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STUDY ON EXOGENOUS PROCESSES ALONG THE WESTERN COAST
OF THE CRIMEAN PENINSULA USING DEEP LEARNING METHODS

(MpedcmaesneHo 4neHoM pedakyiliHoi Kosneaii 0-poM 2eosl. Hayk, npog. C.A. Buxeoro)

Background. Monitoring changes in coastline contours is an actual topic in the field of environmental, geological and
information research. However, tasks of this kind are complex and require using modern methods of data processing and analysis,
including Earth remote sensing data. One of the modern approaches to solving this class of problems is using machine learning methods,
which is the focus of the research in this article. The object of the authors' research is the western coast of the Crimean Peninsula, the
study of which by traditional methods has become impossible due to the temporary occupation of the Crimean Peninsula since 2014. In
the last decade, the Crimean coastline could have undergone significant changes as a result of anthropogenic activities (including those
related to military operations) and landslide-abrasive processes. In this study, the authors limit the study to changes in the coastline of
the western part of the Crimean Peninsula over the last decade.

Methods. Authors used CNN models (U-Net model) to effectively recognize the coastline and its boundaries in satellite images
without the need for manual vectorization.

Results. The research involved developing Python code to automatically generate reports including network accuracy (0.95) and
loss function (0.19), facilitating the evaluation of different approaches and methods. Additionally, the study created scripts for using the
trained network in the task of semantic segmentation and translating the result of the segmentation model into a vectorized result of the
coastline contours of the Crimean Peninsula, which was represented as a probability raster.

Conclusions. The use of this approach is useful for monitoring changes in the coastline of rivers, seas and lakes

throughout Ukraine.
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Background

Due to the temporary occupation of the Crimean
Peninsula since 2014, traditional instrumental studies for
monitoring changes in its coastline have become impossible
to carry out. In the last decade, the Crimean coastlines could
have gone through significant changes as a result of
anthropogenic activity and landslide-abrasive processes.
Traditional coastline mapping methods are relatively
expensive, time-consuming, require manpower, and contain
a lot of uncertainties due to the unique geometric and
spectral structures of coasts (Ge, Sun, & Liu, 2014). It's
important to mention that past instrumental studies were
limited in scope, and carried out to a minimal extent due to
cost constraints. The historical data collected is also
discontinuous, with observation points placed unevenly
along the coast and not covering the entire coastline.

This has prompted the need to find alternative methods
of monitoring these changes. Remote sensing data and
satellite images have become a valuable resource in this
regard, as they offer a more comprehensive view of the
coastal region. However, interpreting the vast amounts of
data gathered from remote sensing can be challenging. This
is where machine learning techniques and convolutional
neural networks (CNNs) come in handy, as they can analyze
this data more effectively and efficiently, making it possible
to monitor changes in the coastline. The aim of this study is
to use machine learning algorithms to monitor changes in

the coastline of the western part of the Crimean Peninsula
over the past decade. The algorithms will not only help
measure the intensity of erosion and accumulation
processes but also make quantitative evaluations of the
areas that have increased or decreased along the coast.

The use of machine learning algorithms to monitor
changes in the coastline contours of the western part of the
Crimean Peninsula is a challenging task that requires
expertise in many areas, including geology and machine
learning. The availability of satellite imagery from the last
10 years provides the opportunity to assess the impact of
changes on the study area. This information is critical for
managing coastal resources, protecting the coastal
environment, and planning for sustainable coastal
development. The use of machine learning methods will
enable automated recognition of the coastline and its
boundaries on satellite images, without the need for manual
vectorization. The development of such an approach would
definitely be useful for use in the future to monitor changes
in coastlines along rivers, seas, and around lakes
throughout the territory of Ukraine.

