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дають (в Ом⋅м) 12 – 150 та 46,3. Виділені наступні різновиди 
ґрунтів: переважно слабко зволожені, незмінені, значення ρ 
45 – 150, ρср 74,5; нормально зволожені, переважно незмі-
нені, місцями слабко засолені до засолених, значення ρ 
12 – 30  та ρср 22,2; локальне розповсюдження мають ґрун-
ти перезволожені змінені і сильно забруднені (внаслідок 
розмиву міндобрив), значення ρ 0,4 – 2,2 та ρср 1,6. 
В інтервалі глибин 1,5 – 4,0 м залягають неводона-

сичені лесовидні суглинки легкі. Згідно з узагальненими 
параметричними даними ρ та ρср суглинків складає від-
повідно 15 – 100 і 30,7, а коефіцієнт С, що визначає 
процентний вміст солей складає 0,27 – 0,036 %. Виді-
лені три різновиди цих порід: менш зволожені, незасо-
лені, значення ρ 50 – 120 та ρср 75, С до 0,12 %; частко-
во змінені, незасолені і дуже слабко засолені, значення 
ρ 35 – 45, ρср 37,5, С 0,14 – 0,08 %; більш змінені і різ-
ною мірою засолені, С 0,6 – 0,12 %, ρ 12 – 36, ρср 22,2. 
Зустрічаються,  але значно рідше, і різновиди сильно 
засолених (забруднених) неводонасичених лесовидних 
суглинків із значеннями ρ 8 – 12 та С 0,55 – 0,36. 
Зміна складу і властивостей порід зони аерації та го-

ризонту ґрунтових вод, викликані дією техногенних факто-
рів призводять до значної зміни фізичних параметрів по-

рід. Внаслідок цього електричний опір та інші геофізичні 
параметри ґрунтів та порід, що складають ВЧР, залежать 
не стільки від первинного складу, скільки від їх стану – 
зволоженості (водопроникності), ступеню техногенних 
змін, засолення (забруднення), мінералізації вод, що 
створює фізичні передумови застосування геофізичних 
методів досліджень (в першу чергу електрометричних). 
Отримані результати свідчать про високу ефективність 
геофізичних методів при геоекологічних дослідженнях. 
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ДО ПИТАННЯ ЗНИЖЕННЯ РОЗМІРНОСТІ ДАНИХ 

В ГЕОЛОГО-ГЕОФІЗИЧНИХ ЗАДАЧАХ КЛАСИФІКАЦІЇ 
 
В статті розглядаються питання зниження розмірності даних в контексті розв'язання широкого кола геолого-

геофізичних задач класифікації. На прикладах роботи з модельними даними демонструються переваги та недоліки лінійно-
го і нелінійного методів головних компонент. 

In article briefly review the questions of data dim ensionality reduction as applied to solving classif ication geological-geophysical 
problems. Linear and nonlinear principal-factor met hods work showing on the model expamples. 

 
Актуальність питання. В практиці геолого-геофізичних 

досліджень дуже часто виникають різноманітні задачі кла-
сифікації. Зокрема, для такої галузі науково-практичної дія-
льності людини, як промислова геофізика, класифікаційні 
задачі навіть превалюють. Взагалі ж, якщо підходити до 
проблеми широко, то практично всяку задачу можна сфор-
мулювати як задачу класифікації, і не тільки в геологічній 
галузі. В геологічних дисциплінах розв'язок подібних задач 
зводився до узагальнення та візуалізації усього наявного 
фактичного матеріалу (у вигляді карт, розрізів, крос-плотів, 
гістограм), і фахівець-інтерпретатор на основі власного 
практичного досвіду визначав критерії та виробляв виріша-
льні правила для кожної конкретної ситуації. Такий компле-
ксний аналіз усіх доступних матеріалів фактично означав 
опис геологічного середовища, що вивчалося, набором 
геолого-геофізичних (-геохімічних, -петрофізичних, -мінера-
логічних та інш.) ознак. Таким чином, говорячи формальною 
мовою, створювався простір ознак, кожна точка якого від-
повідала певному стану досліджуваного середовища. Роз-
мірність простору може бути як завгодно великою, при чому 
інформативна значущість окремих ознак при цьому обов'яз-
ково буде різною. В цому і полягають головні труднощі ав-
томатизації процесу вирішення класифікаційних задач, а 
саме – у неможливості алгоритмізувати здатність людсько-
го мозку виявляти найбільш інформативні ознаки у контекс-
ті пошуку розв'язку конкретної задачі. 
На фоні стрімкого розвитку засобів збору, реєстра-

