацію ІНГК, тоді як в Україні – 
модифікацію ІННК. Вважається, що ІНГК методично ба-
гатший, хоч його апаратура дорожча. 

У даному огляді висвітлено історію розвитку, станов-
лення та принципи сучасного застосування імпульсного 
нейтронного каротажу під час розробки нафтогазових 
родовищ у світі та в Україні. 

Початок та здобутки імпульсного нейтрон-
ного каротажу у світі. Sigma-каротаж. Першим кро-
ком у розвитку ІНГК у світі стало створення приладу, 
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який вимірював параметр Sigma (Σ) – поперечний пере-
тин захоплення нейтронів. Вимірювання параметра Sigma 
було досягнуто шляхом підрахунку гамма-квантів як фун-
кції часу із синхронізацією з циклами ввімкнення-вимк-
нення імпульсного генератора нейтронів. Цей прилад, 
представлений у 1963 р. компанією Lane-Wells, отримав 
назву Neutron Lifetime Log (NLL) (Youmans et al., 1964).  

До основних досягнень, які забезпечили створення 
приладу, що вимірював параметр Sigma, можна віднести 
включення генератора нейтронів у конструкцію приладу, 
початок використання кристалічних сцинтиляційних де-
текторів CsI(Na) і розробку високошвидкісної електро-
ніки, яка була потрібна для синхронізації підрахунку 
гамма-квантів із циклами ввімкнення-вимкнення імпуль-
сного генератора нейтронів. У приладі NLL генератор 
нейтронів працював на частоті 1000 Гц, водночас під час 
кожного імпульсу випромінювалося 100 000 нейтронів з 
енергією 14 МеВ із загальною швидкістю 108 нейтронів/с 
(Pemper, 2020). 

Перший прилад NLL реєстрував лише кількість га-
мма-квантів за певні періоди часу – параметри GATE1 
(від 400 до 600 мкс після імпульсу нейтронів) і GATE2 
(від 700 до 900 мкс після імпульсу нейтронів). Пізніше до-
дано розрахунок поперечного перетину захоплення ней-
тронів, параметр Sigma (Σ), оскільки його було легше 
інтерпретувати. Параметр Sigma розраховано з вимірів 
GATE1 (N1) і GATE2 (N2) за формулою Σ ൌ 35𝑙𝑜𝑔 ቀ𝑁ଵ 𝑁ଶൗ ቁ. 

На рис. 1 показано приклад каротажної діаграми, ви-
конаної приладом NLL, де наведено порівняння кривих 
параметрів GATE1, GATE2 та Σ у комплексі з кривими 
самочинної поляризації (SP) та питомого електричного 
опору (RILD) (Fitz, 2023). З рисунка очевидно, що дуже 
низькі значення Σ і, відповідно, високі значення параме-
трів GATE1 та GATE2 вказують на інтервали колекторів 
вуглеводнів (ВВ). Дуже високі значення Σ і, відповідно, 
низькі значення параметрів GATE1 та GATE2 відповіда-
ють глинистим інтервалам. У свою чергу середні зна-
чення цих параметрів демонструють інтервали з 
високою пористістю, яка заповнена високомінералізова-
ною водою. 

 

 
Рис. 1. Приклад каротажної діаграми приладом NLL 

(за Youmans et al., 1970) 

Після розробки першого приладу Sigma-каротажу 
інші компанії нафтогазової галузі розробили схожі при-
лади: Thermal Neutron Decay Time (TDT) (Wahl et al., 
1970), Thermal Multigate Decay (TMD) (Schultz et al., 1983; 
Smith et al., 1983a), Pulsed and Decay, 100 Channels 
(PDK-100) Tool (Randall et al., 1985; Randall et al., 1986) 
та Pulsed-Neutron Thermal Decay (PND) Tool (Odom et al., 
1992) тощо. 

Протягом наступних десятиліть відбулися значні вдос-
коналення приладів, які набагато спростили запис даних, 
підвищили чутливість приладів і точність інтерпретації да-
них. До них можна віднести: зменшення діаметру приладів, 
включення додаткових та більш чутливих сцинтиляційних 
детекторів (LaBr3, BGO або YAP) в конструкцію приладів, 
вимірювання фонової Σ від свердловини та ін. 

Одне з найновіших вимірювань параметра Σ було ре-
алізовано за допомогою приладу Raptor (Weatherford) з 
чотирма детекторами, де четвертий (найвіддаленіший 
від генератора) детектор забезпечує вимірювання Σ без 
дифузії (Schmid et al., 2018). 