Historically, monitoring the changes in the coastline of
the Crimean Peninsula was performed through limited field
surveys using traditional instruments. However, the cost of
these surveys meant that the data collected was irregular
and incomplete, with observation points located unevenly
along the coast, resulting in gaps in coverage of the entire
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coastline (Cherkez et al., 2012). In Kotolupova's study from
2014, the author looked at the effects of human activity and
erosion from landslides on the changes in the Crimean
coastline. The work highlights the fast-paced and
understudied nature of erosion and destruction in the coastal
zone and emphasizes the importance of systematic
examination and management. The coast was divided into
zones based on geomorphology and morphodynamics,
revealing areas with a tendency towards erosion from
landslides (Kotolupova, 2014). Thereby, the range of
techniques for monitoring environmental changes has greatly
increased, with a focus on using GIS/DSS technologies
(Lialko et al., 2006; Bairak, & Mukha, 2010). The study
explored the challenges in implementing monitoring methods
in a GIS environment and proposed a method for identifying
areas of shoreline erosion and evaluating the severity of
erosion processes (Krasovskyi, & Petrosov, 2003).

Studies of changes in the coastline are presented in
works (Starodubtsev, 2019; Tomchenko, Mazurkiewicz, &
Malets, 2017), in these works Landsat 4, 5 and 8 satellite
images were taken as a basis. The primary methodology
used in these studies is manual vectorization of the coastline

The northwestern section (l) extends from Perekop to
Bakalska spit, composed of easily erodible clayey
formations and forest-like marl with steep cliffs in the
northwest part of Crimea and accumulative forms such as
sandy dunes. This coast is characterized by the presence of
migratory deposits and the most unstable coastal line for
Crimea. According to previous research, the rate of change

a

Fig. 1. Sections of the western coastline of Crimea

boundaries, which is a labor-intensive process. The study of
natural-anthropogenic transformations of the lake was
conducted based on the use of Sentinel-1 (SAR) and
Sentinel-2 satellite data, but the mapping of changes was
still performed manually, making it an inefficient method if it
is to be used as a universal tool for large areas (Martyniuk,
& Tomchenko, 2021).

Investigation of the geological structure of the western
coast of the Crimean Peninsula and underwater slopes of
the Black Sea was also carried out as part of the study. The
geological and engineering characteristics of the area are
established based on the presence of different types of
rocks with distinct geological and genetic origins (Boiko, &
Koshliakov, 2015).

In order to better understand the potential for the
development of abrasion and accumulation processes, a
literature analysis was conducted on geological studies of
the coastline of the western part of Crimea.

Based on the collected information, it was decided to
divide the western coast into 5 sections that have similar
geological structures and climatic factors which in turn
determine their development in the future (fig. 1).

Map Legend

[1 Ukraine administrative boundary
= Western Crimea coastline sections

of accumulative formations can reach several hundred
meters per year, while the retreat of the coast can be up to
several meters per year. (Horiachkyn, & lvanov, 2010). The
active process of coastal abrasion can be seen in the Bakal
spit, based on a comparison of satellite images with a
difference of 10 years (fig. 2).

b

Fig. 2. Coastline changes on the example of the Bakal spit:
a — for 2008; b — for 2018 (Google Earth service, 2023)

ISSN 1728-2713 (Print), ISSN 2079-9063 (Online)



~ 126 ~

B 1 CH U K KuiBcbkoro HauwioHanbHoro yHisepcurerty imeHi Tapaca LllleBueHka

The coast of the Tarkhankut Peninsula (Il) section extends
from the Bakalska spit to Lake Donuzlav to the southwest.
The cross-sections are represented by abrasive-
accumulative shorelines with sandy loess deposits and
sedimentary rocks-limestones. The main part of the cliff
consists mostly of limestones, while the rest are clay cliffs with
a height of up to 50 meters. Accumulative deposits are formed
due to bottom abrasion. The beaches along the cliff are mostly
narrow and consist of unsorted and unquenched material-
limestone gravel, and sand with traces of shells. According to
researchers (Horiachkyn, & Ivanov, 2010), a high rate of
abrasion is observed on the clay cliff, which is about
1.0 m/year, while the rest of the cliff, which is composed of
limestone sediments, has a low rate of abrasion.

