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стадіях розробки, або при необхідності швидкої експер-
тної оцінки підрахунку запасів родовища. Цей метод 
дозволяє також класифікувати запаси родовища за 
міжнародними стандартами, використовуючи функції 
розподілу ймовірності. 
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ПРОГНОЗУВАННЯ ДОВГОТРИВАЛОЇ МІЦНОСТІ ГІРСЬКОГО МАСИВУ 
У ГЕОЛОГІЧНИХ СЕРЕДОВИЩАХ СКЛАДНОЇ СТРУКТУРИ 

 
Розглядається нелінійна модель багатокомпонентного геологічного середовища, поведінка якого є залежною від 

наявності трищінуватості та флюїдонасиченості. Проведено геоінформаційний аналіз параметрів в'язкопружного 
поля біля концентраторів деформацій типу виробок метрополітену на відповідність прогнозованих результатів 
експериментальним даним. Визначено межу достовірності запропонованої моделі для опису поведінки середовища та 
типу неоднорідних концентраторів геодинамічних полів навантажень поля в залежності від заданого прийнятного 
рівня похибки та доступних статистично обґрунтованих даних геофізичних спостережень. Робота є продовженням 
досліджень авторів у напрямку створення достовірної модельної бази для комп'ютерного прогнозу еволюції геоди-
намічних полів у середовищах складної мікроструктури. 

The nonlinear model of multi-component geological environment which depends on the presence of the cracks and fluid 
saturation is examined. On the example of numerical quantitative analysis of viscous and elastic field parameters near 
geometrical and material concentrators, like as underground metro passage, the statistical analysis of the forecast results' 
correspondence to experimental data has been done. Work is a continuation of author's research of creation the reliable model 
base for computer forecasting of evolution and geodynamic fields in the environments of difficult structure. 

 
Реологічні співвідношення та постановка задачі 

про надійність потенційно небезпечних об'єктів (ПНО).  
Розглянемо модель деформування матеріалів з 

дефектами, гірських порід та вугілля із врахуванням 
фактору часу на основі співвідношень механіки повзу-
чості. Включення елементів в'язкості в механічну мо-
дель матеріалу робить модельні співвідношення зале-
жними від часу [6] 
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Тут ( )e t  – тензор деформацій, σ( )t  – тензор напру-
жень, E  – тензор пружності, ( )J t  – ядро повзучості 
геологічного середовища, t - час. В геодинамічних до-
слідженнях найчастіше застосовується ядро повзучості 
типу Работнова. 
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Напружений стан пружно-повзучого гірського масиву 
навколо горизонтальної виробки (тунелю) достатньо 
глибокого закладання можна моделювати напруження-
ми в неваговому плоскому полі, яке послаблене отво-
ром аналогічної форми і яке знаходиться в плоскій де-
формації з граничними умовами на нескінченності. 

∞σ =( ) ,x p  ∞σ = λ( ) ,y p  ∞τ =( ) 0,xy               (3) 
де навантаження = −γp H  залежить від густини геосере-
довища γ та глибини H  тунелю. Параметр λ  відбиває 
залежність σy від фізичних властивостей геосередо-
вища, початок координат розміщено всередині отвору, 
вісь абсцис вертикальна. 

Розглянуто процес пошкодження та руйнування в'я-
зко-пластичних геологічних масивів під дією довготри-
валих та циклічних навантажень [6]. Для отримання 
рівнянь, які описували б розвиток макротріщини, необ-
хідно розглянути процес розпушення та руйнування 
структурних елементів, які підпадають на напрямок 
зростання тріщини. На фронті тріщини втоми та на її 
продовженні відбувається процес накопичення мікро-
пошкоджень втоми. Рівень пошкоджень для кожного 

елементу визначається функцією ( )D t  [4], кінетика на-
копичення яких задається диференціальним рівнянням 

