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ВИЯВЛЕННЯ СЕЙСМІЧНОГО СИГНАЛУ 

З ДОПОМОГОЮ КОНТРОЛЬОВАНОЇ НЕЙРОННОЇ МЕРЕЖІ 
 
Прямопоточна, багатошарова, контрольована мережа штучних нейронів пропонується для використання в якості 

класифікатора для розділяння сейсмічного потоку в автоматичному режимі на два класи: шум та нешум. Демонструється 
практичне застосування алгоритму для обробки однокомпонентних сейсмічних записів. 

Feedforward, multi-layered, supervised network of a rtificial neurons is backpropagated to be used as c lassificator to 
discriminate automatically the seismic data flow in to two classes: noise and not noise. The applicatio n of the algorithm to 1D 
seismic records is illustrated. 

 

Традиційний підхід до пошуку сейсмічного сигналу 
на сейсмограмі та визначення часу його вступу базу-
ється на досвіді оператора, є суб'єктивним і часозат-
ратним. Така практика могла зберігатись за часів ана-
логової реєстрації, та настання епохи сейсмічного мо-
ніторингу з допомогою високо автономних цифрових 
засобів та вимог швидкого (в коло реальному масшта-
бі часу) визначення координат та магнітуд сейсмічних 
подій викликають необхідність автоматизації цього 
процесу. При сучасному рості сейсмічних мереж та 
формуванні банків даних потреба розпізнавання та 
виділення сейсмічного сигналу на фоні завад та яко-
мога точнішого визначення моментів вступу різних 
фаз стає невідкладною. 
Не бракує публікацій, котрі присвячені автоматичному 

виділенню сейсмічного сигналу та вступів фаз хвиль, що 
використовують як три-, так і однокомпонентні записи; 
застосовуються алгоритми, що працюють як в часовому, 
так і в частотному просторах. Але здебільшого це вузько-
спеціалізовані підходи, що погано пристосовуються до 

різномаїття сейсмологічних умов і звичайно демонструють 
декларовані можливості на модельних прикладах і обме-
женому колі натурних реалізацій. Використовуються прак-
тично всі відомі прийоми обробки часових послідовностей, 
зокрема, техніки хвилькового аналізу [1], авторегресії [2], 
аналізу траєкторій руху часточок у сейсмічній хвилі [3], 
розпізнавання образів [4], та багато інших, включаючи 
моделювання окремих етапів алгоритму виділення сигна-
лу на мережах штучних нейронів [5-7]. 
В сейсмологічній же практиці автоматичного виді-

лення сигналу найчастіше використовується енергети-
чний підхід, який звичайно здійснюється в алгоритмі 
слідкуванні за співвідношенням енергій в часових вікнах 
різної тривалості, що вирізаються з сейсмічної інфор-
мації, котра поступає на аналізуючий блок [8]. Якість 
роботи алгоритму знаходиться у прямій залежності від 
величини відношення сигнал/шум і в умовах високого 
рівня шумів (завад) і слабкому (магнітуда, відстань) 
сейсмічному сигналі дає високий процент пропусків цілі. 

 

Рис. 1. 5 с запису Е-компоненту сейсмічного шуму, зареєстрованого 
з частотою вибірки 20 Гц на с/с "Одеса", " Сквира" та "Полтава".  
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Сейсмоакустична емісія, що реєструється у вигляді 
фонового сейсмічного запису, складається з суми завад 
систематичних, випадкових та власного шуму апарату-
ри, котрі для кожної станції індивідуальні. На рис. 1 на-
ведено запис 5 с шуму, виконаний в один і той же час 
на трьох сейсмостанціях, обладнаних ідентичними як 
цифровими 24 розрядними регістраторами, так і довго-
періодними сейсмографами моделі. SL 210 та SL 220. 
Але не тільки фоновим шумом відрізняється характер 

запису на різних сейсмічних станціях. На Рис.2 наведено 
вступну частину Е-компонента одного і того ж сейсмічного 
сигналу, зареєстрованого на станціях "Одеса", "Сквира" та 
"Полтава", розташованих у вузькому азимутальному сек-
торі від джерела Вранча на середніх епіцентральних від-
станях 350, 500 та 700 км відповідно. Як видно з рисунку, 