The Western Crimea section (Ill) extends from the mouth
of the Donuzlav to Yevpatoriya. The coast of this section is
formed due to the accumulation of shore and sea floor
abrasion products, and in some places, clay strata emerge
on the sea floor. A strip of beach runs along the entire coast,
gradually turning into sandy dunes, and sometimes into salt
marshes. According to the research on this coastal area, it
was shown that 75 % of the coast length is relatively stable,
9 % is increasing in the area, and 16 % is decreasing
(Horiachkyn, & lvanov, 2010). This is due to the fact that
areas with retreating coasts are exposed to the sea, and the
increase is on the advancing coast, so it was concluded that
this is a natural process of shore leveling. The average rate
of shore retreat is about 1 m/year (Horiachkyn, & lvanov,
2010). The cause of beach shrinkage is related to natural
activities (rising sea level, repeated cycles of storm winds
from the south and south-west directions), as well as
anthropocentric impact. Human activity has a significant
impact, including constant sand extraction for construction
purposes, the construction of coastal protection structures,
and the discharge of pollutants into the sea.

The Yevpatoria section — Cape Lukull section (IV) has
the same characteristics as the previously described one,
specifically an accumulative coast formed by the
accumulation of deposits as a result of coastal erosion.

Beginning from the village of Mykolayivka to the Lukull
Cape, the height of the beach starts to increase. The coastal
line is represented by even abrasion-collapse and abrasion-
shift coasts with cliffs made of clayey sediments of the
Quaternary period, represented by clays. Clay cliffs are
easily subject to erosion, the speed of retreat of the clay cliff
ranges from 0.1 to 1 m/year (Horiachkyn, & Ivanov, 2010).

The Cape Lukull-Sevastopol section (V) is represented by
abrasion-slide and abrasion-collapse coasts, the cliff of which
is composed of clay deposits from Quaternary siltstones and
Neogene chalk formations. The coastal strip along the cliff is
not wide and consists of sand and poorly sorted, weakly
consolidated chalk. The rate of abrasion in this area varies
from 0.1 to 1 m/year (Horiachkyn, & Ivanov, 2010).

The analysis of satellite images in the area of the
Nimetska Balka revealed the marble and sand mining
(fig. 3). The mining operations are carried out in the coastal
zone, minerals are extracted in 4 horizons, the height of the
ledges is about 5-6 meters, and the area of the deposit is
about 8.17 hectares. The extraction activities began after the
occupation of Crimea by the Russian Federation in August
2017. The development of the quarry leads to the
degradation of the coastline near the town of Kacha. Also,
according to the satellite imagery, the mining regulations
that would have prevented the degradation of the coastal
zone were not adhered to.

Based on the research conducted using satellite images, it
can be concluded that the coastline of the western coast of
Crimea has undergone significant changes since 2014. Among
the main factors that have influenced its transformation are
detrimental anthropogenic activities and poor monitoring to
prevent negative processes in areas with potential risks. The
methodology proposed in this paper is able to detect the
difference in coastline changes over the past 10 years based
on machine learning methods and historical satellite images.
This, in turn, will provide information on its borders in the past
and obtain the actual ones. A preliminary analysis based on
satellite imagery determined that such research would be
appropriate and useful.

Methods

The complex, multifaceted nature of coastal zone
dynamics, combined with the recent increase in Big Data
pertaining to coastal risk, has prompted studies investigating
whether ML tools can improve our understanding of
coastline position and coastal population dynamics
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Fig. 3. Satellite imagery of the quarry near the Nimetska Balka (Google Earth service, 2023)

(Goldstein, Coco, & Plant, 2019). Shoreline detection is an
example of an application of image-based edge- detection
and is an established research area in computer vision
(Arbelaez, Fowlkes, & Martin, 2007). Although computer
vision research is effectively used to identify everyday
objects, remote sensing images contain more spectral



FEOJIOriA. 1(104)/2024

~127 ~

bands, more noise, and a higher density of edges than
natural images (Liu, & Jezek, 2004; Liu et al., 2019). The
multidimensional nature of remote sensing imagery has
generated interest in using ML tools to automatically identify
coastlines from imagery.