Першочерговим завданням цих приладів є визначення 
коефіцієнта нафтонасичення порід за умов високої міне-
ралізації пластових вод. У свою чергу основними обме-
женнями вимірювання Σ є невеликий контраст значень 
між газонасиченими та нафтонасиченими пластами, ни-
зька мінералізація пластових вод та низька пористість ко-
лекторів, що значно ускладнюють інтерпретацію. 

С/O-каротаж. Передумовою до становлення C/O-ка-
ротажу, першочерговим завданням якого було обчислення 
відношення вмістів карбону до оксигену для визначення  
нафтонасичення порід-колекторів, стало створення при-
ладу спектрального гамма-каротажу (ГК). Основою для 
приладів спектрального ГК була нова технологія, яка дала 
змогу реєструвати енергію гамма-квантів. 

Першим приладом спектрального ГК, який застосу-
вали в нафтогазових свердловинах у 1969 р., став 
Spectralog (Lock and Hoyer, 1971; Wichman et al., 1975). 
Аналогові імпульси надсилалися по каротажному ка-
белю на поверхню, де їх оцифровували, щоб можна було 
створити спектр енергії в діапазоні від 0 до 3.5 МеВ. На 
додаток до вимірювання інтенсивності загального (інтег-
рального) гамма-випромінювання, спектр використову-
вався для виділення кількості торію (Th232), калію (K40) і 
урану (U238). Наступним кроком було калібрування ін-
струменту, щоб перевести інтенсивності гамма-випромі-
нювання в абсолютні кількості торію (ppm), калію (wt %) і 
урану (ppm). Енергетичні піки калію (1,461 МеВ), урану 
(1,765 МеВ) і торію (2,614 МеВ) були використані для 
стабілізації спектра як функції енергії. Калібрувальні зра-
зки з відомою кількістю кожного елемента використову-
валися як фундаментальна система калібрування для 
перетворення підрахунків гамма-випромінювання в кон-
центрації цих елементів у пластах. Енергетичні "вікна", 
які використовувалися в аналізі, зображено на рис. 2 
(Pemper, 2020). 

Незважаючи на те, що при аналізі використовувалися 
лише три енергетичні "вікна", прилад Spectralog запису-
вав 256 каналів на кожному кроці вимірювань, у випадку, 
якщо вони будуть корисними. Як довела історія, це ви-
явилося дуже корисним для майбутнього покоління імпу-
льсних нейтронних приладів. 

Поєднання імпульсного генератора нейтронів, нової 
електроніки та технології вимірювання енергії гамма- 
квантів в одному пристрої призвели до створення нового 
приладу імпульсного нейтронного каротажу – приладу 
C/O-каротажу. У 1971 р. Д. Арнольд, В. Шульц і Г. Сміт з 
Texaco (США) подали патент на систему імпульсного 
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нейтронного каротажу для вимірювання вмісту C, O, Ca і 
Si (Arnold et al., 1973). Важливо відзначити, що у цьому  
методі у відношення вмісту C/O вводилася поправка за 
наявність неорганічного вуглецю в матриці породи (напри-
клад, вуглецю у матриці карбонатів) за допомогою вимі-
рювання відношення вмісту Ca/Si з спектра непружних 
розсіювань. Це стало дуже важливим рішенням,  
оскільки в породах може міститися більше вуглецю, ніж 
ВВ у пустотному просторі. Перший прилад C/O-каротажу 

дав змогу проводити лише стаціонарні дослідження у сверд-
ловині з інтервалом спостереження від 1 до 10 хвилин.  
Пізніше, у 1976 р., оригінальний прилад удосконалили і вже 
проводили каротаж у режимі постійного запису (Wichman 
et al., 1976; Flynn et al., 1981; Hopkinson et al., 1981; Oliver 
et al., 1981). Саме для інтерпретації C/O-каротажу вперше 
було застосовано моделі Монте-Карло (MCNP-моделі)  
для врахування наявності нафти у свердловині. 

 

 
Рис. 2. Приклад методології, використаної приладом Spectralog для визначення спектральних компонентів  

природного гамма-випромінювання, які включали торій, калій і уран (Pemper, 2020) 
 

У наступні десятиліття інші компанії нафтогазової га-
лузі розробили свої прилади C/O-каротажу: Induced 
Gamma Ray Tool (IGT) (Hertzog, 1980), Gamma Ray 
Spectroscopy Tool (GST) (Westaway et al., 1983), Pulsed 
Spectral Gamma Ray Tool (PSG) (Jacobson et al., 1991; 
Wyatt et al., 1992). У цих приладах врахували недоліки 
першого приладу, зокрема покращили роздільну здатність 
спектра, автоматичне регулювання посилення детектора 
та відношення сигнал-завада, що в кінцевому результаті 
значно підвищило статистичну точність вимірів. 

