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STUDY ON EXOGENOUS PROCESSES ALONG THE WESTERN COAST 
OF THE CRIMEAN PENINSULA USING DEEP LEARNING METHODS 

(Представлено членом редакційної колегії д-ром геол. наук, проф. С.А. Вижвою) 
B a c k g r o u n d .  Monitoring changes in coastline contours is an actual topic in the field of environmental, geological and 

information research. However, tasks of this kind are complex and require using modern methods of data processing and analysis, 
including Earth remote sensing data. One of the modern approaches to solving this class of problems is using machine learning methods, 
which is the focus of the research in this article. The object of the authors' research is the western coast of the Crimean Peninsula, the 
study of which by traditional methods has become impossible due to the temporary occupation of the Crimean Peninsula since 2014. In 
the last decade, the Crimean coastline could have undergone significant changes as a result of anthropogenic activities (including those 
related to military operations) and landslide-abrasive processes. In this study, the authors limit the study to changes in the coastline of 
the western part of the Crimean Peninsula over the last decade.  

M e t h o d s .  Authors used CNN models (U-Net model) to effectively recognize the coastline and its boundaries in satellite images 
without the need for manual vectorization. 

R e s u l t s .  The research involved developing Python code to automatically generate reports including network accuracy (0.95) and 
loss function (0.19), facilitating the evaluation of different approaches and methods. Additionally, the study created scripts for using the 
trained network in the task of semantic segmentation and translating the result of the segmentation model into a vectorized result of the 
coastline contours of the Crimean Peninsula, which was represented as a probability raster. 

C o n c l u s i o n s .  The use of this approach is useful for monitoring changes in the coastline of rivers, seas and lakes 
throughout Ukraine. 

K e y w o r d s :  Coastline, Convolutional Neural Network, U-Net model, Crimean Peninsula. 

Background 
Due to the temporary occupation of the Crimean 

Peninsula since 2014, traditional instrumental studies for 
monitoring changes in its coastline have become impossible 
to carry out. In the last decade, the Crimean coastlines could 
have gone through significant changes as a result of 
anthropogenic activity and landslide-abrasive processes. 
Traditional coastline mapping methods are relatively 
expensive, time-consuming, require manpower, and contain 
a lot of uncertainties due to the unique geometric and 
spectral structures of coasts (Ge, Sun, & Liu, 2014). It's 
important to mention that past instrumental studies were 
limited in scope, and carried out to a minimal extent due to 
cost constraints. The historical data collected is also 
discontinuous, with observation points placed unevenly 
along the coast and not covering the entire coastline. 

This has prompted the need to find alternative methods 
of monitoring these changes. Remote sensing data and 
satellite images have become a valuable resource in this 
regard, as they offer a more comprehensive view of the 
coastal region. However, interpreting the vast amounts of 
data gathered from remote sensing can be challenging. This 
is where machine learning techniques and convolutional 
neural networks (CNNs) come in handy, as they can analyze 
this data more effectively and efficiently, making it possible 
to monitor changes in the coastline. The aim of this study is 
to use machine learning algorithms to monitor changes in 

the coastline of the western part of the Crimean Peninsula 
over the past decade. The algorithms will not only help 
measure the intensity of erosion and accumulation 
processes but also make quantitative evaluations of the 
areas that have increased or decreased along the coast. 

The use of machine learning algorithms to monitor 
changes in the coastline contours of the western part of the 
Crimean Peninsula is a challenging task that requires 
expertise in many areas, including geology and machine 
learning. The availability of satellite imagery from the last 
10 years provides the opportunity to assess the impact of 
changes on the study area. This information is critical for 
managing coastal resources, protecting the coastal 
environment, and planning for sustainable coastal 
development. The use of machine learning methods will 
enable automated recognition of the coastline and its 
boundaries on satellite images, without the need for manual 
vectorization. The development of such an approach would 
definitely be useful for use in the future to monitor changes 
in coastlines along rivers, seas, and around lakes 
throughout the territory of Ukraine. 