= σ&( ) ( , )D t f D ,  (4) 
де t  – час дії геодинамічних впливів, змінна D  зміню-
ється у границях [0,1], при цьому = 0D  відповідає по-
чатковому, непошкодженому матеріалу; а = 1D  описує 
стан порушення суцільності матеріалу, так званого роз-
пушення, тобто фактично момент руйнування. При на-
копиченні мікропошкоджень спостерігається зниження 
значень пружних модулів. Розглянемо надалі залеж-
ність еквівалентних функцій релаксації та повзучості від 
параметру мікропошкодження геологічного матеріалу 
D . Це надає можливість визначити ступінь деградації 
модуля Юнга і модуля зсуву від параметру пошкодже-
ності D  та спрогнозувати їх зміну у часі. Враховуючи 
пошкодженість або ж розпушеність геологічної породи 
та використовуючи розрахунки еквівалентних в'язкоп-
ружних характеристик для трищінуватого середовища, 
отримаємо прогнозовану залежність коефіцієнтів кон-
центрації напружень біля контурів виробок у гірських 
породах та дослідимо їх еволюцію у часі внаслідок про-
цесів повзучості. Це пов'язано із необхідністю підви-
щення якості проектування та гарантованої безпечної 
експлуатації сучасних техногенних ПНО, а отже ство-
рення нових геодинамічних моделей поведінки навко-
лишнього середовища. Сучасні методи геофізичного 
моніторингу, що базуються на нових моделях поведінки 
геологічних багатокомпонентних середовищ [2], нада-
ють можливість проводити розрахунки безпеки об'єктів 
на основі складних чисельних схем, максимально на-
ближених до реальних умов (рис. 1). 

Перспективною є концепція оцінки безпеки техно-
генних об'єктів, що знаходяться під впливом геодинамі-
чних полів, по критеріях оптимальності показників на-
дійності. У зв'язку з цим, геологічне середовище роз-
глядається як нелінійна багатокомпонентна тріщинува-
та геосистема із випадковими властивостями [4]. 

Стан системи, що складається у даному випадку із 
масиву в'язкопружної породи та техногенної неоднорід-
ності, у кожний момент часу t  задається вектором ( )u t  
– елементом простору стану U . Зовнішні геофізичні 
впливи на об'єкт характеризуються векторним проце-
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сом ( )q t , що належить простору геодинамічних впливів 
Q  та визначається внаслідок моніторингу системи [1]. 
Технічні умови та вимоги експлуатації складають сис-
тему обмежень на параметри стану. Сукупність пара-
метрів стану з урахуванням цих обмежень створює век-
тор якості ( )v t  у просторі якості V . 

Позначимо функції розподілу ймовірностей кожного 
з елементів системи ( )uiF x , щільності функцій розподі-
лу ( )uip x . Експлуатаційні характеристики задаються 
функцією стану ( )G x . Ймовірність руйнування елемен-
ту задається виразом  

( )( ) ( )= < = ∫(0) 0G
C

F P G x p x dx ,  (5) 

де ( )= ∈ <{ : 0}nG v R G x  – простір подій, пов'язаних з не-
безпечними за визначеним критерієм станами. Отже 
надійність системи R  визначається як імовірність ( )P t  
безвідмовної роботи та обчислюється як функціонал від 
випадкового процесу ( )v r , що описує зміну параметрів 
системи у часі. 

Ефективна енергія нестисливих в'язко-пружних 
геологічних структур. 

В попередній роботі [5] було знайдено нові набли-
жені значення для ефективної енергії нелінійних ізотро-
пних струмопровідних дисперсійних геологічних струк-
тур. Має сенс розповсюдити зазначену методику на 
задачі моделювання ефективних пружно-в'язких влас-
тивості нелінійних ізотропних неоднорідних геологічних 
структур. Визначення границь ефективних модулів роз-
почав Хілл, який запропонував середньоарифметичні і 
середньо-гармонійні границі для ефективних властиво-
стей. Хашин та Штрікман знайшли кращі можливі ниж-
ню та верхню границі для ефективного зсувного і об'-
ємного модулів пружності, ґрунтуючись тільки на інфо-
рмації про об'ємний вміст компонентів. Зв'язані об'єм-
но-зсувні границі було покращено в порівнянні з ре-
зультатом Хашина-Штрікмана шляхом врахування вза-
ємозалежності об'ємного та зсувного модулів. Застосо-
вуючи інформацію про мікроструктуру вищого порядку, 
можна і надалі намагатися поліпшити границі, тим са-
мим підвищуючи достовірність моделювання та надій-
ність експлуатації об'єкту в цілому. 