Головною перевагою C/O-каротажу є можливість ви-
значати нафтонасичення у пластах, коли мінералізація 
пластових вод занизька для Sigma-каротажу за умови, 
що пористість пласта достатньо висока, а діаметр свер-
дловини не надто великий. 

Окрім відношення C/O, для визначення нафонасичення 
інтерпретатори використовують відношення вмістів: 

• Si/(Ca+Si) зі спектра непружних розсіювань для  
визначення літології; 

• H/(Ca+Si) зі спектра захоплення нейтронів для  
визначення пористості;  

• Fe/(Ca+Si) зі спектра захоплення нейтронів для  
визначення глинистості. 

На рис. 3 показано приклад запису C/O-каротажу 
(Fitz, 2023) для моніторингу водонафтового контакту 
(ВНК). З рисунку очевидно, що моніторинговий запис ві-
дношення C/O порівняно з базовим записом чітко відо-
бражає рух ВНК у пластах C2-C4 та B2. 

Роль MCNP-моделювання. Традиційно інтерпретація 
імпульсного нейтронного каротажу була лише якісною і по-
лягала у визначенні глибини водонафтового контакту 
(ВНК), газонафтового контакту (ГНК), газоводяного конта-
кту (ГВК) або визначенні інтервалів закачування газу чи 
води. Однак з часом у видобувних компаній виникла 

потреба у точному визначенні зміни нафто- чи газонаси-
чення порід. Ця точність була необхідною для економічної 
оцінки шансів на фінансовий успіх при застосуванні нових 
методів розробки пластів на родовищах. Така точність ви-
магала не лише каротажних вимірювань, але й відомостей 
про властивості пластів та флюїдів, а також вірно розроб-
лених моделей реакції приладів для того, щоб точно обчи-
слити насичення пластів. Саме для цього й почали 
використовувати математичний метод моделювання  
Монте-Карло (MCNP-моделювання). 

 

 
Рис. 3. Приклад запису C/O каротажу для моніторингу  

водонафтового контакту (ВНК) (Fitz, 2023) 
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Вперше метод Монте-Карло використав Енріко Фермі 
на початку 1930-х рр. для розрахунку властивостей пе-
реносу нейтронів. У 1950-х і 1960-х рр. ХХ ст. розроб-
лено коди Монте-Карло для моделювання переносу 
нейтронів, гамма-квантів і фотонів (MCN, MCG і MCP). Ці 
коди були об'єднані в узагальнений код під назвою 
MCNP і вперше опубліковані у 1977 р. Цей об'єднаний 
код був кодом N-частинок загального призначення Мо-
нте-Карло, який можна було використовувати для моде-
лювання переносу нейтронів, фотонів, електронів або 
зв'язаного переносу нейтронів/фотонів/електронів (Fitz, 
2023). Першою використаною для геофізичних дослі-
джень свердловин була версія 3 (1983 р.), а модифіко-
вану версію 3A задокументували кількома роками 
пізніше (Briesmeister, 1987). У 1980-х і 1990-х рр. провели 
значний обсяг моделювання за методом Монте-Карло 
для відтворення ядерних процесів, пов'язаних із вимірю-
ваннями, виконаними приладами імпульсного нейтрон-
ного каротажу. Хоч більшість моделювання проводили 
сервісні компанії, деякі видобувні компанії також його ви-
користовували. 

Різні параметри пласта та свердловини впливають 
на нейтрони, що ускладнює інтерпретацію отриманих 
матеріалів. На перенос нейтронів впливають вміст свер-
дловини, мінералогія пласта, пористість, пластові флю-
їди та глинистість. Зменшення впливу параметрів, не 
пов'язаних з газонасиченістю пласта, дуже важливе. 
Саме для врахування цих параметрів застосовують 
MCNP-моделі, які на сьогодні потрібні для точного визна-
чення нафто- чи газонасичення пластів в обсаджених 
свердловинах. 