Historically, monitoring the changes in the coastline of 
the Crimean Peninsula was performed through limited field 
surveys using traditional instruments. However, the cost of 
these surveys meant that the data collected was irregular 
and incomplete, with observation points located unevenly 
along the coast, resulting in gaps in coverage of the entire 
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coastline (Cherkez et al., 2012). In Kotolupova's study from 
2014, the author looked at the effects of human activity and 
erosion from landslides on the changes in the Crimean 
coastline. The work highlights the fast-paced and 
understudied nature of erosion and destruction in the coastal 
zone and emphasizes the importance of systematic 
examination and management. The coast was divided into 
zones based on geomorphology and morphodynamics, 
revealing areas with a tendency towards erosion from 
landslides (Kotolupova, 2014). Thereby, the range of 
techniques for monitoring environmental changes has greatly 
increased, with a focus on using GIS/DSS technologies 
(Lialko et al., 2006; Bairak, & Mukha, 2010). The study 
explored the challenges in implementing monitoring methods 
in a GIS environment and proposed a method for identifying 
areas of shoreline erosion and evaluating the severity of 
erosion processes (Krasovskyi, & Petrosov, 2003). 

Studies of changes in the coastline are presented in 
works (Starodubtsev, 2019; Tomchenko, Mazurkiewicz, & 
Malets, 2017), in these works Landsat 4, 5 and 8 satellite 
images were taken as a basis. The primary methodology 
used in these studies is manual vectorization of the coastline 

boundaries, which is a labor-intensive process. The study of 
natural-anthropogenic transformations of the lake was 
conducted based on the use of Sentinel-1 (SAR) and 
Sentinel-2 satellite data, but the mapping of changes was 
still performed manually, making it an inefficient method if it 
is to be used as a universal tool for large areas (Martyniuk, 
& Tomchenko, 2021). 

Investigation of the geological structure of the western 
coast of the Crimean Peninsula and underwater slopes of 
the Black Sea was also carried out as part of the study. The 
geological and engineering characteristics of the area are 
established based on the presence of different types of 
rocks with distinct geological and genetic origins (Boiko, & 
Koshliakov, 2015). 

In order to better understand the potential for the 
development of abrasion and accumulation processes, a 
literature analysis was conducted on geological studies of 
the coastline of the western part of Crimea. 

Based on the collected information, it was decided to 
divide the western coast into 5 sections that have similar 
geological structures and climatic factors which in turn 
determine their development in the future (fig. 1). 

 

 
Fig. 1. Sections of the western coastline of Crimea 

 
The northwestern section (І) extends from Perekop to 

Bakalska spit, composed of easily erodible clayey 
formations and forest-like marl with steep cliffs in the 
northwest part of Crimea and accumulative forms such as 
sandy dunes. This coast is characterized by the presence of 
migratory deposits and the most unstable coastal line for 
Crimea. According to previous research, the rate of change 

of accumulative formations can reach several hundred 
meters per year, while the retreat of the coast can be up to 
several meters per year. (Horiachkyn, & Ivanov, 2010). The 
active process of coastal abrasion can be seen in the Bakal 
spit, based on a comparison of satellite images with a 
difference of 10 years (fig. 2). 

 

  
a b 

Fig. 2. Coastline changes on the example of the Bakal spit:  
a – for 2008; b – for 2018 (Google Earth service, 2023) 
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The coast of the Tarkhankut Peninsula (ІІ) section extends 
from the Bakalska spit to Lake Donuzlav to the southwest. 
The cross-sections are represented by abrasive-
accumulative shorelines with sandy loess deposits and 
sedimentary rocks-limestones. The main part of the cliff 
consists mostly of limestones, while the rest are clay cliffs with 
a height of up to 50 meters. Accumulative deposits are formed 
due to bottom abrasion. The beaches along the cliff are mostly 
narrow and consist of unsorted and unquenched material-
limestone gravel, and sand with traces of shells. According to 
researchers (Horiachkyn, & Ivanov, 2010), a high rate of 
abrasion is observed on the clay cliff, which is about 
1.0 m/year, while the rest of the cliff, which is composed of 
limestone sediments, has a low rate of abrasion.  