Визначення границь ефективних в'язкопружних вла-
стивостей нелінійних геологічних середовищ є складні-
шим завданням. Талбот і Віліс [8] запропонували уза-
гальнення варіаційного методу Хашина-Штрікмана для 
дослідження нелінійних неоднорідних середовищ (ком-
позитів). У їх роботі використовується новий метод роз-
рахунку границь для ефективних властивостей неліній-
них неоднорідних діелектриків і порівнюються резуль-
тати з самоузгодженими оцінками. П. Кастанеда запро-
понував підхід, відповідно до якого наближені границі 
для ефективних властивостей нелінійних структур мож-
на знайти в результаті введення структури лінійної, 
ідентичної за мікро-геометрією, але яка складається з 
лінійних, в сенсі фізичних властивостей, компонентів. 
Нові результати, що стосуються проблеми пошуку оп-
тимальних границь фізичних властивостей неоднорід-
них структур, можна знайти у статті [8]. 

Новий підхід, запропонований в статті [5] для прогнозу-
вання нелінійної электропроводності, дозволяє його пряме 
узагальнення на випадок нелінійної пружної і в'язко-пружної 
поведінки геологічного масиву. Розглянемо ізотропну фізи-
чно нелінійну нестисливу геоструктуру. Додаткова пружна 
енергія U може бути представлена у вигляді  

σ = ψ( ) ( ),U s   (6) 

де σ  – тензор напруги, ψ( )s  – скалярна функція скаля-
рного аргументу, яка описує зсувну частину додаткової 
енергії. Тут 

⎛ ⎞′ ′= σ ⋅ σ⎜ ⎟
⎝ ⎠

1 23
2

s , ′σ = σ −σ 1m ,σ = σ( ) /3m tr        (7) 

є еквівалентним напруженням Мізеса. Розглянемо 
два типи визначальних потенціалів, що мають практич-
не значення в геодинаміці. Перший важливий в кон-
тексті застосування поширеного в геодинаміці т.з. 2J  
варіанту теорії пластичності, де 

+
⎛ ⎞

ψ = + ⎜ ⎟
μ + ⎝ ⎠

1
2 0 0

0 0
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6 1

n
s e ss
n s

s   (8) 

Тут µ0 – початковий пружний модуль зсуву, s0 – від-
лікове еквівалентне напруження, e0 – відлікова еквіва-
лентна деформація, n – показник ступеня кривої зміц-
нення. Другий потенціал використовується в теорії пов-
зучості геологічних структур [6] і має вигляд 

( )
+

⎛ ⎞
ψ = ⎜ ⎟

+ ⎝ ⎠

1
0 0

01

n
d s ss
n s

,  (9) 

де s0 – відлікове еквівалентне напруження, d0 – відліко-
ва швидкість еквівалентної деформації, n – показник 
ступеня кривої зміцнення. 

Можна відзначити, що модель в'язкої рідини Ньюто-
на отримується з (8) у разі n = 1, при цьому µ = s0 /3 
означає в'язкість середовища. Для лінійних геоматеріа-
лів зсувна частина енергії є квадратичною за напру-
женнями, тобто 

( )ψ =
μ

21 ,
6 o

s s    (10) 

при цьому зсувний модуль пружності µ не залежить від 
рівня прикладених зовнішніх навантажень.  

Для ізотропних багатокомпонентних геологічних се-
редовищ [4] функція локальної щільності додаткової 
енергії U(x,s) має вигляд 

=
= χ ψ∑

1
( , ) ( ) ( )

n
r r

r
U x s x s ,  (11) 

де χ ( )r x  – характеристичні функції відповідних облас-
тей Ωr, займаних r фазами, x – вектор місця даної точки 
простору Ω. Тут ми припускаємо, що функції χ ( )r x є 
неперервними та опуклими, тобто 

ψ ≥( ) 0r s    ∀s ,    ψ =(0) 0,      = 1, .r n  (12) 
В цьому випадку вираз для ефективної додаткової 