MCNP-моделі використовують для прогнозування ре-
акції кривої відношення значень на ближньому (БД) та 
дальньому детекторах (ДД), відношення відліків БД/ДД 
для непружного розсіювання нейтронів, так і для кривої 
БД/ДД для захоплення нейтронів. При цьому враховують 
різні свердловинні умови, такі як: розмір долота, розміри 
НКТ та обсадної колони, наявність/відсутність цементу, 
літологія пласта, властивості свердловинних флюїдів 
(щільність і мінералізація) і пластових флюїдів (щіль-
ність, мінералізація і склад газу). 

На рис. 4 зображено MCNP-модель для імпульсно-
нейтронного приладу CRE (Weatherford): (а) відношення 
відліків БД/ДД для непружного розсіювання та (б) відно-
шення відліків БД/ДД для захоплення. Чорна крива відо-
бражає реакцію приладу у випадку 100%-го насичення 
пустот водою з мінералізацією 200 мг/л, червона крива – 
реакцію приладу у випадку 100%-го насичення пустот га-
зом густиною 0,6 кг/м3. 

Нове покоління багатодетекторних імпульсних 
нейтронних приладів. Після появи імпульсних нейт-
ронних приладів Sigma та C/O-каротажу було зроблено 
спробу розробити версію цих приладів, які могли б про-
водити дослідження через насосно-компресорні труби 
(НКТ). Перший прилад малого діаметру, який мав змогу 
запису через НКТ, створено у 1991 р., через 28 років пі-
сля першого приладу Sigma-каротажу і через 18 років пі-
сля першого приладу C/O-каротажу. Проте це був один 
із головних проривів, який зробив революцію в галузі  
дослідження імпульсними нейтронними приладами. Су-
часні моделі таких приладів продовжують удосконалю-
ватися і сьогодні. 

 

  
а     б 

Рис. 4. MCNP-модель для імпульсно-нейтронного приладу Raptor (Watherford): відношення відліків БД/ДД  
для непружного розсіювання (а); відношення відліків БД/ДД для захоплення (б) 

 
Першим багатодетекторним приладом з малим діа-

метром був Reservoir Saturation Tool (RST), представле-
ний у 1991 р. (Roscoe et al., 1991; Scott et al., 1991) і 
обладнаний двома сцинтиляційними детекторами GSO 
(оксиортосилікат гадолінію, легованого церієм). Викори-
стання цих кристалів забезпечувало більшу чутливість 
до реєстрації гамма-квантів, а отже, більшу статистичну 
точність вимірювань. Прилад RST міг працювати в ре-
жимі C/O- та Sigma-каротажу. Цей прилад також давав 
змогу проводити елементний аналіз порід. 

Наступними багатодетекторними приладами, які по-
чали застосовувати для дослідження обсаджених нафто-
газових свердловин, були Reservoir Monitor Tool (RMT) 
(Jacobson et al., 1998) та Reservoir Performance Monitor 
(RPM) (Gilchrist et al., 1999; Mickael et al., 1999; Gilchrist 
at al., 2000). У 2008 р. створено прилад Cased-Reservoir 
Evaluation (CRE) (Odom et al., 2008), з того часу відомий як 
Raptor. Це був перший прилад у галузі, який 

використовував новітню технологію сцинтиляційного де-
тектора LaBr3 (Menge et al., 2007), та детектор швидких 
нейтронів (Odom et al., 2002). Прилад CRE давав змогу за-
писувати каротаж у трьох режимах: C/O, Sigma та детек-
тування газу. 

Найновішим приладом малого діаметра є Pulsed 
Neutron Extreme Tool (PNX) (Rose et al., 2015; Zhou et al., 
2016). Цей прилад містить два сцинтиляційні детектори 
LaBr3, один сцинтиляційний детектор YAP (ітрій-алюміні-
євий перовскіт) і детектор швидких нейтронів. PNX давав 
змогу запису у режимах C/O, Sigma, детектування газу, а 
також вимірювання нейтронної пористості та прове-
дення елементного аналізу порід. 

На рис. 5 зображено основні сучасні багатодетекторні 
прилади імпульсного нейтронного каротажу. Використання 
нових подібних приладів дозволяє охопити більший 
об'єм нейтронно-гамма-транспортного поля та забезпе-
чує більш високу чутливість вимірювання кількох 



ГЕОЛОГІЯ. 2(109)/2025 ~ 35 ~ 

 

 
ISSN 1728-2713 (Print), ISSN 2079-9063 (Online) 

важливих властивостей пласта, зокрема й до виявлення 
газонасичених пластів з пористістю до 5 % (Zett et al., 
2011). Детектори, розміщені на різних осьових відстанях 
від нейтронного генератора, дають змогу досліджувати 
пласт на різних глибинах. Масив із кількох спектроскопіч-
них детекторів забезпечує гнучкість у змішуванні показів. 
Наприклад, можна використовувати детектори окремо 
для дослідження проникнення флюїдів у відкритих сверд-
ловинах, а також змішувати покази детекторів, щоб дослі-
джувати пласт на різних глибинах (Gyllensten et al., 2009). 