The Western Crimea section (III) extends from the mouth 
of the Donuzlav to Yevpatoriya. The coast of this section is 
formed due to the accumulation of shore and sea floor 
abrasion products, and in some places, clay strata emerge 
on the sea floor. A strip of beach runs along the entire coast, 
gradually turning into sandy dunes, and sometimes into salt 
marshes. According to the research on this coastal area, it 
was shown that 75 % of the coast length is relatively stable, 
9 % is increasing in the area, and 16 % is decreasing 
(Horiachkyn, & Ivanov, 2010). This is due to the fact that 
areas with retreating coasts are exposed to the sea, and the 
increase is on the advancing coast, so it was concluded that 
this is a natural process of shore leveling. The average rate 
of shore retreat is about 1 m/year (Horiachkyn, & Ivanov, 
2010). The cause of beach shrinkage is related to natural 
activities (rising sea level, repeated cycles of storm winds 
from the south and south-west directions), as well as 
anthropocentric impact. Human activity has a significant 
impact, including constant sand extraction for construction 
purposes, the construction of coastal protection structures, 
and the discharge of pollutants into the sea. 

The Yevpatoria section – Cape Lukull section (IV) has 
the same characteristics as the previously described one, 
specifically an accumulative coast formed by the 
accumulation of deposits as a result of coastal erosion. 

Beginning from the village of Mykolayivka to the Lukull 
Cape, the height of the beach starts to increase. The coastal 
line is represented by even abrasion-collapse and abrasion-
shift coasts with cliffs made of clayey sediments of the 
Quaternary period, represented by clays. Clay cliffs are 
easily subject to erosion, the speed of retreat of the clay cliff 
ranges from 0.1 to 1 m/year (Horiachkyn, & Ivanov, 2010). 

The Cape Lukull-Sevastopol section (V) is represented by 
abrasion-slide and abrasion-collapse coasts, the cliff of which 
is composed of clay deposits from Quaternary siltstones and 
Neogene chalk formations. The coastal strip along the cliff is 
not wide and consists of sand and poorly sorted, weakly 
consolidated chalk. The rate of abrasion in this area varies 
from 0.1 to 1 m/year (Horiachkyn, & Ivanov, 2010). 

The analysis of satellite images in the area of the 
Nimetska Balka revealed the marble and sand mining 
(fig. 3). The mining operations are carried out in the coastal 
zone, minerals are extracted in 4 horizons, the height of the 
ledges is about 5–6 meters, and the area of the deposit is 
about 8.17 hectares. The extraction activities began after the 
occupation of Crimea by the Russian Federation in August 
2017. The development of the quarry leads to the 
degradation of the coastline near the town of Kacha. Also, 
according to the satellite imagery, the mining regulations 
that would have prevented the degradation of the coastal 
zone were not adhered to. 

Based on the research conducted using satellite images, it 
can be concluded that the coastline of the western coast of 
Crimea has undergone significant changes since 2014. Among 
the main factors that have influenced its transformation are 
detrimental anthropogenic activities and poor monitoring to 
prevent negative processes in areas with potential risks. The 
methodology proposed in this paper is able to detect the 
difference in coastline changes over the past 10 years based 
on machine learning methods and historical satellite images. 
This, in turn, will provide information on its borders in the past 
and obtain the actual ones. A preliminary analysis based on 
satellite imagery determined that such research would be 
appropriate and useful. 

 

 
Fig. 3. Satellite imagery of the quarry near the Nimetska Balka (Google Earth service, 2023) 

 
Methods 
The complex, multifaceted nature of coastal zone 

dynamics, combined with the recent increase in Big Data 
pertaining to coastal risk, has prompted studies investigating 
whether ML tools can improve our understanding of 
coastline position and coastal population dynamics 

(Goldstein, Coco, & Plant, 2019). Shoreline detection is an 
example of an application of image-based edge- detection 
and is an established research area in computer vision 
(Arbelaez, Fowlkes, & Martin, 2007). Although computer 
vision research is effectively used to identify everyday 
objects, remote sensing images contain more spectral 
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bands, more noise, and a higher density of edges than 
natural images (Liu, & Jezek, 2004; Liu et al., 2019). The 
multidimensional nature of remote sensing imagery has 
generated interest in using ML tools to automatically identify 
coastlines from imagery. 