енергії можна записати у формі 

= < >% ( ) inf ( , ) ,U s U x s =< >,s s   (13) 
де кутові дужки означають об'ємний інтеграл від вели-
чини в дужках по області усереднювання Ω або комірці 
періодичності. І головна мета полягає в тому, щоб 
знайти можливо найбільш точні границі або наближен-
ня для ефективної додаткової енергії (13). Як наведено 
в роботі [8], функція ефективної додаткової енергії не-
лінійного нестисливого тіла відповідає нерівності 

[ ]μ
=

≥ − ν μ∑% % 0
00

1
( ) max { ( ) ( )},

n
r r r

r
U s U s c    ∀μ0

r   (14) 

де % ( )U s  – функція ефективної додаткової енергії ліній-

ного нестисливого тіла з модулем зсуву μ0,i ic об'ємні 

концентрації фаз, функції ν μ0( )r r  знаходяться в резуль-
таті оптимізації співвідношень 
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( )μ = − ψ
μ
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Слід зазначити також, що з математичної точки зору 
задача про деформацію нестисливого геологічного се-
редовища і задача електропровідності [5] є вельми 
схожими. Фізичними константами у разі деформації є 
зсувні податливості середовища, а у разі електричного 
поля – константа електропровідності. Амплітуда елект-
ричного поля відповідає величині еквівалентних напру-
жень Мізеса [6]. Тому за аналогією із розглянутою ра-
ніше задачею електропровідності [5] ми виходимо з 
того, що лінійному нестисливому геологічному середо-
вищу властива енергія вигляду 

=
μ

% 2
0

0

1( )
2 eU s s ,  (16) 

де для варіанту двохкомпонентного середовища 
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c a c a Y
, = μ1a .  (17) 

Тут 0Y  – є або константою, або ж функцією типу 

( )−
= η + η −

η + η +

2

0
03 2

m i
i m m i m i

i m m i

a a
Y a a c c

a a Z
,       (18) 

причому ( )η = − η1m i  ∈ [0,1] є деяким фіксованим пара-

метром, а 0Z  вводиться як ще одна стала. У формулах 
(17), (18) індекс m стосується утворюючого скелету гео-
структури (матриці), індекс i – наповнювача (включення). 
Як і у випадку електропровідності [5], з виразу (13) можна 
отримати декілька відомих границь для ефективних вла-
стивостей лінійних нестисливих геологічних середовищ. 
Зокрема, границі Хашина-Штрікмана для зсувного моду-
ля пружності отримуємо з (13) при =0 mY a , а також 
η =1m  в рівняннях (16). Апроксимація Торкуато випливає 
з (18) при виборі параметра Z0 у вигляді 

− η
Ζ =

− η0
2 3

3(3 2 )
i

m
i

a    (19) 

Інша перевага лінійного матеріалу порівняння з 
ефективними властивостями (16) полягає в тому, що в 
цьому випадку межі (17) можуть бути значно спрощені, 
якщо скористатися процедурою, розробленою в [3, 4, 
7]. Тоді для ефективної пружної енергії нелінійної ізо-
тропної геосередовища отримуємо 

[ ] ( ) ( ) ( ) ( )γ
⎛ ⎞⎡ ⎤ ⎡ ⎤= ψ + ω + ηω +η γ + ψ + ω + ηω −η γ + η ηω γ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

% 2 22 2 2 2 2 2
1 1 1 1 1 2,( ) min 1 2 1 /3 1 2 1 /3i m m m m i i m iwU s c s c c с s c c Bc   (20) 

Тут необхідно виконати процедуру оптимізації від-
носно двох параметрів ( )ω∈ −∞ +∞,  та ( )γ ∈ −∞ +∞, . . 
Якщо нелінійна функція додаткової енергії відносно 
проста, то процедуру оптимізації можна виконати ана-
літично. У загальному випадку необхідно використову-
вати чисельні методи оптимізації. 

