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Точні трансформації гравітаційного поля в регіональному масштабі забезпечує розв'язання нелінійної граничної задачі 

Алексідзе для потенціалу сили тяжіння. Її заміна на відповідну задачу для рівняння Лапласа генерує похибки, оцінки яких 
наведені в статті. Чисельне моделювання останньої задачі виявило, що точність її розв'язання істотно залежить від міри 
обумовленості задачі, наближень напряму шуканого градієнта, параметрів чисельного методу та напряму зовнішньої нор-
малі, уздовж якої обчислюють похідні. 

An exact gravity transforms in regional studies is provided by the solution of nonlinear boundary Alexidze problem for the gravity 
potential. Its substitution by the appropriate problem for Laplace's equation generates an errors, estimated in the paper. The numerical 
modeling of the last problem has shown, that accuracy of its solution extremely depends on the problem's conditioning, approximations 
of required gradient direction, parameters of numerical calculus and direction of external normal, along which the proper derivatives are 
calculated. 

 
Методи трансформацій. Результатом гравіметрич-

них зйомок є набір значень модуля градієнта потенціа-
лу u  сили тяжіння (МГПСТ) ( )Sug

SS
ψ== grad  на 

деякій замкнутій денній поверхні S , яка цілком охоп-
лює тяжіючі маси в області G  пошуку трансформант. 
Задача його прямих трансформацій нетривіальна через 
невідомий напрям вектора 

S
g , і не належить до ліній-

них граничних задач математичної фізики. При наближе-
ному розв'язанні цієї задачі її граничні дані можна зада-
вати на незамкнутій, але досить великій поверхні [1]. 

Загалом задачу трансформації значень гравітацій-
ного поля слід вирішувати шляхом розв'язання гранич-
ної задачі безпосередньо для диференціального опе-
ратора ( )gA  сили тяжіння в області задання 

S
g . Вза-

галі нелінійне рівняння для сили тяжіння має вигляд [2] 

( ) ( ) ( ) ( ) ( ) 3,1,,,2 =∈=−Δ= iGxxvxgxgaxggA iiiii ,  (1) 
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геометричний фактор поля тяжіння, 
( ) ( )ii xxv σπγ grad4−=  – задана функція, пов'язана з 

розподілом мас, iα  – кут між напрямом вектора 
S
g  та 

i -ї координатної осі. Це рівняння враховує напрям си-
ли тяжіння і складне в практичній реалізації. Якщо век-
тор 

S
g  у кожній точці простору спрямований в одну і 

ту ж точку ( )0
ixP , 3,1=i  (уздовж нормалі до поверхні 

еліпсоїда), рівняння (1) спрощується [3]:  
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Один із практичних способів трансформації і пере-
рахунку значень сили тяжіння – розв'язання граничної 
задачі безпосередньо для значень МГПСТ [4], інший – 
розв'язання нелінійної зовнішньої граничної задачі Але-
ксідзе для потенціалу сили тяжіння: 
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Лінеаризує цю задачу припущення щодо напрямку 
МГПСТ на поверхні S , але воно вносить значні похиб-
ки, а визначення напряму – не менш громіздка задача, 
ніж визначення МГПСТ. Зокрема, для зовнішньої тяжі-
ючої точки отримано рівняння [3]  
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які визначають модуль сили тяжіння g  за відомим роз-

поділом кутів iα  в просторі G  або косинуси кутів iα  

за відомими значеннями g  у просторі G  (виникає не-

визначеність iαcos  на ∞). 
Питання розв'язності і єдиності задачі (3) принципо-

ве для гравіметрії: воно відповідає, чи можливе високо-
точне однозначне визначення сили тяжіння в зовніш-
ньому просторі за високоточними абсолютними значен-
нями сили тяжіння на замкнутій поверхні S , яка цілком 
охоплює усі маси, і які потрібні мінімальні додаткові 
дані. За одночасного визначення на поверхні S  абсо-
лютних значень і напряму сили тяжіння її обчислення в 
зовнішньому просторі нескладне, але такі роботи дорогі 
і в масових розвідувальних роботах не проводяться.  