Most ML-based automated shoreline detection like 
Support Vector Machines (SVM) and Random Forest (RF) 
methods are based on extracting waterlines from remote 
sensing imagery. SVMs yield promising results for feature 
classification and detection of remote sensing images even 
when trained on a small training dataset (Elgohary, 
Mubasher, & Salah, 2017) SVM are non-parametric and do 
not assume the training dataset is normally distributed. This 
is appropriate for satellite images, which typically contain 
high levels of noise (Maulik, & Chakroborty, 2017). Random 
Forests consist of an ensemble of decision trees that 
individually split the dataset multiple times into smaller sub-
classes using threshold values. As a conclusion of 
successful results achieved in different problems, 
researchers used this method for coastline extraction and 
land use classification as well. RF can also perform analysis 
with many input predictors. This feature is advantageous 
when using multiple remote sensing data sets of various 
resolutions in different coastal areas. This algorithm was 
applied for extracted coastlines around Terkos Lake and on 
the coasts intersecting with the Black Sea by utilizing the 
Random Forests classifier over Landsat-8 medium-
resolution satellite images (Bayram et al., 2017). Although 
the algorithm solves the problem of obtaining coastline 
contours for long areas, the output results contain a lot of 
noise, which is a significant disadvantage.  

Previous studies have used RF and SVM to classify 
remote sensing images into land and water pixels and assign 

the location of the waterline as the boundary between the two 
surface cover classes. Coastline extraction based on RF 
(Demir et al., 2017) obtained efficient results for both medium 
and high-resolution images for shoreline extraction studies. 
However, although a continuous waterline was identified, a 
large average error (>22 m) due to noise in the input image 
was recorded between the manually digitized shoreline and 
the RF-derived shoreline. On the other hand, the coastline 
was classified using Supported Vector Machines in the latest 
studies (Elnabwy et al., 2020). The detected shoreline by the 
proposed method was highly correlated with on-the-ground 
measurements. Elsewhere, heterogeneity in the spectral 
properties of water between images, caused by differences in 
atmospheric scattering, solar radiation incidence angle, and 
azimuth adversely affected SVM and RF classification 
performance (Rogers, 2020). 

Such difficulties have led to increased attention to the 
use of Convolutional Neural Networks (CNNs) in shoreline 
detection (Rogers, 2020). CNNs were applied to remote 
sensing images for feature detection, edge extraction, and 
pixel-based classification. Convolutional Neural Networks 
have larger training requirements than SVMs and RFs, but 
their ability to derive semantic information via convolution 
provides promise in their being able to detect features in 
remote sensing imagery (Kattenborn et al., 2021). 

The architecture of a Convolutional Neural Network 
(CNN) consists of an input layer, one or more hidden layers, 
and an output layer (fig. 4a). Each layer has a different 
number of nodes and the synapses between the nodes of 
different layers allow information to flow from one layer to 
the next (fig. 4b). The activation function, σ, enables the 
CNN to determine non-linear relationships between input 
and output variables (Rogers, 2020). 

 

  
a b 

Fig. 4. Main components CNN:  
a – The architecture of a very simple CNN contains an input layer (two nodes), a hidden layer (four nodes),  

and an output layer (one node); b – Outline of how the values of nodes in one layer are multiplied by their corresponding weight  
to derive the value of nodes in the next layer ሺσ – activation functions, α௝

௜ – data(images), 𝑤௝ – weights) (Rogers, 2020) 

 
During training, the weights between nodes are updated 

through feedforward and backpropagation. Input data is 
passed through the network, a prediction is made, and the 
difference between the prediction and observed output is 
used to update the weights through backpropagation. This 
cycle is repeated hundreds or thousands of times and is 
referred to as one epoch (Xie, & Tu, 2015). The combination 
of feedforward-backpropagation and convolution enables 
CNNs to detect features of interest in remote sensing 
images and to distinguish them from other features with 
similar spectral properties. This feature could be especially 
important in detecting edges in remote sensing which 
contain a high density of edges (Kokkinos, 2016). 

CNN techniques have been successfully used to 
automatically extract the instantaneous water line from 
coastal remote sensing imagery. CNN's high performance is 

due to the use of a sliding kernel, i.e., the simultaneous 
consideration of pixel value neighborhoods rather than pixel-
by-pixel classification. This enables CNN to detect scale-
invariant features, whereby features and their edges will be 
in the exact location, irrespective of the size of the kernel 
convolving over the image. Noise and speckles are only 
likely to be considered as potential features when using 
smaller kernels and so are discarded when larger kernels 
convolve over the image (Liu et al., 2019). Deeper CNNs, 
which convolve a wider range of kernel sizes on an image, 
outperform shallow CNNs because they can detect features 
at different scales (Hasan, Shafri, & Habshi, 2019). Although 
CNNs generally outperform SVMs and RFs in edge 
detection and classification tasks in remote sensing images, 
CNNs require large training datasets and are prone to 
overfitting when trained on small datasets (Rogers, 2020). 
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This paper aims to develop a reliable, versatile, and 
efficient tool for recognizing changes in the coast of Crimea 
along the coast, based on machine learning methods. This 
tool will be used to monitor coastline changes and provide 
valuable information for coastal management and decision-