ції, обробки та зберігання величезних об'ємів даних в 
геологічній галузі дуже добре відчувається відсутність 

відповідного методичного та програмно-алгоритмічного 
забезпечення, яке дозволило б проводити максимально 
ефективну обробку цих даних. Мається на увазі назріла 
необхідність створення систем обробки та аналізу різ-
номанітної інформації, здатних моделювати (або іміту-
вати) ту послідовність логічних дій, якою користується 
людина при розв'язанні складних задач розпізнавання 
образів (до яких відносяться і згадані вище задачі кла-
сифікації). Дана робота присвячена окремому важли-
вому питанню, нерозривно пов'язаному з означеними 
проблемами інтеграції інформаційних технологій в гео-
логічну сферу. Мова йде про методи зниження розмір-
ності простору ознак. Вдалий (у сенсі збереження інфо-
рмативної насиченості даних) перехід від початкового 
простору до простору з меншою розмірністю дає багато 
переваг при використанні різноманітних класифікацій-
них процедур [1, 2], які сьогодні є добре відомими та 
широко використовуються в геологічних науках, при-
наймі у найбільш формалізованій з них – геофізиці. З 
огляду на вищесказане, можна стверджувати про акту-
альність та своєчасність піднятого питання. 

Стан розробки проблеми. Щільності розподілів 
даних, що зустрічаються на практиці, дуже рідко відпо-
відають стандартним параметричним щільностям роз-
поділів, які ґрунтовно досліджені в теоретичному плані, 
і для яких розроблені ефективні параметричні процеду-
ри класифікації. Тому багатьма дослідниками була за-
пропонована велика кількість різних непераметричних 
методів, серед яких окремо можна виділити процедури, 
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призначені для перетворення простору ознак таким 
чином, щоб у перетвореному просторі можна було ви-
користовувати параметричні методи. 
Добре відомий метод лінійного дискримінанта Фі-

шера, головна ідея якого полягає у зменшенні розмі-
рності вихідного простору з n  вимірами шляхом про-
ектування n -вимірних даних на пряму, тобто у пред-
ставленні даних у одновимірному просторі. Оберта-
ючи цю пряму у вихідному n -вимірному просторі, 
можна знайти таку орієнтацію, для якої спроектовані 
на пряму дані будуть добре розділені. Саме це є ме-
тою класичного дискримінантного аналізу [1]. 
Також класичними процедурами є аналіз головних 

компонент та факторний аналіз. Обидва названі мето-
ди зменшують розмірність шляхом формування ліній-
них комбінацій ознак. Метою аналізу головних компо-
нент (відомого в літературі по теорії зв'язку як розклад 
Кархунена-Лоева) є ранжування ознак за величиною їх 
дисперсії. Простір меншої розмірності утворюється 
шляхом простого відкидання тих ознак, дисперсія яких 
є меншою за деякий встановлений поріг. Метою фак-
торного аналізу є знаходження представлення у прос-
торі меншої розмірності на основі врахування кореля-
ції між ознаками [1, 3, 4]. В результаті дістають: оцінку 
кількості незалежних факторів, які керують розподілом 
даних; факторні навантаження, які характеризують 
вплив факторів; головні компоненти, які опосередко-
вано відображають фактори через нормовані на влас-
ну дисперсію ознаки [5]. 
Інший відомий підхід до представлення даних у просторі 