навіть на такій обмеженій ділянці геологічного середови-
ща (від найближчої до найдальшої с/с) сейсмічний сигнал 
зазнає значних спотворень, що робить надію на викорис-
тання певних загальних формальних засад для його ви-
явлення в довільних умовах досить ефемерною. Про це 
свідчить той факт, що при наявності великого різноманіття 
підходів до розв'язання цієї проблеми, універсальної сей-
смічної "виділялки" на разі не існує, і що з цією задачею 
найкраще упорається озброєне лупою око оператора, 
якість роботи якого залежить від практичних навичок, ста-
жу та об'єму обробленого матеріалу. Тому ідея викорис-
тання мережі штучних нейронів як моделі роботи тварин-
ного мозку, здатного навчатись для вироблення адекват-
ної реакції на зовнішні подразнення, видається нам доста-
тньо привабливою. 

 

 
Рис. 2. Початкова частина Е-компонента сигналу Вранча, 18/06/05, М=4.8, h=138 км, 

зареєстрованого на сейсмостанціях: 1) "Одеса", 2) " Сквира" та 3) "Полтава" 
 

В рамках національної програми сейсмічного моніто-
рингу розглядались альтернативні підходи до обслугову-
вання останнього. Виходячи з перспектив використання 
подібної служби в Україні, один з варіантів її функціону-
вання видається найбільш раціональним: з усієї мережі 
обирається група ( 3≥ ) сейсмічних станцій, забезпечених 
оперативним зв'язком з обчислювальним центром, та ре-
шти станцій, обладнаних зв'язком з центром, що може 
комутуватись; вони зберігають інформацію на довготри-
валих носіях та функціонують у режимі очікування. При 
виявленні сейсмічного сигналу обчислювальним центром 
по даним "онлайнових" станцій часове вікно, що містить 
цей сигнал, може бути викликане з буферу потрібної стан-
ції. Якщо зареєстрована подія не вимагає негайної реакції 
оператора, то запис в протоколі обміну станція – центр 
часових координат такого вікна суттєво полегшить роботу 
адміністрації банку даних. 
Згідно з нашою практикою, досвідчений оператор, "го-

ртаючи" трьохкомпонентний сейсмічний запис (перегна-
ний на HD) 2–3 хвилинними "сторінками" в пошуках корис-
ного сигналу, для перегляду 24-х годинного запису однієї 
станції з частотою оцифровки 20 Гц не вкладається у во-

сьмигодинний робочий день. Тому зрозуміло, до якої еко-
номії часу і коштів призведе перехід до перегляду лише 
кількох десятків детермінованих ділянок добового запису. 
Функціонування мережі сейсмічних станцій в такому 

режимі передбачає дещо пом'якшені вимоги до пошуку та 
виявлення сейсмічного сигналу: важливим є сам факт 
його існування в деякому визначеному інтервалі запису, а 
час вступу може оцінюватись з точністю до десятків се-
кунд. Основними вимогами є мінімізація умов пропуску 
цілі. Ці міркування дозволяють пропонувати підхід, що 
базується на використанні деякого оператора, що викори-
стовується для класифікації векторів даних – відрізків сей-
смічного запису на два класи: сигнали і несигнали.  
Таким оператором може бути мережа штучних ней-

ронів. Остання після навчання, що забезпечується ітера-
ційним процесом корекцій ваг міжвузлових (синапсних) 
зв'язків, і основується на мінімізації похибки, пов'язаної з 
різницею між реакцією мережі на збудження множиною 
сигналів, що характеризують досліджуваний процес, і 
очікуваною (бажаною) реакцією [9], в операційному ре-
жимі може бути використана як класифікатор. 
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Здатність мережі штучних нейронів функціонувати в 
оперативному режимі, тобто узагальнювати дані, що не 
брали участі в навчанні, визначається з одного боку точніс-
тю найкращої апроксимації, прямо пропорційній кількості 
вузлів схованих шарів, а для досягнення достатнього рівня 
узагальнення – значного перевищення потужності навчаю-
чої вибірки над кількістю елементів мережі, що можуть мо-
дифікуватись, тобто ваг синапсних зв'язків нейронів схова-
них шарів. Оптимальна величина такого перевищення дорі-
внює одному порядку [10], хоча досить часто гарні результа-
ти досягаються і при значно нижчих співвідношеннях. Таким 
чином, протиріччя, що виникають при моделюванні сейсмо-
логічних задач на нейронних мережах, і пов'язані зі складніс-
тю простору параметрів з одного боку та недостатнім обся-
гом даних з другого, нам не загрожують, бо об'єм даних при 
пропонованому підході задовольняє будь-яким вимогам. 
Такий підхід до пошуку корисного сигналу може бути 