making processes. The implementation of the goal is 
subdivided into 4 stages: data collection, development of 
convolutional neural network architecture, semantic 
segmentation of the coastline, and evaluation and reporting 
of our results (fig. 5). 

 

 
Fig. 5. Stages of technical implementation of the methodology for monitoring coastline changes 

 
Remote sensing data can play a vital role in mapping the 

coastline and identifying changes over time. The use of 
satellite imagery provides a broader set of data compared to 
other forms of remote sensing data. During developing a 
reliable, universal, and effective tool for recognizing changes 
in the coastline along the western coast of Crimea, it is 
necessary to make an analysis to obtain information about 
available algorithms that could perform shoreline contour 
recognition (Okhrimchuk, Demidov, & Brudko, 2022).  

Monitoring of changes in coastline contours along the 
coast of the western part of the Crimean Peninsula based 
on the use of machine learning methods is a complex task 
that requires a sufficient level of competence in many areas 

of research, starting from the geological component and 
ending with machine learning methods. Implementation of 
such a non-trivial task required open data sources, as well 
as technologies available under a free license (Okhrimchuk, 
Demidov, & Brudko, 2022).  

The data collection stage involves collecting satellite 
images of the western coast of the Crimean Peninsula over 
the past 10 years. At this stage of data preparation, it is 
necessary to develop functionality that will allow the 
processing of historical images from such products as 
Landsat-8, Sentinel-2, and PlanetScope. The PlanetScope 
with a spatial resolution of 3 m can be used as the main 
source of remote sensing data (fig. 6). 

 

 
Fig. 6. Comparison of spatial resolution of RGB channels of different products 

 
The images should have medium or high spatial 

resolution images and temporal resolution to ensure 
accurate and reliable results. The option of creating a 
synthetic georaster that can integrate different products or 
their derivatives, as well as follow a specific channel 
sequence to more accurately represent the coastal 
topography will also be considered. This innovation has the 
potential to improve temporal resolution and reduce the 
impact of cloud cover in certain scenarios. Once you have a 
collection of images, you will need to annotate them to 
indicate the location of the coastline. This can be done 
manually or with the help of specialized software that can 
automatically detect and mark the coastline in the image. 
The annotated images should be saved in a format that is 

compatible with the CNN framework you are using. To 
increase the size and diversity of the training set, data 
augmentation techniques can be applied. These techniques 
involve transforming the original images in various ways, 
such as rotating, flipping, scaling, and adding noise or 
distortions. By creating multiple variations of each image, 
the training set can be expanded, providing more data for 
CNN to learn from. It is important to note that the training set 
should be balanced, meaning it should have an equal 
representation of coastline and non-coastline images. This 
helps to prevent CNN from being biased towards one class 
and achieving a higher accuracy rate for that class. The 
quality and diversity of the training set play a critical role in 
the performance of CNN.  
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The next step is the development of a convolutional neural 
network architecture to solve the task of mapping the coastline. 

Results 
The main aim is to select and develop convolutional 

neural network (CNN) architectures capable of performing 
semantic segmentation of coastlines on satellite images. 
This is a specialized task for convolutional neural networks, 
and an adaptive mechanism is needed to extract informative 
features from the input data and generate semantically 
meaningful results. The semantic segmentation approach 
using U-Net is the most suitable mechanism for this task, as 
it allows distinguishing the most informative features and 

generating results that can be interpreted. Thus, the main 
task is the selection and development of convolutional 
neural architecture networks (further in text "СNN") for the 
semantic segmentation of coastlines on satellite images. 
Segmentation of satellite images is a separate direction for 
convolutional neural networks. Therefore, it is advisable to 
involve some adaptive mechanism that can extract the most 
informative features from the set of input data and generate 
an interpretable semantically meaningful result on their 
basis. The most suitable mechanism is the Semantic 
Segmentation approach with U-Net (fig. 7) (Okhrimchuk, 
Tishaiev, Zatserkovnyi, & 2020). 