 

 
Рис. 1. Криві повзучості та зміна масштабних  

модулів повзучості геосередовища  
для двох варіантів флюїдонасиченості 

 
Нестисливі включення рідини. 
Розглянемо випадок, коли неоднорідності геосере-

довища обумовлені наявністю включень нестисливої 
рідкої фази, тобто потенціал має вигляд 

=
∞ ≠ψ = 0, 0

, 0( ) { s
i ss   (21) 

У цьому важливому практично випадку права части-
на рівняння (20) набуває мінімального значення, якщо 
аргумент функції є рівним нулю, а саме 

+ ω + η ω + η γ =2 2 2
2(1 ) 2 (1 ) / 3 0i m ms c c    (22) 

Цим визначаються оптимальні значення параметрів 
ω = −1 ;mс  γ = − η1 .m         (23) 

Тоді енергія неоднорідного геосередовища має на-
ближене значення 

( ) ( )= ψ α% ,m m LU s c s   (24)  

де параметр αL задається виразом 
η + + η

α =
η

1 1
2

2 / 3 .m i
L

m m

c Bc
c

  (25) 

Зокрема, якщо скелет геоструктури (матриця за те-
рмінологією композитних середовищ) має функцію ене-
ргії у вигляді (19), то її ефективна енергія відповідно до 
(25) може бути представлена виразом 

( )
+

⎛ ⎞
= + ⎜ ⎟⎜ ⎟μ + ⎝ ⎠

%
1

2 0 0

0
.

6 1

n
Lm L

m
m

s as ec aU s s c
n s

  (26) 

Концентрація напруги на границі геологічного 
середовища з елементами тунелів. 

Елементи будівельних конструкцій транспортного 
призначення вимагають особливо уважного ставлення 
до проблеми їхньої безпеки впродовж всього періоду 
експлуатації. Одним з варіантів розв'язіння цієї про-
блеми є вивчення локальних особливостей напружено-
деформованого стану в околиці виробки в нелінійному 
пружно-в'язкому гірському масиві [7]. 

Будемо вважати, що виробка має форму кругового 
циліндру, що дозволяє використовувати результати тео-
реми Ешелбі [4]. Радіус циліндрового вироблення позна-
чимо a . Використовуємо надалі процедуру умовного 
статистичного усереднювання із залученням гіпотези 
еквівалентного поля деформацій [7], в якому розташова-
на виробка, що розглядається в даному випадку як не-
однорідність в еквівалентному геологічному середовищі 

( )
=

< > − − < τ + >=∑
1

( ) | * ( ) ( ) | , 0.
na a b

b
e x X Г x y y t y X X   (27) 

Тут Χa  – реалізація випадкового поля, що описує 
взаємне розташування неоднородностей, в якому точка 

x є центром спостереження, Χb  – всі можливі реаліза-
ції випадкового поля. Еквівалентне поле деформацій 
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% ( | )b a be y X X являє собою деформований стан в точці x 
при реалізації випадкового розташування неоднорідно-
стей ∩a bX X . Відповідно до теореми Ешелбі існують 
сталі тензори четвертого iB  і другого iC  рангів такі, що 

( ) ( ) ( )σ = σ +%i i i ix B x C x   (28) 
Тут 

( )−Β = −
1

1 ,i ip M   ( )−−= − +
11

1
i i

iC m Q h  

( )= − +1 * .ip E g E   (29) 
Тензори pi виражаються через добре відомий [2] тен-

зор Ешелбі S, який визначає актуальні, дійсні "стиснені" 
деформації включення ce  через "вільні від напружень" 
деформації трансформації Te  включення [4] до поєднан-
ня його форми з формою області виробки ΩI , а саме 

= +1 ,pS G  −= 1,G E  = − .S gE   (30) 

Якщо σ0 - задане на віддаленій границі ∂Ω  напружен-
ня, то використовуючи введений в [7] тензор Q, деформації 
включення Ie  будуть пов'язані з σ0 співвідношенням 

σ =0
0
IQe    (31) 

При цьому 
= +(1 )Q E gE .  (32) 

Розглянемо поверхню S, що розділяє області, зайняті 
одним з конструктивних підкріплюючих елементів тунелю 
і геосередовищем. Нехай P(S) – довільна точка цієї по-
верхні, в якій заданий вектор зовнішньої одиничної нор-
малі n. Використовуємо надалі тензори на поверхні ( )E n  
и ( )F n , що визначені в точці співвідношеннями 