Most ML-based automated shoreline detection like
Support Vector Machines (SVM) and Random Forest (RF)
methods are based on extracting waterlines from remote
sensing imagery. SVMs yield promising results for feature
classification and detection of remote sensing images even
when trained on a small training dataset (Elgohary,
Mubasher, & Salah, 2017) SVM are non-parametric and do
not assume the training dataset is normally distributed. This
is appropriate for satellite images, which typically contain
high levels of noise (Maulik, & Chakroborty, 2017). Random
Forests consist of an ensemble of decision trees that
individually split the dataset multiple times into smaller sub-
classes using threshold values. As a conclusion of
successful results achieved in different problems,
researchers used this method for coastline extraction and
land use classification as well. RF can also perform analysis
with many input predictors. This feature is advantageous
when using multiple remote sensing data sets of various
resolutions in different coastal areas. This algorithm was
applied for extracted coastlines around Terkos Lake and on
the coasts intersecting with the Black Sea by utilizing the
Random Forests classifier over Landsat-8 medium-
resolution satellite images (Bayram et al., 2017). Although
the algorithm solves the problem of obtaining coastline
contours for long areas, the output results contain a lot of
noise, which is a significant disadvantage.

Previous studies have used RF and SVM to classify
remote sensing images into land and water pixels and assign

Hidden

Input Output

the location of the waterline as the boundary between the two
surface cover classes. Coastline extraction based on RF
(Demir et al., 2017) obtained efficient results for both medium
and high-resolution images for shoreline extraction studies.
However, although a continuous waterline was identified, a
large average error (>22 m) due to noise in the input image
was recorded between the manually digitized shoreline and
the RF-derived shoreline. On the other hand, the coastline
was classified using Supported Vector Machines in the latest
studies (Elnabwy et al., 2020). The detected shoreline by the
proposed method was highly correlated with on-the-ground
measurements. Elsewhere, heterogeneity in the spectral
properties of water between images, caused by differences in
atmospheric scattering, solar radiation incidence angle, and
azimuth adversely affected SVM and RF classification
performance (Rogers, 2020).

Such difficulties have led to increased attention to the
use of Convolutional Neural Networks (CNNs) in shoreline
detection (Rogers, 2020). CNNs were applied to remote
sensing images for feature detection, edge extraction, and
pixel-based classification. Convolutional Neural Networks
have larger training requirements than SVMs and RFs, but
their ability to derive semantic information via convolution
provides promise in their being able to detect features in
remote sensing imagery (Kattenborn et al., 2021).

The architecture of a Convolutional Neural Network
(CNN) consists of an input layer, one or more hidden layers,
and an output layer (fig. 4a). Each layer has a different
number of nodes and the synapses between the nodes of
different layers allow information to flow from one layer to
the next (fig. 4b). The activation function, o, enables the
CNN to determine non-linear relationships between input
and output variables (Rogers, 2020).

Activation
function

@ ™

—|
ai = a(wy aj +w, a3)
b

Layer 1 Layer 2

Fig. 4. Main components CNN:
a — The architecture of a very simple CNN contains an input layer (two nodes), a hidden layer (four nodes),
and an output layer (one node); b — Outline of how the values of nodes in one layer are multiplied by their corresponding weight
to derive the value of nodes in the next layer (o — activation functions, a} — data(images), w; — weights) (Rogers, 2020)

During training, the weights between nodes are updated
through feedforward and backpropagation. Input data is
passed through the network, a prediction is made, and the
difference between the prediction and observed output is
used to update the weights through backpropagation. This
cycle is repeated hundreds or thousands of times and is
referred to as one epoch (Xie, & Tu, 2015). The combination
of feedforward-backpropagation and convolution enables
CNNs to detect features of interest in remote sensing
images and to distinguish them from other features with
similar spectral properties. This feature could be especially
important in detecting edges in remote sensing which
contain a high density of edges (Kokkinos, 2016).