 

 
Fig. 7. Segmentation U-Net architecture. Here, I – the spatial size of the input image patch (Ronneberger et al., 2015) 

 

The next step is to define and possibly create a CNN 
architecture for the semantic segmentation of coastlines on 
satellite images. Different neural network architectures will be 
implemented and tested to determine their effectiveness. 
CNNs are well suited for this task as they have proven to be 
effective in image classification and semantic segmentation 
tasks. An CNN should be designed and optimized for 
semantic coastline segmentation taking into account the 
specific characteristics of the data and the task. This may 
include customizing the network architecture, selecting 
appropriate activation functions, and modifying training 
parameters. Solving the semantic segmentation problem 
requires developing code in Python and supporting the 
computing infrastructure using the open-source library for 
high-performance computing TensorFlow. The semantic 
segmentation approach using U-Net can be successfully 
implemented using the TensorFlow library, which provides the 
ability to use pre-trained models and their architectures using 
special modules. The developed architectures can be used in 
full or only in the convolutional part, depending on the specific 
requirements of the task. During the contraction, the spatial 
information is reduced while feature information is increased. 
The expansive pathway combines the feature and spatial 
information through a sequence of up-convolutions and 
concatenations with high-resolution features from the 
contracting path (Okhrimchuk, Tishaiev, Zatserkovnyi, & 
2020). Also, in the context of a U-Net model, the backbone 
typically denotes the initial layers of a pre-trained 
convolutional neural network utilized for feature extraction, 
which is then incorporated with the decoder section of the  
U-Net to enable image segmentation. The backbone 
generates a set of feature maps that form a prediction. 
Incorporating a backbone in a U-Net model involves selecting 
a pre-trained convolutional neural network such as VGG, 
ResNet, or EfficientNet as the backbone, extracting the final 
classification layers, and adding them to the decoder portion 
of the U-Net. The backbone enables high-level features that 
combine with the low-level features of the decoder section to 

produce the final segmentation outcome. The pre-trained 
backbone can be fine-tuned using the specific dataset, or 
transfer learning can be applied to adapt it to a related task to 
enhance the performance of the U-Net model for the particular 
segmentation task. The previous study utilized a U-Net 
architecture with a ResNet34 backbone to develop a 
segmentation model for recognizing the contours of the 
coastline of the Crimean Peninsula on satellite images 
(Okhrimchuk, Demidov, & Brudko, 2022). The model was 
trained until a validation loss of 0.19 and a validation accuracy 
of 0.95 were achieved. The study also involved developing 
Python code to automatically generate reports that include 
information about network accuracy and loss functions, which 
facilitated the evaluation of different approaches and 
methods. Additionally, the study created scripts for using the 
trained network in the task of semantic segmentation and 
translating the result of the segmentation model into a 
vectorized result of the coastline contours of the Crimean 
Peninsula, which was represented as a probability raster 
(fig. 8). These findings demonstrate the effectiveness of using 
the U-Net architecture with a ResNet34 backbone in 
developing segmentation models for recognizing the contours 
of coastlines on satellite images. 

After the CNN has been trained, the next stage is to use it 
for semantic segmentation of the target class, which involves 
generating a probability map of the coastline for each image. 
Post-processing of the probability raster is then necessary to 
remove noise and improve the quality of the result. This may 
include thresholding, smoothing, and morphological 
operations. Finally, the result should be vectorized to obtain the 
contours of the coastline. This will enable the recognition of the 
coastline along the western coast of the Crimean Peninsula 
over the past decade, providing valuable insights into coastal 
erosion and other geological changes in the region. The 
process of semantic segmentation and vectorization can be 
automated through the use of scripts and specialized software 
tools, allowing for the efficient and accurate analysis of large 
volumes of satellite imagery. 
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Fig. 8. The result of coastline detection using semantic segmentation,  

which is represented as a probability raster dated as of 01.07.2022 
 
In the evaluation and reporting stage, the accuracy of the 

recognized coastline contours will be assessed by comparing 
them with actual changes in the coastline. The results will also 
be compared with existing methods for monitoring coastline 
changes to determine the advantages and disadvantages of 
the proposed approach. To prepare a comprehensive report 
on the research results and the developed tool, a detailed 
description of the methodology, the CNN architecture used, 
and the results of the semantic segmentation of the coastline 
will be included. Additionally, a discussion of the limitations 
and future work to improve the tool's reliability and efficiency 
will be provided, along with recommendations for practical use 
and further development. By conducting this comprehensive 
evaluation and reporting, the proposed approach's efficacy 
can be determined and refined for practical applications in 
monitoring coastline changes. 