меншої розмірності полягає у перетворенні ознак таким 
чином, щоб вони утворювали ортогональну систему. Це 
свідчитиме про їхню взаємну незалежність. Класичний про-
цес ортогоналізації Грама-Шмідта полягає у наступному: по 
системі лінійно незалежних ненульових векторів (що відпо-
відають окремим ознакам) x x x1 2, , nK  рекурентно буду-

ється система ортогональних векторів h h h1 2, , nK . В якості 

першого вектору h1  вибирається вихідний вектор x1 . Ко-

жен наступний вектор робиться ортогональним усім попе-
реднім, для чого від нього віднімаються його проекції на усі 
попередні вектори. При цьому, якщо деякий з векторів h i  

виявляється рівним нулеві, то він відкидається. Можна по-
казати, що за побудовою отримана система векторів вияв-
ляється ортогональною, тобто кожному вектору відповідає 
певна унікальна ознака [6]. 

Представлені методи зниження розмірності просто-
ру ознак, оперують лише лінійними перетвореннями, а 
отже можуть бути корисними для розв'язку вузького 
кола задач. Вочевидь, у випадку "складного" розподілу 
даних у вихідному просторі ознак лише лінійні перетво-
рення останніх можуть не дати бажаного результату. 

Постановка та розв'язок задачі.На противагу описа-
ним вище методам розглянемо процедуру зниження розмі-
рності простору ознак на основі нейромережевих методик. 
Штучні нейронні мережі (ШНМ) сьогодні розгляда-

ються як високоефективні алгоритми розв'язання різ-
номанітних задач, що важко піддаються формалізації. 
Елементарним елементом ШНМ є нейропроцесор, який 
функціонує за наведеною на рис.1 схемою. Тут в якості 
складових частин нейропроцесору виділяються: вектор 
вагів w , розмірність якого співпадає з розмірністю вхі-
дного вектора x ; блок сумування NET, який, згідно ви-
разу (1), являє собою не що інше, як скалярний добуток 
векторів x  та w ; блок нелінійного перетворення OUT, 
в якому відбуваеться функціональне перетворення над 
скалярним аргументом * (формула (2)), при чому функ-
ція ( )*F , яка називається активаційною функцією ней-

рона, є нелінійною з обмеженою областю значень (як 
зверху, так і знизу) [7]. Приклади активаційних функцій 
наведені на рис.2. В результаті усіх перелічених дій на 
виході блоку нелінійного перетворення утворюється 
вихідний вектор y  (в даному випадку матимемо одно-
компонентний вектор, тобто скаляр). 
Класичною архітектурою штучної нейронної мережі є 

модель багатошарового персептрону без зворотніх зв'яз-
ків. В такій моделі окремі нейропроцесорні елементи (які в 
літературі також позначаються як А-елементи) об'єдну-
ються в шари; сукупність шарів й утворює архітектуру під 
назвою "багатошаровий персептрон". При цьому, переда-
ча інформації відбувається послідовно від шару до шару: 
сукупність виходів окремих нейронів попереднього шару 
являє собою вхідний вектор для усіх нейронів наступного 
шару. Приклад такої мережі представлений на рис.3. 

i i
i

NET w x= ∑   (1) 

( )OUT F NET= − θ  

де θ  – пороговий рівень даного нейрону. 

 
 

 
 

Рис.1. Функціональна схема математичної моделі елементарного нейропроцесору 
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Рис.2. Приклади активаційних функцій: а) функція одиничного стрибку; 
б) похила сходинка; в) сигмоїда (логістична функція); г) гіперболічний тангенс. 

 
 

Рис.3. Приклад тришарової нейронної мережі. Тут: розмір-
ність вхідного вектору дорівнює 6; елементарні нейропроце-
сорні елементи (А-елементи) зображені у вигляді великих 

чорних вузлів; вхідний шар нейромережі містить 3 нейрони, 
прихований – 4, вихідний шар містить 3 нейрони; розмірність 
вихідного вектору відповідає кількості нейронів у останньо-

му (вихідному) шарі нейромережі й дорівнює 3. 
 