Застосування сучасних багатодетекторних приладів 
імпульсного нейтронного каротажу в поєднанні з MCNP-
моделями для кількісного визначення газонасиченості 

набувають дедалі більшого поширення при моніторингу 
газонасичення в обсаджених свердловинах. 

На рис. 6 зображено зведений планшет свердловини 
A2 на газовому родовищі в межах Адріатичного моря 
(Bertoli et al., 2013). У пласті № 1 спостерігається знижене 
газонасичення порівняно зі значеннями насичення, отрима-
ними за даними геофізичних досліджень свердловин (ГДС) 
у відкритому стовбурі. Інтерпретація комплексу імпульсного 
нейтронного каротажу дала змогу визначити залишкове га-
зонасичення у пласті, що розробляється. У свою чергу у 
пласті № 2, який не розроблявся, газонасичення, визна-
чене за допомогою імпульсного нейтронного каротажу, під-
твердило рівень його високого значення за даними ГДС у 
відкритому стовбурі. 

 

 
Рис. 5. Сучасні багатодетекторні прилади імпульсного нейтронного каротажу (Fitz, 2023) 

 

 
Рис. 6. Зведений планшет інтерпретації багатодетекторним приладом імпульсного нейтронного каротажу  

у свердловині А2 (Адріатичне море) (Bertoli et al., 2013) 
 

Поточний стан досліджень у світі. Сучасне за-
стосування багатодетекторних імпульсних нейтронних 
приладів дає змогу вирішувати такі завдання: 

• кількісне визначення нафто-, газо- та водонаси-
чення пластів; 

• визначення фільтраційно-ємнісних властивостей та 
літології порід через обсадну колону; 

• оцінка глибини контакту між флюїдами; 
• визначення типу ВВ; 
• моніторинг видобутку ВВ; 
• виявлення пропущених пластів-колекторів в обса-

джених свердловинах; 
• охарактеризування зон з пониженим пластовим  

тиском; 
• прогнозування кривих ГДС за допомогою нейрон-

них мереж; 
• оцінка якості проведення гідророзриву пласта. 

Окрім названих застосувань сучасних багатодетектор-
них приладів імпульсного нейтронного каротажу, їх вико-
ристання в поєднанні з моделями MCNP, створеними під 
конкретні свердловинні умови, показали дуже якісні ре-
зультати з визначення пористості та газонасичення у 
щільних породах різної літології. Таке поєднання показало 
успішні результати на родовищах у Північній Америці. 
Mekic N. et al. (2016) вдалося виділити газонасичені вап-
няки відкладів Union Valley та Viola (родовище на території 
штату Оклахома, США) із середньою пористістю 1,5–
2,5 %. Також багато досліджень проведено і на родови-
щах, розташованих на території Скелястих гір, основними 
породами-колекторами яких є ущільнені глинисті піско-
вики із середньою пористістю 6–10 %. До прикладу, у ро-
боті R. Ansara et al. (2009) дослідження були проведені у 
шести обсаджених свердловинах за допомогою приладу 
RPM у режимі GasView. Отримані результати з виділення 
газонасичених порід-колекторів показали стійку 
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кореляцію з результатами, отриманими при дослідженнях 
відкритого стовбуру свердловин. 

В останні десятиліття постійна еволюція ринку нетра-
диційних порід-колекторів ставить нові виклики до розро-
бки технологій для визначення властивостей сланцевих 
колекторів. Використання сучасних багатодетекторних 
приладів імпульсного нейтронного каротажу є одним із 
шляхів до визначення потенціалу сланцевих порід, осо-
бливо в горизонтальних свердловинах. Застосування 
цих приладів у обсаджених горизонтальних свердлови-
нах значно зменшує ризики і економічні витрати на про-
ведення каротажу. Наприклад, у 2019 р. за допомогою 
приладу CRE виконано каротаж у горизонтальній сверд-
ловині з метою детального дослідження сланців Barnett. 
Результати інтерпретації дали змогу виділити газонаси-
чені інтервали, визначити пористість та літологію порід-
колекторів (Advancements in Shale Reservoir 
Characterization Optimize Capital Expenditures, 2019). 