охарактеризований як підхід від противного: ігнорують-
ся всі ділянки сейсмічного запису (тобто квантований по 
часу на відрізки сейсмічний потік), що класифікуються 
як несигнали або "шум", а все, що залишилось, зарахо-
вується до класу "корисний сигнал". 
Ще одна перевага такого підходу полягає у тому, що 

при запровадженні його на новоорганізованих сейсміч-
них станціях немає необхідності у довгому очікуванні 
накопичення даних для організації навчаючої множини: 
вже через добу реєстрації в розпорядженні оператора 
може бути достатня кількість шуму. 

Формування бази даних. Контрольоване навчання 
мережі штучних нейронів [11] передбачає наявність 
навчаючої множини В, що представляє собою вибірку з 
генеральної сукупності елементів U  

⊂B U    (1) 
положення котрих в фізичній або умоглядній конс-

трукції чи ситуації, що вивчається, визначено. 
Елементами такої сукупності звичайно виступають 

деякі упорядковані підмножини, або вектори ,p ix , що в 

наборі своїх компонент об'єднують параметри, котрі на 
основі певних апріорних засад можуть визначатись ці-
льовими значеннями pt , потрапляючи таким чином до 

навчаючої вибірки під назвою шаблонів 

( ), ,1 ,2 ,, , , ,p n p p p n px x x x t= K ,  (2) 

де 1i n= K  і визначає число компонент або потужність 

вектора x , а p - номер члена навчаючої вибірки. 

В якості даних нами використовуються проекції на 
три ортогональні площини швидкостей руху часточок у 
сейсмічній хвилі, доступні нам у вигляді E-N-Z сейсмо-
грам–часових послідовностей, отриманих в результаті 
вибірок з певною частотою миттєвих значень амплітуди 
сейсмічного потоку. Необхідно виділити два класи ру-
хів, що притаманні а) фоновому шуму та б) корисному 
сигналу. Як уже відзначалось, нами використовуються 
дані, одержані з частотою вибірки 20 Гц.  

 

 
Рис. 3. Ділянка запису шуму на двох сейсмічних станціях "довжиною" в 45 вибірок 

з Z-компоненту потоку сейсмічних даних, виконаних з частотою 20 Гц, та амплітуди відповідних ним ординат. 
 

Беручи до уваги згадуваний вище індивідуальний ха-
рактер сейсмічного запису на кожній сейсмічній станції та 
високу ймовірність відсутності запису на деяких каналах, 
навчаючі вибірки компонувались для кожного з каналів і 
являли собою множини векторів, що відповідали відрізкам 
запису у вікні певної тривалості. Остання визначається 
кількістю вибірок і їх частотою, що ясно з рис. 3. Зрозумі-
ло, що для даних, котрі реєструвались з частотою вибірки 
20 Гц, інтервал t∆ між сусідніми вибірками складає 0.05 с, 
а загальна тривалість вікна w визначається добутком цьо-
го інтервалу на кількість n вибірок в межах вікна: 

w n t= ∆    (3) 
Використовуючи термінологію з царини розпізна-

вання образів, кожний з векторів – членів навчаючої 
вибірки можна розглядати як зображення шуму, тоді як 
вся сукупність цих зображень – як його образ. Згідно з 
постановкою задачі, всі члени навчаючої вибірки відно-
сяться до одного класу, тому в якості цільового значен-
ня приймається мітка " "t мітка=  класу, значення кот-

рої вибирається з обчислювальних міркувань, пов'яза-
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них з нормуванням, однаковим для всієї навчаючої ви-
бірки, тому підрядковий індекс p опущено. 
У зв'язку з високою ймовірністю розкиду у величинах 