В загальному випадку роботу наведеної на рис.3 
нейромережі можна представити у наступному вигляді: 

( )( )( )x W W W y1 2 3F F F ⋅ ⋅ ⋅ =   (3) 

де: x  – вхідний вектор; y  – вихідний вектор; Wi  – мат-

риця вагових коефіцієнтів нейронів i  – го шару мережі; 
( )*F  – активаційна функція, при чому 

( ) ( ) ( ) ( ){ }a 1 2, , , nF F a F a F a= K . 

Найбільш корисною і привабливою властивістю 
ШНМ є їхня здатність до навчання. Річ у тім, що фі-
зична, або логічна, сутність вихідного вектору y  ви-

значається лише зручністю представлення розв'язку 
задачі. Тоді, подаючі на вхід нейромережі вектори, 
для яких апріорно відома їхня належність до того чи 
іншого класу, можна вимагати появи на виході мере-
жі цілком певного вихідного вектору, який і буде інди-
катором належності вхідного вектору до даного кла-
су. Для забезпечення такого режиму роботи ШНМ 
необхідно настроїти вагові коефіцієнти та порогові 
рівні нейронів – навчити мережу. Тут найбільшої по-
пулярності набув метод навчання, відомий в літера-
турі як метод зворотнього розповсюдження помилки 
(error back propagation method). 
Згідно формальній постановці задачі [7] багатошаро-

вий персептрон розраховує вихідний вектор y  для дові-
льного вхідного вектору x . Відповідно, умовою любої за-
дачі, яка може бути поставлена персептрону, повинна 
виступати множина векторів { }X x x1, , S= K  з n  компоне-

нтами кожний. Розв'язком задачі буде множина векторів 

{ }Y y y1, , S= K  з m  компонентами кожний. Таким чином 

персептрон формує відображення X Ya  для x X∀ ∈ . 
Багатошаровий персептрон навчається із вчите-

лем. Це означає, що повинна бути задана множина 

пар векторів { }x d,s s , 1,s S= , де { } { }x x x1, ,s S= K  – 

формалізована умова задачі, { } { }d d d1, ,s S= K  – ві-

домий розв'язок цієї задачі. Множина пар векторів 

{ }x d,s s  складає навчальну множину. S  – кількість 

елементів навчальної множини. Кількість пар у на-
вчальній множині не регламентується, проте, якщо їх 
буде занадто мало або багато, мережа не навчиться 
і не буде здатною розв'язати поставлену задачу. Як-
що вибрати один з векторів x s  і подати його на вхід 
нейромережі, то на виході буде отриманий деякий 
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вихідний вектор ys . Тоді помилкою нейромережі мо-

жна вважати d ys s sE = − . 

Основна ідея зворотнього розповсюдження помилки 
полягає у можливості рекурсивного отримання значення 
помилки для нейронів прихованих шарів. Сенс навчання 
полягає у мінімізації функціонала квадратичної помилки 
мережі для даного набору навчальних прикладів: 

( )2

1 1

1

2

S m
s s
j j

s i

E d y
= =

= −∑∑ .  (4) 

Нейронна мережа може бути повністю охарактери-
зована вектором параметрів – набором усіх вагових 
коефіцієнтів та порогових рівнів: 

W
P

θ

 
=  
 

.   (5) 

Тоді, помилка нейромережі E  буде функцією векто-
ру параметрів: 

( )PE E= .   (6) 

При навчанні нейромережі компоненти вектору пара-
метрів корегуються в напрямку антиградієнта помилки E : 

( )∆P PE= −ε ∇ .  (7) 