Поточний стан досліджень в Україні. Імпульсний 
нейтронний гамма-каротаж в Україні використовують до-
сить обмежено. Традиційно ІНГК застосовується у двох 
модифікаціях: 

• імпульсний нейтронний гамма-метод з реєстрацією 
гамма-випромінювання радіаційного захоплення нейтро-
нів (ІНГМ-РЗ) та 

• імпульсний нейтронний γ-метод непружного роз- 
сіяння (ІНГМ-НР). 

За допомогою ІНГМ-НР на сучасному етапі в Україні 
найчастіше визначають вміст у гірських породах чоти-
рьох елементів: С, О, Si і Ca. C/O-каротаж – найпошире-
ніша модифікація ІНГК-НР. Практичний досвід робіт в 
Україні показує, що для кількісної інтерпретації даних 
C/O-каротажу потрібна опорна інформація у вигляді ре-
зультатів ГДС відкритого стовбура і дані ІННК і СГК в об-
садженому стовбурі (Вижва та ін., 2023). 

Прилад ІНГМ-РЗ застосовують для визначення вмі-
сту в гірських породах водню, хлору та заліза. При  
комплексуванні модифікацій ІНГМ-НР та ІНГМ-РЗ отри-
мується значно більша інформація про досліджені гірські 
породи та флюїди, що їх насичують (Вижва та ін., 2012). 
За відношенням С/О оцінюють водо- або нафтонасиче-
ність пластів-колекторів, а тип колектора визначається 
за допомогою відношення вмістів Si/Ca: малі його зна-
чення характерні для карбонатних порід, а підвищені – 
для піщано-глинистих відкладів. Також визначається за-
лізистість гірської породи (відношення вмістів 
Fe/(Ca+Si)), дається оцінка пористості порід (відношення 
H/(Ca+Si)) та показника мінералізації підземних вод (від-
ношення Cl/H). 

Натомість найширшого використання на виробництві 
для дослідження обсаджених свердловин з метою ви-
значення поточного значення насичення набув ІННК, 
який використовують в Україні починаючи з 1960-х рр. На 
сьогодні в країні для проведення ІННК застосовують спе-
ціалізовану апаратуру типу ІГН-4 та інші сучасніші моди-
фікації (МФНГ-341, 34; МФНГ-601, 60 та ін.). Ці прилади 
мають два або три зонди. 

ІННК дає змогу проводити літологічне розчленування 
гірських порід і визначати їхні характеристики за основ-
ними нейтронними параметрами – середнім терміном 
життя нейтронів τ і коефіцієнтом дифузії нейронів D, остан-
ній тісно пов'язаний із пористістю породи. Досить позитивні 
результати отримано при використанні ІННК для визна-
чення положення ВНК, пористості і нафтонасиченості по-
рід-колекторів. Важливим завданням, яке успішно 
розв'язують шляхом застосування ІННМ, є визначення 
ГНК та ГВК в пластах. Перехід від насиченої рідини до га-
зонасиченої частини пласта супроводжується зниженням 

густини породи і вмісту водню, що призводить до збіль-
шення значень τ і D. 

Федоришин та ін. (2012) розглядали застосування 
методів математичної статистики в комплексі з ІННК для 
виділення продуктивних порід-колекторів на прикладі то-
нкошаруватих неогенових відкладів Летнянського газо-
вого родовища. Зокрема автори визначили, що 
асиметрія А та ексцес Е швидкостей за даними імпульс-
ного нейтрон-нейтронного (ІННК) та акустичного каро-
тажу (АК) можуть бути інформативними для оцінки 
характеру флюїдонасиченості та піскуватості тонкоша-
руватих відкладів. 

ІННК використовують і для визначення характеру на-
сичення низькоомних колекторів. Ручко та ін. (2016) про-
вели оптимізацію інтервалу часової затримки при 
реєстрації діаграм ІННК з метою більш однозначного ро-
зподілу пластів на нафто- і водонасичені; визначили ней-
тронні властивості порід (декремент затухання нейтронів 
у скелеті породи, воді та глині). 