амплітуд складових зображень, вхідні до нейронної мережі 
дані повинні бути нормалізованими [12]. Якщо розглядати 
навчаючу вибірку у вигляді матриці, у якої по рядках розта-
шовуються вектори-зображення, а по стовпчиках – складові 
векторів, то нормалізація проводиться по стовпчиках i  до 
нульового середнього і стандартного відхилення 1s = ,  

( )
1

2
2

, ,/ , / 1,i p i i p i i i
p p

m x v x m s v= = − − =∑ ∑B B ,  (4) 

де B  – потужність навчаючої вибірки. По завершенні 

навчання мережі величини im  та is  запам'ятовуються 

для використання в операційному режимі. 
Унікальність характеру сейсмічної інформації, що ре-

єструється на кожній з сейсмічних станцій, передбачає 
індивідуальність характеристик класифікатора, що розді-
ляє цю інформацію на згадувані два класи. Адаптація кла-
сифікатора до місцевих умов забезпечується як, в першу 
чергу, навчанням нейронної мережі на "місцевих" даних, 
так і вибором оптимальних величин тривалості w ковзного 
вікна та його кроку w∆  вздовж часової послідовності. Не-
обхідність адаптації цих величин до характеру сейсмічної 

емісії на різних станціях очевидна з рис. 2 та 3. Зрозуміло, 
що точність по часу виділення сигналу лежить в межах, 
що визначаються частотою оцифровки 

виб
f  потоку сейс-

мічних даних і частотою виходу класифікатора 
/

клас виб
f f w= ∆   (5) 

Розглядаючи сейсмічну емісію як стаціонарний про-
цес, для окремих каналів кожної з сейсмостанцій фор-
муються масиви даних, елементи котрих представля-
ють собою ділянки сейсмічних записів, що крім мікро-
сейсмічного шуму містять локальні антропогенні завади 
та утворюють генеральну сукупністьU . З цих масивів 
випадковим чином витинаються відрізки, тривалістю у 
довжину вікна w, і компонуються навчаючі вибірки для 
кожного компоненту та певної тривалості ковзного вікна 

w
k ⊂B U , 

де , ,k E N Z= .  
Враховуючи різний рівень запису для різних інтервалів 

часу, пов'язаний з роботою тракту запису, первинні дані 
нормуються до рівня повного розмаху зареєстрованої (як 
штатна процедура регістратора) реакції тракту на збу-
дження сейсмографа стандартним П-подібним імпульсом. 

 

 
Рис. 4. Вихід класифікатора при обробці трьохкомпонентного сейсмічного потоку (траси E, N, Z) 

при співвідношенні сигнал/шум 1≤ . Виявлення сейсмічного сигналу (Вранча, 14/03/05, М=3.6, h=118 км) у ковзному вікні 
тривалістю 1 с при кроці по часі в 0.05 с та 0.5 с 
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Отже, одна зі складових сейсмічного потоку спрямову-
ється до класифікатора, в ролі котрого використовується 
мережа штучних нейронів, що працює в оперативному 
режимі і з частотою (5) видає результат, рівний t у випадку 
шуму і відмінний від t у решті випадків. В практичній реалі-
зації класифікатора вихід y переводиться у буленовський 
простір і будується характеристична функція 

1,

0,

якщо y t

інакше

=
µ = 


,  (6) 

що значенням 1µ =  сигналізує про появу сигналу, що 
може виявитись корисним. Тривалість такої "одиничної" 
серії на виході дозволяє також відфільтрувати коротко-
часні випадкові завади того типу, що не був присутній в 
навчаючій вибірці. Враховуючи те, що графічне зобра-
ження виходу класифікатора представляє собою П-
подібні сигнали різної тривалості і є мало ілюстратив-

ним, у наших рисунках наведено результат роботи ал-
горитму до застосування процедури (6). 
Режим роботи класифікатора контролюється двома 

параметрами ковзного вікна: його тривалістю та кроком 
по часі. Ці величини з обчислювальних та термінологіч-
них міркувань зручніше виражати не в часі, а кількістю 
вибірок оцифровки сейсмічного потоку, що ними охоп-
люються. Так, при частоті оцифровки в 20 Гц вікно дов-
жиною в 20 вибірок охоплює часовий інтервал в 1 с.  
На рис. 4 наведено сейсмічний сигнал, що реєстру-

ється на рівні шуму і тому дуже складно виявляється на 
запису, та результат роботи класифікатора, що поліп-
шує відношення сигнал/шум майже на порядок. Демон-
струється практично рівноцінна придатність всіх компо-
нент сейсмічного запису до виявлення корисного сиг-
налу на частотах виходу класифікатора 20 та 10 Гц, 

1w∆ =  та 10 відповідно. 
 