В теорії оптимізації доведено, що такий алгоритм 
забезпечує збіжність до одного з локальних мінімумів 
функції помилки, за умови правильного вибору 0ε >  
на кожній ітерації. Цей метод оптимізації називається 
методом найскорішого спуску. Алгоритм зворотнього 
розповсюдження – спеціальний спосіб швидкого (з 
малими обчислювальними витратами) розрахунку 
компонент вектору градієнта. Ідея методу полягає у 
тому, щоб представити E  у вигляді складної функції 
та послідовно розраховувати частинні похідні за фо-
рмулою для складної функції. Розрахунок виконуєть-
ся від останнього (вихідного) шару до першого (вхід-
ного) за рекурентними формулами і не потребує без-
посереднього обчислення градієнту. 
Згідно наведених міркувань можна створити ШНМ 

такої архітектури, що передбачала б наявність при-
хованого шару, кількість нейронів у якому менша за 
розмірність вхідного вектору, а кількість нейронів у 
вихідному шарі задати рівною розмірності вхідного 
вектору. Якщо при цьому навчити нейромережу від-

творювати на виході безпосередньо вхідні вектори, 
то така ШНМ буде називатися автоасоціативною. 
Особливості архітектури цієї мережі (рис.4) дозволя-
ють отримати на виході одного з прихованих шарів 
вектор, розмірність якого буде меншою за розмір-
ність вхідного вектору. 

 

 
 

Рис.4. Автоасоціативна нейронна мережа 
(мережа з "вузьким горлом") 

 

Отже, якщо при даній архітектурі нейромережі 
спромогтися отримати на виході безпосередньо вхід-
ний вектор, то це означатиме, що вхідні дані були 
оптимальним чином стиснені у прихованому шарі (з 
одним нейроном) мережі, тобто при зниженні розмір-
ності даних їхня інформативність практично не змі-
нилася. На цьому принципі базується зниження роз-
мірності простору ознак за допомогою ШНМ. Необ-
хідно зазначити, що стискуючим прихованим шаром 
генеруються якісно нові ознаки, що майже ніколи не 
співпадають з початковими ознаками, але при умові 
якісного навчання мережі їхня інформативна насиче-
ність зберігається. 

Приклади 
Розглянемо принцип роботи автоасоціативної ней-

ронної мережі у порівнянні з методом головних компо-
нент у контексті розв'язання задачі зниження розмір-
ності простору ознак. На рис.5 наведені два модельні 
приклади: в одному випадку маємо п'ять лінійно роз-
дільних класів (груп, кластерів), при чому центри кла-
сів лежать на одній прямій; в другому випадку загаль-
ний розподіл усієї сукупності даних є більш складним, 
хоча лінійна роздільність класів (чотири класи) збере-
жена. Для обох випадків прийнятий нормальний роз-
поділ точок даних в межах кожного окремого класу. 

 

 
 

Рис.5. Два модельні приклади розташування окремих класів у просторі ознак. Класи є лінійно роздільними. Загальна су-
купність даних в обох випадках центрована та нормована. 

 

Як можна бачити, ідентифікація окремих класів є цілком 
очевидною, й побудова класифікатора (вирішальних правил) 
не буде викликати труднощів. Візьмемо за мету зменшення 
розмірністі простору ознак. При цьому критерієм якості пере-
ходу до нового простору буде збереження кількості класів за 
результатами класифікації у новому просторі ознак. 

Розглянемо спочатку дію метода головних компо-
нент в обох випадках. 
Аналізуючи коваріаційну матрицю даних першого 

прикладу, можна побачити, що обидві координати 
(ознаки) є добре корельовані між собою – недіагональні 
елементи коваріаційної матриці близькі до одиниці: 
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1 0.997312

0.997312 1

 
 
 

. 

Справді, в даному випадку центри усіх кластерів ле-
жать на одній прямій, а отже, можна казати навіть про 
функціональну залежність ознак (рис.6, а). Перейдемо 
тепер до нової системи координат, напрямки вісей якої 

співпадають з почергово визначеними напрямками найбі-
льших дисперсій усієї сукупності даних. Коваріаційна мат-
риця даних в такій координатній системі матиме вигляд: 

16

16

1.99731 3.27048 10

3.27048 10 0.00268765

−

−

 ×
 

× 
 

 

 
а)     б)     в) 

Рис.6. а) модельний розподіл двовимірних даних; б) перетворення даних до головних компонент; 
в) гістограма перетворених даних. 