CNN techniques have been successfully used to
automatically extract the instantaneous water line from
coastal remote sensing imagery. CNN's high performance is
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due to the use of a sliding kernel, i.e., the simultaneous
consideration of pixel value neighborhoods rather than pixel-
by-pixel classification. This enables CNN to detect scale-
invariant features, whereby features and their edges will be
in the exact location, irrespective of the size of the kernel
convolving over the image. Noise and speckles are only
likely to be considered as potential features when using
smaller kernels and so are discarded when larger kernels
convolve over the image (Liu et al., 2019). Deeper CNNs,
which convolve a wider range of kernel sizes on an image,
outperform shallow CNNs because they can detect features
at different scales (Hasan, Shafri, & Habshi, 2019). Although
CNNs generally outperform SVMs and RFs in edge
detection and classification tasks in remote sensing images,
CNNs require large training datasets and are prone to
overfitting when trained on small datasets (Rogers, 2020).



~128 ~

B 1 CH U K KuiBcbkoro HauwioHanbHoro yHisepcurerty imeHi Tapaca LllleBueHka

This paper aims to develop a reliable, versatile, and
efficient tool for recognizing changes in the coast of Crimea
along the coast, based on machine learning methods. This
tool will be used to monitor coastline changes and provide
valuable information for coastal management and decision-

making processes. The implementation of the goal is
subdivided into 4 stages: data collection, development of
convolutional neural network architecture, semantic
segmentation of the coastline, and evaluation and reporting
of our results (fig. 5).

Steps in the implementation of the methodology for monitoring coastline changes : Detection of th;e

development semantic
of convolutional
neural network

architecture

data collection

segmentation
of the coastline

coastline contours
along the western
coast of the Crimean
peninsula for the last
10 years

evaluation and
reporting of our
results

Fig. 5. Stages of technical implementation of the methodology for monitoring coastline changes

Remote sensing data can play a vital role in mapping the
coastline and identifying changes over time. The use of
satellite imagery provides a broader set of data compared to
other forms of remote sensing data. During developing a
reliable, universal, and effective tool for recognizing changes
in the coastline along the western coast of Crimea, it is
necessary to make an analysis to obtain information about
available algorithms that could perform shoreline contour
recognition (Okhrimchuk, Demidov, & Brudko, 2022).

Monitoring of changes in coastline contours along the
coast of the western part of the Crimean Peninsula based
on the use of machine learning methods is a complex task
that requires a sufficient level of competence in many areas

of research, starting from the geological component and
ending with machine learning methods. Implementation of
such a non-trivial task required open data sources, as well
as technologies available under a free license (Okhrimchuk,
Demidov, & Brudko, 2022).

The data collection stage involves collecting satellite
images of the western coast of the Crimean Peninsula over
the past 10 years. At this stage of data preparation, it is
necessary to develop functionality that will allow the
processing of historical images from such products as
Landsat-8, Sentinel-2, and PlanetScope. The PlanetScope
with a spatial resolution of 3 m can be used as the main
source of remote sensing data (fig. 6).