 
Рис.5. Вихід класифікатора при обробці Z-компоненту сейсмічного потоку на с/с "Сквира", що містить сейсмічний сигнал (Вран-
ча, 03/06/05, М=4.1, h=146 км) при тривалості ковзного вікна в 1с (20-компонентний вхідний вектор). Величина кроку вздовж ча-
сової послідовності і відповідна їй частота виходу класифікатора: 1 – 20 Гц, 5 – 4 Гц, 10 – 2 Гц, 20 – 1 Гц, 40 – 0.5 Гц, 60 – 0.3 Гц. 

 

Для досягнення поставленої нами мети можна вважа-
ти некритичною величину частоти виходу класифікатора. 
На рис. 5 наведено результат роботи останнього на при-
кладі запису одного (з міркувань економії простору) ком-
поненту слабкого землетрусу, який демонструє інваріант-
ність, в розумінні (6), результатів по відношенню до кроку 
по часі ковзного вікна, тобто частоти виходу класифікато-
ра в діапазоні 20 – 0.3 Гц. Останнє може мати значення 
для систем, що не встигають виконати необхідні операції 
обробки та управління за час інтервалу між квантами над-
ходження інформації з частотою виходу класифікатора. 
Якість роботи класифікатора залежить від того, наскі-

льки адекватно в інтервалі часу, що охоплюється ковзним 
вікном, відображається характер сейсмічної емісії, що ре-
єструється. Якщо крок ковзного вікна визначає ступінь 
осереднення характеристик процесу, то розмір вікна від-
повідає за відображення його частотного складу. 

На рис. 6 на прикладі обробки того ж сигналу, що і на 
рис. 5, наведено виходи класифікатора при використанні 
ковзних вікон різної довжини при однаковому кроці по часу. 
Цей приклад та наш досвід дозволяє зробити висновок, що 
для кожного конкретного випадку необхідно підбирати най-
більш відповідні довжину вікна та його крок по часі. 
Звичайно, ефективність та надійність роботи пропоно-

ваного алгоритму виділення сигналу залежить від збере-
ження стаціонарності процесу сейсмічної емісії на протязі 
достатньо тривалого періоду. Нами перевірено результат 
роботи на сейсмостанції "Сквира", навченої навесні, на 
протязі всього року. Спостерігається деяке зростання ам-
плітуди виходу класифікатора на ділянках трас з шумом, 
що дозволяє припустити наявність сезонного тренду та 
рекомендувати як щосезонне, так і після профілактичних 
та ремонтних робіт перенавчання нейронної мережі. 
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Рис.6. Виявлення сейсмічного сигналу на Z-компоненту запису на с/с "Сквира" 

з допомогою вікон тривалістю: 1) 0.5с, 2) 1с, 3) 2с, 4) 3с, 5) 4с при кроці по часі у 0.25 с. 
 

Zhang H., C. Thurber, Ch. Rowe. Automatic P-wave Arrival Detection and 
Picking with Multiscale Wavelet Analysis for Single-Component Recording, 
BSSA, 93, No5, 2003, – P. 1904-1912. 2. Leonard M., Comparison of Manual 
and Automatic Onset Time-Picking, BSSA, 90, – P. 1384-1390. 3. Vidale J., 
Complex Polarization Analysis of Particle Motion, BSSA, 76, – P. 1384-1390. 
4. Joswig M., Pattern recognition for earthquake detection, BSSA, 80, 1990, 
P.170-186. 5. Dai H., C. MakBeth, The Application of Back-Propagation Neural 
Network to Automatic Picking Seismic Arrivals from Single-Component 
Recording, J. Geoph. Res., 102, 1997, – P. 15105-15113. 6. Dovla F., S. R. 
Taylor, R. W. Anderson, Seismic Discrimination with Artificial Neural Networks: 
Preliminary Results with Regional Spectral Data, BSSA, 80, 1990, – Р. 1346-
1373. 7. Wang J., T. L. Teng, Artificial Neural Network-Based Seismic 