Discussion and conclusions 
This paper aimed to monitor changes in the coastline of 

the western part of the Crimean Peninsula over the past 
decade using machine learning algorithms. Traditional 
methods of monitoring coastline changes have become 
difficult due to the temporary occupation of the peninsula 
and the cost constraints of past instrumental studies. 
Remote sensing data, specifically satellite imagery, was 
used to gather data, which provided a more comprehensive 
view of the coastal region. To analyze this data more 
effectively and efficiently, machine learning techniques and 
convolutional neural networks (CNNs) were used to 
recognize changes in the coastline contours on satellite 
images. The implementation of this tool involved data 
collection, the development of a convolutional neural 
network architecture, semantic segmentation of the 
coastline, and evaluation and reporting of the results. The 
U-Net architecture was selected and developed for the 
semantic segmentation of coastlines on satellite images, 
which was optimized for semantic coastline segmentation by 
customizing the network architecture, selecting appropriate 
activation functions, and modifying training parameters. The 
TensorFlow library was used to develop code and support 
the computing infrastructure, allowing for the successful 
implementation of the U-Net architecture. This tool has the 
potential to provide valuable information for coastal 
management and decision-making processes, and its 
development is an important step toward automated 
recognition of coastlines without the need for manual 
vectorization. The findings of this study will help in managing 
coastal resources, protecting the coastal environment, and 
planning for sustainable coastal development. The 
developed methodology has a potential application for 

monitoring changes in coastlines along rivers, seas, and 
around lakes throughout the territory of Ukraine. 
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ВИВЧЕННЯ ЕКЗОГЕННИХ ПРОЦЕСІВ ЗАХІДНОГО УЗБЕРЕЖЖЯ КРИМСЬКОГО ПІВОСТРОВА  

ІЗ ЗАСТОСУВАННЯМ МЕТОДІВ ГЛИБИННОГО НАВЧАННЯ 
 
В с т у п .  Моніторинг зміни контурів берегових ліній є актуальним завданням у галузі екологічних, геологічних та інформаційних 

досліджень. Однак такі завдання є комплексними і вимагають використання сучасних методів обробки та аналізу даних, у тому числі 
даних дистанційних зондувань Землі. Одним із сучасних підходів для вирішення такого класу завдань є використання методів машинного 
навчання, чому й присвячені дослідження у цій статті. Об'єктом дослідження авторів є берегова лінія вздовж узбережжя західної час-
тини Кримського півострова, дослідження якої традиційними методами стали неможливими через тимчасову окупацію Кримського пі-
вострова з 2014 року. В останнє десятиліття берегова лінія Криму могла зазнати значних змін у результаті антропогенної діяльності 
(у тому числі пов'язаної з військовими діями) та зсувно-абразивних процесів. У цьому дослідженні автори ок5реслюють дослідження 
змін берегової лінії західної частини Кримського півострова за останнє десятиліття. 

М е т о д и .  Автори використовували моделі CNN (U-Net model) для ефективного розпізнавання берегової лінії та її меж на супутни-
кових знімках без необхідності ручної векторизації. 

Р е з у л ь т а т и .  Дослідження включало розробку коду Python для автоматичного створення звітів, що включають інформацію 
про точність мережі (0.95) та функції втрат (0.19), що полегшило оцінку різних підходів та методів. Додатково в ході дослідження було 
створено сценарії використання навченої мережі в задачі семантичної сегментації та переведення результату моделі сегментації у 
векторизований результат контурів берегової лінії Кримського півострова, який був представлений у вигляді ймовірнісного растру. 

В и с н о в к и .  Використання такого підходу корисне для моніторингу змін берегової лінії річок, морів та озер на всій території України. 
 
К л ю ч о в і  с л о в а :  берегова лінія, згорткова нейронна мережа, модель U-Net, Кримський півострів. 
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