- -
- iE
— g
Date 08-09-2022
Product Landsat-8
Spatial- 30m
resolution

e 1

19-08-2022 28-07-2022
Sentinel-2 PlanetScope
10m 3m

Fig. 6. Comparison of spatial resolution of RGB channels of different products

The images should have medium or high spatial
resolution images and temporal resolution to ensure
accurate and reliable results. The option of creating a
synthetic georaster that can integrate different products or
their derivatives, as well as follow a specific channel
sequence to more accurately represent the coastal
topography will also be considered. This innovation has the
potential to improve temporal resolution and reduce the
impact of cloud cover in certain scenarios. Once you have a
collection of images, you will need to annotate them to
indicate the location of the coastline. This can be done
manually or with the help of specialized software that can
automatically detect and mark the coastline in the image.
The annotated images should be saved in a format that is
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compatible with the CNN framework you are using. To
increase the size and diversity of the training set, data
augmentation techniques can be applied. These techniques
involve transforming the original images in various ways,
such as rotating, flipping, scaling, and adding noise or
distortions. By creating multiple variations of each image,
the training set can be expanded, providing more data for
CNN to learn from. It is important to note that the training set
should be balanced, meaning it should have an equal
representation of coastline and non-coastline images. This
helps to prevent CNN from being biased towards one class
and achieving a higher accuracy rate for that class. The
quality and diversity of the training set play a critical role in
the performance of CNN.
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The next step is the development of a convolutional neural
network architecture to solve the task of mapping the coastline.

Results

The main aim is to select and develop convolutional
neural network (CNN) architectures capable of performing
semantic segmentation of coastlines on satellite images.
This is a specialized task for convolutional neural networks,
and an adaptive mechanism is needed to extract informative
features from the input data and generate semantically
meaningful results. The semantic segmentation approach
using U-Net is the most suitable mechanism for this task, as
it allows distinguishing the most informative features and

128x128

256x256

generating results that can be interpreted. Thus, the main
task is the selection and development of convolutional
neural architecture networks (further in text "CNN") for the
semantic segmentation of coastlines on satellite images.
Segmentation of satellite images is a separate direction for
convolutional neural networks. Therefore, it is advisable to
involve some adaptive mechanism that can extract the most
informative features from the set of input data and generate
an interpretable semantically meaningful result on their
basis. The most suitable mechanism is the Semantic
Segmentation approach with U-Net (fig. 7) (Okhrimchuk,
Tishaiev, Zatserkovnyi, & 2020).

Fig. 7. Segmentation U-Net architecture. Here, | — the spatial size of the input image patch (Ronneberger et al., 2015)

The next step is to define and possibly create a CNN
architecture for the semantic segmentation of coastlines on
satellite images. Different neural network architectures will be
implemented and tested to determine their effectiveness.
CNNs are well suited for this task as they have proven to be
effective in image classification and semantic segmentation
tasks. An CNN should be designed and optimized for
semantic coastline segmentation taking into account the
specific characteristics of the data and the task. This may
include customizing the network architecture, selecting
appropriate activation functions, and modifying training
parameters. Solving the semantic segmentation problem
requires developing code in Python and supporting the
computing infrastructure using the open-source library for
high-performance computing TensorFlow. The semantic
segmentation approach using U-Net can be successfully
implemented using the TensorFlow library, which provides the
ability to use pre-trained models and their architectures using
special modules. The developed architectures can be used in
full or only in the convolutional part, depending on the specific
requirements of the task. During the contraction, the spatial
information is reduced while feature information is increased.
The expansive pathway combines the feature and spatial
information through a sequence of up-convolutions and
concatenations with high-resolution features from the
contracting path (Okhrimchuk, Tishaiev, Zatserkovnyi, &
2020). Also, in the context of a U-Net model, the backbone
typically denotes the initial layers of a pre-trained
convolutional neural network utilized for feature extraction,
which is then incorporated with the decoder section of the
U-Net to enable image segmentation. The backbone
generates a set of feature maps that form a prediction.
Incorporating a backbone in a U-Net model involves selecting
a pre-trained convolutional neural network such as VGG,
ResNet, or EfficientNet as the backbone, extracting the final
classification layers, and adding them to the decoder portion
of the U-Net. The backbone enables high-level features that
combine with the low-level features of the decoder section to
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produce the final segmentation outcome. The pre-trained
backbone can be fine-tuned using the specific dataset, or
transfer learning can be applied to adapt it to a related task to
enhance the performance of the U-Net model for the particular
segmentation task. The previous study utilized a U-Net
architecture with a ResNet34 backbone to develop a
segmentation model for recognizing the contours of the
coastline of the Crimean Peninsula on satellite images
(Okhrimchuk, Demidov, & Brudko, 2022). The model was
trained until a validation loss of 0.19 and a validation accuracy
of 0.95 were achieved. The study also involved developing
Python code to automatically generate reports that include
information about network accuracy and loss functions, which
facilitated the evaluation of different approaches and
methods. Additionally, the study created scripts for using the
trained network in the task of semantic segmentation and
translating the result of the segmentation model into a
vectorized result of the coastline contours of the Crimean
Peninsula, which was represented as a probability raster
(fig. 8). These findings demonstrate the effectiveness of using
the U-Net architecture with a ResNet34 backbone in
developing segmentation models for recognizing the contours
of coastlines on satellite images.