Detector, BSSA, 85, 1995, – P. 308-319. 8. Tottinham, D.M., W.H.K. Lee, and 
J.A. Rojers, User manual for MDETECT.IASPEI Software Libruary, Vol 1, 
SSA, EL Cerrito, 1989, – P. 89-118. 9. Осовский С. Нейронные сети для 
обработки информации: перевод с польского. – М.: Финансы и статисти-
ка, 2004. – С. 334. 10. Hykin S., Neural Networks. A comprehensive 
foundation, New York, N.Y., Macmillan, 1994, – P. 696. 11. Hornik K, 
Stinchcomb M, H. White, Multilayer Feedforward Networks are Universal 
Approximators, Neural Networks, 1989, 2, – P. 359-366. 12. Finke M., K.R. 
Muller, Estimating A-posteriory Probabilities Using Stochastic Network Models, 
//Proc. of the 1993 connections models summer school, Hillsdale, N-J: 
Lawrence Erlbaum Associates, 1994, – P. 323-331.  

Над ійшла  до  редколег і ї  
 
УДК 550.832.5 
 

М.С. Бондаренко, асп., 
В.В. Кулик, канд. фіз.-мат. наук, пров. н. с., 

В.В. Кармазенко, голова правління, 
Г.О. Кашуба, канд. геол. наук, гол. геолог, 

Ю.О. Сніжко, асп. 
 

ВИКОРИСТАННЯ УЗГОДЖЕНОГО КОМПЛЕКСУ НЕЙТРОННИХ МЕТОДІВ 

ДЛЯ ВИЗНАЧЕННЯ ПЕТРОФІЗИЧНИХ ВЛАСТИВОСТЕЙ КОЛЕКТОРІВ 
 
На основі виконаних досліджень показана можливість одночасного визначення пористості, характеру насичення і літо-

логії порід-колекторів новим комплексним багатозондовим приладом стаціонарного нейтронного каротажу з реєстрацією 
повільних і надтеплових нейтронів на узгоджених зондах. 

On the basis of the performed investigations a poss ibility to determine porosity, type of saturation a nd litology of reservoir with the 
help of the new complex multispacing tool for fit m easuring of the count rate of slow and epithermal n eutrons is presented. 

 

Вступ. Підвищення інформативності та продуктив-
ності каротажу, збільшення точності визначення пет-
рофізичних параметрів колекторів нафти і газу залиша-
ється актуальною задачею. 
Визначення пористості є першочерговою задачею гео-

фізичних свердловинних досліджень (ГСД) колекторів. В 
Україні при визначенні пористості перевагу надають акусти-
чному каротажу (АК) [1]. Залишається актуальною задача 
оцінки характеру насичення колекторів в розрізі нафтогазо-
вих свердловин (особливо обсаджених, в тому числі при 
ревізії свердловин старого фонду). При розв'язанні цієї за-
дачі використовують електричні методи та імпульсні моди-
фікації нейтронного каротажу [2, 3]. Визначення літології 
пластів – ще одна задача, важлива при дослідженні колек-
торів. Для її розв'язку, в тій чи іншій мірі, користуються ком-
плексом виконаних в свердловині методів каротажу [2, 4]. 

Стаціонарний нейтронний каротаж (НК) на сучасному 
етапі розвитку ГСД добре зарекомендував себе як метод 
визначення пористості (разом з гамма-каротажем (ГК)) [2, 
4, 5]. При сприятливих умовах НК використовується і для 
виділення газонасичених колекторів. Нами показана мож-
ливість застосування узгодженого комплексу НК для ви-
значення нафтонасиченості колекторів (в тому числі через 
обсадку) [6, 7]. В даній статті продемонстрована можли-
вість узгодженого комплексу НК одночасно виділяти коле-
ктори, визначати їх пористість, розрізняти газоносні плас-
ти в умовах глибокого проникнення фільтрату бурового 
розчину (БР), оцінювати літологію пластів. 
Нові ідеї і підходи щодо НК [8-12] знайшли втілен-

ня на київському заводі "Геофізприлад", де разом з 
ІГФ НАН України ведуться розробки багатозондових 
приладів нейтрон-нейтронного каротажу (ННК) ново-
го типу з покращеними геофізичними характеристи-
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