Розв'язують задачу (3) шляхом послідовних набли-
жень. У плоскому випадку задача визначення гармоніч-
ної функції, модуль градієнта якої заданий на замкну-
тому контурі, не має єдиного розв'язку [3]. 

Якщо граничні значення ( )Sψ  і функція u  
залежить від двох змінних, гранична задача (3) стає 
плоскою 
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Якщо ( ) ( ) ( )ii xivxuzf += , 2,1=i  – довільна го-

ломорфна в G  функція, реальна частина якої співпа-
дає з розв'язком граничної задачі (2), її уявна частина 
теж є розв'язком задачі (4). 
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прямих, спрямованих уздовж градієнтів функцій u  і v , 
є умовою їх перпендикулярності.  
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Нехай у скінченному μ - околі напряму l  градієнта 

l
uUgrad
∂
∂

=  одного з розв'язків граничної задачі (4) не 

існує іншого розв'язку задачі (4), тобто, не існує двох 
розв'язків задачі (4), напрями градієнтів яких складали 
б менший за μ  кут. Кут між градієнтами двох розв'язків 

задачі (4) – 2π , а розв'язки, що різняться між собою 
константою – тотожні. 

Для перевірки цього припущення чисельно змоде-
льовано методом розкладення за неортогональними 
функціями [5] граничну задачу (4) за допомогою збіжно-
го ітераційного процесу 
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де ku  – k -те наближення розв'язку граничної задачі 
(4), а коефіцієнти напрямних косинусів 

( ) ∑
=

−−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
2

1

211
1

i i

k

i

k
k

i x
u

x
uuα  отримані з норму-

вання граничних умов задачі (4). 
Похибки трансформацій. Похибка ε  заміни рів-

няння (2) на рівняння Лапласа ( ) 0=Δ ixg  на сфері G  
радіусу a  з початком координат у її центрі, в точці 

3,1,0 == ixi  дорівнює 

66 1
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де за умови, що область G  дотична до поверхні 
Землі, нормальне гравітаційне поле: 
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звідки, згідно (6), одержуємо при 100=a  км – 76 
≤ε ≤81 мГал. При перерахунку сили тяжіння у вільному 
просторі за формулою Пуассона похибка може сягати 
100 мГал на великих площах земної поверхні. У плос-
кому випадку при 3,1,0 == ixi  дає 51 ≤ε ≤54 мГал. За 

(6), 0≤−= ggε , тому дійсне значення сили тяжіння 
завжди менше, ніж одержане у припущенні її гармонічнос-
ті. Порівняння похибок вказує, що рівняння сили тяжіння 
краще апроксимувати рівнянням (2), ніж Лапласа.  

У практиці гравіметрії при перерахунку в зовнішній 
простір розв'язують не внутрішню граничну задачу, а 
зовнішню. Похибка перерахунку у зовнішньому просторі 
(заміну зовнішньої граничної задачі 

( ) ( ) 02 2 =−Δ rxgxg ii  на зовнішню задачу 

( ) 01 =Δ ixg  за однакових граничних умов 
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сила тяжіння на поверхні сферичної Землі. Припущення 
гармонічності сили тяжіння в перерахунку майже на висо-
ту земного радіуса (6000 км) дає похибку ~ 245 Гал. 

Отже, для трансформації спостереженого (і норма-
льного) поля сили тяжіння у зовнішньому просторі слід 
розв'язати [5] граничну задачу для рівняння сили тяжін-
ня (2), конкретні оператори якого для різних референц-
поверхонь [4] земного еліпсоїда обертання з малим 
стисненням не генерують істотно різних результатів 
поблизу Землі. Явні аналітичні вирази фундаменталь-
них розв'язків рівняння (2) отримано в [6]. 

Похибки аномалій. Перерахунок "аномалії" сили 
тяжіння ( ) ( )SSgg γδ −=  (різниці нормального і спо-
стереженого поля сили тяжіння) має свої нюанси. 