After the CNN has been trained, the next stage is to use it
for semantic segmentation of the target class, which involves
generating a probability map of the coastline for each image.
Post-processing of the probability raster is then necessary to
remove noise and improve the quality of the result. This may
include thresholding, smoothing, and morphological
operations. Finally, the result should be vectorized to obtain the
contours of the coastline. This will enable the recognition of the
coastline along the western coast of the Crimean Peninsula
over the past decade, providing valuable insights into coastal
erosion and other geological changes in the region. The
process of semantic segmentation and vectorization can be
automated through the use of scripts and specialized software
tools, allowing for the efficient and accurate analysis of large
volumes of satellite imagery.
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Fig. 8. The result of coastline detection using semantic segmentation,

.

which is represented as a probability raster dated as of 01.07.2022

In the evaluation and reporting stage, the accuracy of the
recognized coastline contours will be assessed by comparing
them with actual changes in the coastline. The results will also
be compared with existing methods for monitoring coastline
changes to determine the advantages and disadvantages of
the proposed approach. To prepare a comprehensive report
on the research results and the developed tool, a detailed
description of the methodology, the CNN architecture used,
and the results of the semantic segmentation of the coastline
will be included. Additionally, a discussion of the limitations
and future work to improve the tool's reliability and efficiency
will be provided, along with recommendations for practical use
and further development. By conducting this comprehensive
evaluation and reporting, the proposed approach's efficacy
can be determined and refined for practical applications in
monitoring coastline changes.

Discussion and conclusions

This paper aimed to monitor changes in the coastline of
the western part of the Crimean Peninsula over the past
decade using machine learning algorithms. Traditional
methods of monitoring coastline changes have become
difficult due to the temporary occupation of the peninsula
and the cost constraints of past instrumental studies.
Remote sensing data, specifically satellite imagery, was
used to gather data, which provided a more comprehensive
view of the coastal region. To analyze this data more
effectively and efficiently, machine learning techniques and
convolutional neural networks (CNNs) were used to
recognize changes in the coastline contours on satellite
images. The implementation of this tool involved data
collection, the development of a convolutional neural
network architecture, semantic segmentation of the
coastline, and evaluation and reporting of the results. The
U-Net architecture was selected and developed for the
semantic segmentation of coastlines on satellite images,
which was optimized for semantic coastline segmentation by
customizing the network architecture, selecting appropriate
activation functions, and modifying training parameters. The
TensorFlow library was used to develop code and support
the computing infrastructure, allowing for the successful
implementation of the U-Net architecture. This tool has the
potential to provide valuable information for coastal
management and decision-making processes, and its
development is an important step toward automated
recognition of coastlines without the need for manual
vectorization. The findings of this study will help in managing
coastal resources, protecting the coastal environment, and
planning for sustainable coastal development. The
developed methodology has a potential application for
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monitoring changes in coastlines along rivers, seas, and
around lakes throughout the territory of Ukraine.
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methodology, review and editing; Kateryna Sliusar — data treating,
formal analysis; Vladyslav Lukomskyi — formal analysis, writing.
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'KniBcbkuit HauioHanbHWIA yHiIBepcuTeT iMeHi Tapaca LLleByeHka, Kuis, YkpaiHa