( )= δ η + δ η + δ η + δ η − η
1 ,
2ijkl ik jl jk il il jk jl ik ijklE  

( )= ξ ξ + ξ ξ η η η
1 ,
2ijkl ik jl jk il ij i jF  η = η η ;ijkl ij kl  ξ = δ − η ,ij ij ij                                (33) 

тут δij  – дельта Кронекера. Сума тензорів ( )E n и 
( )F n являє собою одиничний симетричний тензор  

+ =( ) ( )E n F n I  
За допомогою цих тензорів напруження σ  та дефо-

рмації e  на поверхні S  можна розкласти на нормальні 

σ ,E Ee  та тангенціальні σ ,F Fe  складові 

σ = σ ;E
ij ijkl klE  σ = σ ,F

ij ijkl klF            (34) 

= ;E
ij ijkl kle E e   = σ ,F

ij ijkl kle F  
тоді на границі розділення включення – матриця вико-
нуються очевидні умови 

σ − σ =( ) 0;i mE  − =( ) 0.i mF e e  
Тут під добутком тензорів розуміється їхнє згортання 

за парою індексів. Верхній індекс означає належність 
компоненту, при цьому для певності будемо вважати, що 
індекс i  відповідає включенню (виробці), m - скелету 
геосередовища. Використовуючи вирази напруження та 
деформації на зовнішній стороні поверхні (тобто на кон-
турі виробки), знаходимо їх із співвідношень 

( )σ = + ,m m Fi EmL e e   ( )= σ + σ ,m m Ei Fme M   (35) 

де mL  – тензор пружних модулей; mM  – тензор пружних 
податливостей скелету геологічного середовища. В ре-
зультаті дій на рівняння (35) операторами ,E F  отримуємо 

( )σ = +Ei m Fi EmEL e e , ( )= σ + σ ,Fi m Ei Fme FM   (36) 

з цього після розділення напруг та деформацій матриці 
та включень випливає 

( )= σ −( ) ,m i m Fie A n L e  ( )σ = − σ( )m i m EiB n e M .  (37) 

Тут ( )−=
1

( ) ,mA n EL E E  −= 1( ) ( )mB n FM F F .          (38) 

Перегрупувавши члени в рівняннях (37) та взявши 
до уваги структуру операторів, визначимо величину 
стрибків напружень та деформацій на поверхні 

( )− = σ − ;m i i m ie e A L e  ( )σ − σ = − σm i i m iB e M .  (39) 

Таким чином, формулами (39) напружено-
деформований стан на зовнішній поверхні +S  (в ске-

леті-матриці) повністю визначено через напруження та 
деформації на її внутрішній поверхні −S  (у включен-
нях) за допомогою операторів ( ), ( )A n B n . Співвідно-
шення (39) мають буди еквівалентними при додатковій 
та природній умові −= 1M L  б тому оператори A та 
B пов'язані рівностями 

+ = + =m m m mL A BM AL M B I . (40) 
У випадку, якщо геологічне середовище є ізотроп-

ним, то вирази помітно спрощуються та можуть бути 
представлені у вигляді 

− ⎛ ⎞ν
= − η η η η⎜ ⎟

− ν⎝ ⎠
1(2 ) ;

1
m

ijkl m ijkl i j k l
m

A G E  

⎛ ⎞ν
= − ξ ξ⎜ ⎟

− ν⎝ ⎠
2

1
m

ijkl m ijkl ij kl
m

B G F ,  (41) 

де ν,m mG  – модуль зсуву та коефіцієнт Пуассона геосе-
редовища. 

Як приклад розглянуто зону технологічного підкріп-
лення тунелів метрополітену: однорідний масив, що 
включає стохастично розташовані включення рідкої фа-
зи. Прогнозовані параметри еволюції напруженого стану 
навколо тунелю знаходяться у 10 % довірчому інтервалі 
та відповідають експериментальним спостереженням, 
проведеним на різних ділянках метро в м. Києві. 
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