У роботі Кулінкович та ін. (2008) розглянуто випробу-
вання імпульсного нейтрон-нейтронного каротажу в мо-
дифікації темпорального зондування на прикладі даних 
ГДС дослідження Матлахівського родовища. Автори 
отримали криву темпорального зондування, тобто криву 
зміни уявного декремента затухання від часу затримки, і 
застосували "метод трьох кривих". Цей метод передба-
чає обчислення для кожного значення глибини по осі 
свердловини осередненого значення декременту зату-
хання для трьох інтервалів кривої темпорального зонду-
вання: для "ближньої" (затримки 5–11  С), "середньої" 
(затримки 12–18  С) і "дальньої зони" (затримки 19–
25  С). Використаний підхід дає змогу визначити або уто-
чнити характер насичення порід-колекторів та кількісно 
оцінити коефіцієнт нафто- або газонасичення, прово-
дити моніторинг видобутку ВВ та виявляти ВНК або ГВК 
та контролювати їх зміну. Варто відзначити, що для отри-
мання коректних результатів кількісної інтерпретації за 
даною методикою необхідною процедурою є "налашту-
вання" нейтронних петрофізичних моделей, що вимагає 
наявність даних ГДС у відкритому стовбурі, зокрема і по-
передньо визначених коефіцієнтів глинистості, порис-
тості, відносної нафто- та газонасиченості. 

До основних недоліків розглянутих підходів для визна-
чення насичення порід-колекторів за вітчизняними імпуль-
сними нейтронними-нейтронними методами належать 
використання моделей, що допускають однорідність ней-
тронних властивостей скелета породи водонасиченої і на-
фтонасиченої частин пласта; потреба наявності 
результатів ГДС у відкритому стовбурі, даних по реперних 
пластах із відомим максимальним та мінімальним значен-
нями насичення та ін. Невиконання цих умов значно  
збільшує похибку визначення поточного насичення пла-
ста. Крім того, залишається нерозв'язаною проблема вра-
хування свердловинних умов, літологічного складу порід, 
типу та складу флюїду у пустотному просторі, що вплива-
тимуть на поширення нейтронів у свердловину та пласт, 
і подальшу їх реєстрацію приладами. 

В останні десятиліття видобувні компанії в Україні на 
родовищах Дніпровсько-Донецької западини (ДДз) та Пе-
редкарпатського прогину почали використовувати сучасні 
багатодетекторні імпульсні нейтронні прилади, які пропо-
нують зарубіжні сервісні компанії. У роботі C. Cavalleri 
et al. (2021) представлено результати дослідження  
приладом PNX у свердловині Більче-Волицької зони Пе-
редкарпатського прогину. Традиційно газові породи-коле-
ктори Міоцену цієї зони становлять великі труднощі при 
інтерпретації даних ГДС через свою тонкошаруватість та 
високу глинистість. Автори показали, що з використанням 
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приладу FNX вдалося детально визначити мінералогію 
порід, а визначення параметра FNXS та Sigma з високою 
роздільною здатністю дали змогу точно виділити інтер-
вали газонасичених пісковиків. 

Використання сучасних багатодетекторних імпульс-
них нейтронних приладів на родовищах ДДз також пока-
зало дуже хороші результати. До прикладу, у роботі 
(Iuras et al., 2021) представлено результати дослідження 
приладом PNX у трьох свердловинах різних родовищ. У 
свердловинах А і B, які були похилоскерованими, не вда-
лося здійснити запис ГДС у відкритому стовбурі у зв'язку 
з високими геологічними ризиками, натомість було здійс-
нено дослідження приладом PNX в обсаджених свердло-
винах, за допомогою якого вдалося отримати детальну 
літологію, ефективну пористість та кількісно визначити га-
зонасиченість пісковиків. У випадку свердловини C дослі-
дження проведено в інтервалі, який був представлений 
сланцями з підвищеним вмістом органіки та карбонатними 
породами. У результаті автори отримали детальну літо-
логію, коефіцієнти ефективної пористості і газонасичено-
сті вапняків, а також визначили параметр TOC (total 
organic carbon) в органогенних сланцях. 

За допомогою приладу CRE було проведено дослі-
дження у трьох свердловинах одного з найбільших родо-
вищ України, яке розташовано у приосьовій зоні 
південно-західної частини ДДз (O. Petrokushyn et al., 
2024). Основна мета цієї роботи полягала в двох аспек-
тах: визначити поточний коефіцієнт газонасичення в піс-
ковиках та оцінити рівень виснаження цих пластів; 
знайти та оцінити потенційні породи-колектори в інтер-
валі евапоритів. Особливу складність у даному дослі-
джені становила майже повна відсутність даних ГДС у 
відкритому стовбурі, оскільки свердловини були пробу-
рені ще у 1960-х рр. Результати оцінки газонасичення по-
казали, що залишкове насичення газом лежить у 
діапазоні 35–40 %. Цей результат підтверджений да-
ними з видобутку, які показали, що пласти досягли 90 % 
від свого потенціалу. В інтервалі евапоритів виділено по-
роди-колектори із середньою пористістю 8–15 % та кое-
фіцієнтом газонасичення 30–50 % Окрім того, за 
допомогою активації оксигену вдалося визначити інтер-
вали притоку пластової води у фільтрових частинах 
трьох свердловин. 