BMBYEHHA EK3OMrEHHUX NPOLECIB 3AXIAHOIO Y3BEPEXXKA KPUMCBHKOIO NIBOCTPOBA
I3 BACTOCYBAHHAM METOAIB NMUWBMHHOITO HABYAHHA

B cTyn. MoHimopuHz 3MiHuU KOHmMYypie 6epe2osux JiHili € akmyanbHUM 3a80aHHsIM y 2asly3i eKosI02i4HUX, 2e0/102i4YHUX ma iHhopmayiliHux
docnidxeHb. OOHaK maki 3ae0aHHs1 € KOMIJIEKCHUMU | 8UMa2aromb 8UKOPUCMaHHSI cy4yacHuUx Memodie o6pobku ma aHanizy 0aHux, y momy qucii
OaHux ducmaHyiliHux 30HO0yeaHb 3emsti. OOHUM i3 cy4yacHux nidxodie A5 supiweHHs1 Mako20 Knacy 3ae0aHb € 8UKOPUCMaHHs Memodie MaWUuHHO20
Hag4aHHS1, YoMy U npucesideHi docnidxeHHs y yiti cmammi. O6'ekmom docnidxeHHs1 asmopie € 6epezosa niHis1 83006 y36epexksa 3axiOHOi Yac-
muHu Kpumcbkoz2o nieocmpoea, docnidxeHHs1 sikoi mpaduyiliHuMu Memodamu cmasiu HeMOX/TUBUMU Yyepe3 mumMyacoey okynayiro Kpumcskozo ni-
socmpoea 3 2014 poky. B ocmaHHe decsimunimms 6epezoea niHis Kpumy Mo2na 3a3Hamu 3Ha4yHUX 3MiH y pe3ynibmami aHmpono2eHHol disnbHocmi
(y momy yucni noe'a3aHoi 3 silicckoeumu dissMu) ma 3cyeHo-abpa3ueHux npouyecie. Y ybomy docnidxeHHi asmopu ok5pecnoromb A0C/TiOKEeHHS
3MiH 6epezoeoi niHii 3axioHoi YacmuHu Kpumcbko20 nieocmpoea 3a ocmaHHe decssmunimmsi.

MeToaun. Aemopu eukopucmosyeanu modesii CNN (U-Net model) dns egpekmueHo20 po3nizHaeaHHs1 6epe2080i JiHil ma if Mex Ha cynymHu-
Koeux 3HiMKax 6e3 Heob6xiOHocmi py4Hoi eekmopu3ayil.

PesynbTaTtu. focnioxeHHs eknroyasno po3pobky kody Python dns aemoMamuyHO20 CMEOPEHHs 38imie, W0 ekIro4aromb iHghopmayiro
npo moyHicmb mepexi (0.95) ma ¢yHkyii empam (0.19), wjo noneawuno oyiHKy pisHux nidxodie ma memodie. [Jodamkoeo e xodi docnidkeHHs1 6yro
CmMeopeHO cyeHapii UKOpUCMaHHsI Hag4eHOI Mepexi 8 3adayi ceMaHmMuU4YHOi ceameHmauii ma nepeeedeHHs1 pe3ynbmamy modesni ceameHmauii y
eekmopu3oeaHull pe3ynbmam KoHmypie 6epezoeoi niHii Kpumcbko20 nieocmpoea, sikuii 6ye npedcmaesneHull y suansdi imogipHicHO20 pacmpy.

B 1 c H 0 B k n. BukopucmaHHsI makoz20 ridxody KopucHe 0151 MOHimopuHay 3MiH 6epe2080i JiHii pi4oK, Mopie ma o3ep Ha ecili mepumopii YkpaiHu.

Knw4yoBi cnoBa: 6epezosa fiHiss, 320pmkoea HelipoHHa Mepexa, modenb U-Net, Kpumcbkuii nisocmpis.

ABTOpM 3asBNAIOTb NPO BiACYTHICTb KOHMIKTY iHTepeciB. CnoHcopu He Bpanu yyacTi B po3pobneHHi JocniaXeHHs; y 36opi, aHanisi um
iHTepnpeTauii AaHWX; y HanMcaHHI pykonucy; B pilleHHi npo ny6nikauito pesynbTarTis.
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