 

Як і слід було очікувати, напрямок найбільшої дис-
персії даних співпав з прямою, на якій лежать центри 
кластерів. Це є перша головна компонента, уздовж якої 
спрямовується перша координатна вісь (ознака) даних 
в новій системі координат (рис.6, б). Друга координатна 
вісь спрямована у напрямку максимальної дисперсії 
перпендикулярно до першої головної компоненти. Бли-
зькі до нуля значення недіагональних компонент кова-
ріаційної матриці кажуть про незалежність ознак, а 
співвідношення між першою і другою головними компо-
нентами (майже 103) свідчить про неінформативність 
останньої. Отже, можна просто відкинути другу ознаку і 
представити дані у одновимірному просторі практично 
без втрат інформації. Дійсно, побудувавши гістограму 
одновимірних даних, побачимо чітку відповідність хара-
ктерних максимумів окремим класам (рис.6, в). 
В другому випадку (рис.7, а) загальна структура да-

них є більш складною у тому сенсі, що за оцінкою фун-
кції розподілу неможливо виокремити окремі кластери. 
Коваріаційна матриця вказує на незалежність ознак, 
якими характеризуються дані: 

1 0.00385628

0.00385628 1

 
 
 

. 

В цьому випадку можна очікувати, що дисперсії, узя-
ті за любими напрямками будуть незначно відрізнятися. 
Перевіримо це припущення за допомогою метода голо-
вних компонент. Коваріаційна матриця даних в новій 
координатній системі матиме вигляд: 

17

17

1.00386 3.52872 10

3.52872 10 0.996134

−

−

 − ×
 

− × 
 

Як можна бачити, діагональні компоненти практично 
не змінилися, що вказує на їхню однакову інформатив-
ність. Отже, в даному випадку не можливо знизити роз-
мірність даних, і метод головних компонент є зовсім 
недієвим, хоча усі класи й продовжують залишатися 
лінійно роздільними (рис.7, б). Аналіз гістограм транс-
формованих даних (рис.7, в та рис.7, г) також не дозво-
ляє зробити правильного висновку стосовно кількості 
класів, що складають представлену вибірку даних. 

 

 
а)     б) 
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в)      г) 

Рис.7. а) модельний розподіл двовимірних даних; б) перетворення даних до головних компонент; 
в)-г) гістограми перетворених даних уздовж вісей X та Y відповідно. 

 

Спробуємо тепер побудувати та навчити згідно наве-
дених вище міркувань автоасоціативну штучну нейронну 
мережу, архітектура якої наведена на рис.4. В якості фун-
кції активації використаємо гіперболічний тангенс (рис.2, 
г). Навчальну множину складемо з наборів векторів, що 
являють собою незначно ускладнені випадковими зава-
дами (з рівномірним розподілом похибки) вектори матема-
тичних сподівань кожного з кластерів на вході та "чисті" 
вектори математичних сподівань кластерів на виході. Бу-
демо проводити навчання ШНМ за допомогою методу 
зворотнього розповсюдження похибки. Необхідно зазна-
чити, що для автоасоціативних мереж проблема застря-
гання помилки навчання E  в локальному мінімумі повер-

хні можливих розв'язків є надзвичайно актуальною, і на-
віть для таких простих прикладів знадобилося витратити 
досить багато часу для отримання прийнятних варіантів 
параметрів нейромереж. 
Оскільки перший приклад є досить тривіальним й 

дуже просто може бути оброблений звичайним лінійним 
методом головних компонент, то розглянемо роботу 
ШНМ тільки на другому (рис.7, а) прикладі. На рис.8 
наведені схематичне зображення приципу стиснення 
даних за допомогою мережі з "вузьким горлом" та гісто-
грама розподілу одновимірних даних, отриманих на 
виході прихованого стискуючого шару нейромережі. 