Дискусія і висновки 
Імпульсний нейтронний каротаж відігравав і продов-

жує відігравати значну роль у дослідженні та моніторингу 
обсаджених нафтогазових свердловин. До початку 1990-
х рр.. доводилося використовувати два різних типи при-
ладів, щоб виконати Sigma- та C/O-каротаж. Це зміни-
лося з появою перших багатодетекторних приладів 
імпульсного нейтронного каротажу. На сьогодні сучасні 
прилади дають змогу здійснювати не лише Sigma- та 
C/O-каротаж за допомогою одного приладу, але й отри-
мати відношення відліків на ближньому та дальньому де-
текторах для непружного розсіювання та захоплення 
нейтронів, за допомогою яких можна кількісно оцінити  
газонасичення порід, фільтраційно-ємнісні властивості 
порід-колекторів та детальну літологію. 

Що стосується України, то нам належить пройти ве-
ликий шлях з удосконалення вітчизняних приладів імпу-
льсного нейтронного каротажу, необхідними кроками 
якого є впровадження сучасних апаратурних рішень. До 
прикладу, використання нових і більш чутливих сцинти-
ляційних детекторів гамма-квантів та збільшення кілько-
сті детекторів, що підвищить глибину дослідження 
приладів. Основним та, мабуть, найголовнішим запрова-
дженням має стати використання при інтерпретації ре-
зультатів проведення каротажу MCNP-моделей, які 

будуть враховувати конкретні свердловинні умови, літо-
логічний склад порід, тип та склад флюїду в пустотному 
просторі. Це дасть змогу набагато точніше кількісно ви-
значати коефіцієнт нафто- чи газонасичення порід. 
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PULSED NEUTRON LOGGING IN THE WORLD AND IN UKRAINE: BEGGINING, ESTABLISHMENT, PRESENT 

 
B a c k g r o u n d .  At present, most of the oil and gas fields in Ukraine are depleted, requiring the operator companies in Ukraine to constantly 

monitor saturation levels and fluid movement withing the reservoirs as these are crucial pieces of information for optimizing and planning further 
production strategies. 

M e t h o d s .  The development and current state of pulsed neutron logging as one of the main methods of monitoring the development of oil and 
gas fields is described in the paper. 

R e s u l t s .  The article focuses on the history of the establishment of the pulsed neutron logging, starting from 1949. Further development of 
the technology includes the creation of neutron generators, improvement of methods and equipment, as well as the appearance of modern multi-
detector tools. Two main types of pulsed neutron logging are considered: pulsed neutron-neutron logging and pulsed neutron gamma-logging, each 
has its own advantages and disadvantages. An important stage in the development of pulsed neutron logging was the creation of Sigma logging tools 
in the 1960s, which measure the neutron capture cross-section and are used to estimate the oil saturation of formation. A significant place in the 
paper is the analysis of the development of C/O-logging, which was first used in 1971 and determines the ratio of carbon to oxygen for estimating the 
oil saturation of rocks. The development of multi-detector tools made it possible to acquire logging data through tubing, which significantly expanded 
the possibilities of pulsed neutron logging. The achievements of domestic geophysicists in the development of pulsed neutron logging in Ukraine are 
also presented. Modern research is focused on the use of multi-detector tools and MCNP-models for quantitative determination of gas saturation in 
reservoir rocks. The use of these tools has shown high efficiency in the fields of the Dnieper-Donetsk basin and the Precarpathian depression. 

C o n c l u s i o n s .  The article concludes that pulsed neutron logging plays a key role in the investigation and monitoring of cased oil and gas 
wells and suggests further steps for the development of this technology in Ukraine, including the introduction of new detectors, an increase in the 
number of detectors, and the use of MCNP models for more accurate determination of reservoir saturation. 

 
K e y w o r d s :  pulsed neutron logging, Sigma-logging, C/O-logging, MCNP-modeling, multi-detector pulsed neutron tools. 
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