 

 

 
а)      б) 

Рис.8. а) автоасоціативна нейромережа дозволяє визначати нелінійні напрямки, в яких дисперсія даних є найбільшою; 
б) гістограма одновимірних даних, спроектованих на певну (нелінійну!) 
траекторію, на якій зберіглася лінійна роздільність окремих класів. 

 

На вході ШНМ – вектори з тестового прикладу. На 
виході – тіж самі вектори, відтворені мережею. Це 
означає, що в процесі передачі інформації від нейро-
на до нейрона вона трансформувалася, але не втра-
чалася. А оскільки особливості архітектури автоасо-
ціативної нейромережі передбачають наявність при-
хованого шару з кількістю нейронів, меншою за роз-
мірність вхідних даних, то виходи цього шару можна 
інтерпретувати як оптимальним чином стиснуті вхідні 
дані. Таким чином відбувається зниження розмірності 
даних без втрати інформації. При цьому напрямки 
найбільших дисперсій даних, які виділяє нейронна 
мережа, можуть бути представлені довільними кри-
вими. Фактично, нейромережа із стискуючим прихо-

ваним шаром реалізує нелінійний метод головних 
компонент [8]. 

Висновки. Головна перевага використання ШНМ 
полягає у можливості значного зниження розмірності 
даних без суттєвих втрат інформації, що дає змогу, 
наприклад, візуалізувати багатовимірні дані, а також 
проводити їх обробку із значно меншими витратами 
машинних ресурсів. В той же час, неможливість за-
дання в якості навчальної множини довільної вибірки 
векторів є принциповою. Звідси – втрати інформації 
при стисненні даних, а отже, і при їх відновленні. 
Важливим негативним моментом в практичній реалі-

зації шнм є технічні труднощі проведення процесу на-
вчання нейромережі. Процес навчання являє собою по 
суті задачу  багатопараметричної оптимізації, і на сьогодні 
не існує чітких критерієв та алгоритмів, які б гарантували 
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успішність навчання мережі за скінчену кількість кроків. 
Тут велику роль відіграє досвід дослідника. 
Якщо зуміти провести навчання автоасоціативної 

мережі на достатньо репрезентативній вибірці двовимі-
рних даних (яка описує усю множину можливих значень 
даних), то, вочевидь, можна побудувати універсальний 
кодер-декодер із гарним коефіцієнтом стиснення, реку-
рсивно подаючи виходи стискуючого шару нейромережі 
знову їй на вхід. На жаль, практична реалізація цієї ори-
гінальної авторської ідеї поки ще не здійснена. 
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ДОСЛІДЖЕННЯ ТЕКТОНІЧНИХ ЗОН 

ОБЕРНЕНИМИ ЛІНІЙНО-НЕЛІНІЙНИМИ МЕТОДАМИ ГРАВІМЕТРІЇ 

ДЛЯ ВИБОРУ МІСЦЬ БУДІВНИЦТВА ЕКОЛОГІЧНО НЕБЕЗПЕЧНИХ ОБ'ЄКТІВ 
 
Розроблено ряд  методів розв'язку обернених  задач гравіметрії, комплексування яких є необхідною умовою для  ефек-

тивного вивчення тектонічних зон в масивах гірських порід кристалічного фундаменту. 

Methods of the decision of return problems gravity which complex use is a necessary condition for effe ctive studying tectonic zones 
in files of rocks of the crystal base are developed . 

 

Стан проблеми. Будівництво електростанцій, аеро-
дромів, дамб, відстійників потребує детального вивчення 
характеру монолітності масивів гірських порід у  криста-
лічному фундаменті, якщо потужність наносів невелика. 
У таких  випадках розташування екологічно небезпечних 
об'єктів над широкими тектонічними зонами фундаменту  
являє загрозу як для навколишнього середовища, так і 
для самого об'єкта. Якщо тектонічні зони не заповнені 
дайками магнітних порід, їхнє вивчення практично мож-
ливе тільки дорогими свердловинами і тільки в припове-
рхній частині – методами    электророзвідки. 
Однак у даний час уже відомі ефективні і стійкі методи 

розв'язку обернених лінійних (а також і нелінійних) задач 
гравіметрії (ОЛЗГ, ОНЗГ), що дають надійні фізично і гео-
логічно змістовні представлення про структуру геологічних 
об'єктів взагалі і тектонічних зон зокрема [1,2]. 
Метою цієї роботи є розробка оптимізуючих  методів 

розв'язку   ОЛЗГ і ОНЗГ   для більш точного вилучення 
впливу великих масивів гірських порід зі  спостережено-
го поля і забезпечення упевненого трасування тектоні-
чних зон по залишкам поля сили тяжіння. 
Поставлена мета досягається тим, що застосову-

ється методика інтерпретації карти гравітаційного поля 
з почерговим використанням  розв'язків оберненої за-
дачі декількома методами [3]. 
Методи досліджень.  Спочатку ОЛЗГ розв'язана мето-

дом ітерацій для одношарової моделі з апроксимацією ни-
жнього півпростору на 20х20 прямокутних паралелепіпедів 
(блоків) невеликої висоти і на 4 обмежених  горизонтальних 
уступи великої потужності, довжини і ширини з лінійно змін-
ною з глибиною та невідомою аномальною щільністю ix , 

що також підлягає визначенню одночасно з  аномальною 
щільністю  всіх паралелепіпедів. Проекції 400 паралелепі-
педів цілком покривають площу карти гравітаційного поля  

jg   таким чином, що над кожним  з них є хоча б один пункт 

з вимірюваним в ньому полем сили тяжіння, і під кожним 
таким пунктом є хоча б один паралелепіпед. Це умова ко-
ректності оберненої лінійної задачі гравіметрії. Чим більше 
пунктів поля перебуває за межами проекцій блоків на  пло-
щину карти     поля, і  чим більше блоків розташовано  так, 
що їх проекції не попадають на карту гравітаційного поля, 
тим більше некоректною є модель ОЛЗГ і тим більше не-

стійким і фізично незмістовним буде її розв'язок.  Система 
уступів використовується для автоматичного визначення  і 
вилучення практично всього регіонального фону. Кількість 
уступів може бути будь-якою,  але над кожним з них повинні 
бути пункти  поля сили тяжіння. Застосовуються, в основ-
ному, безумовні  алгоритми з кількістю  ітераційних параме-
трів iτ , рівною кількості блоків і невідомих  компонентів ,k ix  

змінної щільності ix  уступів у моделі задачі. Метод і алго-

ритм  розв'язку ОЛЗГ для цієї частини задачі має вигляд. 

, 1 , 1 ,* ;i n i n n i nx x B+ += − τ  , 1 , , 1 ,* ;i n i n i n i nx x B+ += − τ  
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Ітераційні параметри знаходять шляхом розв'язку 
системи 408 рівнянь на кожнім кроці ітерацій. В більшо-
сті випадків для розв'язку ОЛЗГ методом (1) досить 3 
ітерації за 3 хвилини. 
Далі залишкове поле інтерпретується шляхом розв'язку 

ОЛЗГ для  моделі з аномальною щільністю, що змінюється  
з глибиною iz  усередині кожного паралелепіпеда за зако-

ном полінома четвертого ступеня. Можлива також добавка 
до полінома лінійних членів для горизонтальних напрямків. 
Таким чином,  для кожного паралелепіпеда маємо від 5 до 
7 компонентів параметра змінної щільності. При тих же 400 
блоках  і 4 уступах маємо  2808 невідомих  для карти поля 
сили тяжіння jg , вимірюваного в 65х53=3445  пунктах. 

Застосовуються, в основному, безумовні  алгоритми з 
одним  ітераційним параметром cτ  для всіх невідомих  

компонентів ,k ix  перемінної щільності ix  блоків і уступів. 
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