Через векторну природу gδ  обчислене аномальне 
поле відрізнятиметься від істинної величини аномалії 
сили тяжіння (рис. 1).  

 

 
Рис. 1. Геометричне тлумачення аномалій 

 

αγγγ cos222 gggBF −+=−= , де α  – кут між 

нормальним γ=OE  і виміряним gOB =  вектором 

сили тяжіння, CF  – проекція вектора аномалії BF  на 
напрям γ , gFD −= γ  – звичайне значення аномалії, 

CD  – його відхилення від проекції аномалії. Підстави-

вши замість g  FD−γ , маємо 

α
γ

α
γγ

γ coscos
2

12 2

2 FDFDFDBF +−+−= . І за 

0=FD  ( 0=− gγ ) аномалія сили тяжіння може бути 

значною, оскільки 2sin2 αγ=BF , і при α =15" 

70≈BF  мГал. На цю величину можуть відрізнятися 

звичайні аномалії сили тяжіння g−γ  від точних. 
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Якщо б значення g−γ  давали високоточну ано-
малію сили тяжіння, її неможливо перерахувати у зов-
нішньому просторі: рівняння сили тяжіння істотно зале-
жить від швидкості зміни кутів між напрямом сили 
тяжіння (аномалії) і координатними осями. В локальних 
аномаліях цей напрям може сильно варіювати і будь-
яке наближене припущення щодо нього істотно спотво-
рить перераховані аномалії. Вираз g−γ  з точністю 

2sin2 2αgCD =  співпадає з проекцією вектора ано-

малії на напрям вектора γ  (за Юнгом); при α  =15" 
=CD 2·10-3 мГал. 

У потенціалі W аномальних мас, які генерують ано-
малію сили тяжіння, його частинні похідні в будь-якому 
напрямі співпадають з проекціями аномалій сили тяжін-
ня за цим напрямом, 3xWg ∂∂=−γ , де 3x  – спря-

моване за напрямом вектора γ . На площах у кількаде-

сят км зміною напряму γ  нехтують, і аномалія g−γ  

майже гармонічна. З точністю 04,00 ≤≤ ε  мГал ано-
малії сили тяжіння на рівнині є значеннями вертикаль-
ної складової за напрямом модуля градієнта. 

Перерахунок у нижній півпростір з відомою густиною 
( )Pσ  в рівнянні (2) нескладний. Але в практиці регіо-

нальної гравіметрії при перерахунку у бік мас нерідко 
на поверхні S відомі складові 3xW ∂∂  аномалії, а під 

поверхнею аномальні маси розташовані на невідомій 
віддалі від неї і слід гармонічно продовжити 3xW ∂∂  у 
бік аномальних мас до найближчих особливих точок 
поля. У такій постановці ця задача – істотно некорек-
тна (має нескінченну множину розв'язків [4]).  

Чисельне моделювання. Чисельне розв'язання 
нелінійної граничної задачі (3) у просторовому випадку 
здійснене за ітераційним процесом 
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де nu  і 1−nu  – n-е і (n-1)-е наближення, ( )1−ni uα  – і-й 
спрямовуючий косинус градієнта (n-1)-го наближення 

1−nu . З метою перевірки збіжності ітераційного процесу 
(10) розв'язано зовнішні граничні задачі 
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де 10=h , 53 =x  км, S  – горизонтальна площина. 
Точний розв'язок граничних задач (8) і (10) дорівнює 
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а (9) точного розв'язку не має. На рис. 2 наведені точні 
значення градієнта nu  і похідних задачі (8) у 30 точках 

рівномірної мережі поверхні S  з кроком 10=Δ ix  км 

на в області -25 км ≤≤ 2x  25 км, – 25 км ≤≤ 1x  15 км 
при грубих наближеннях напрямних косинусів – 

( ) ( ) ( ) 1,0 131211 === uuu ααα . У іншому варіанті роз-

в'язку ( ) ( ) ( ) 6.0,0,8.0 131211 === uuu ααα . Як видно 

з фрагменту таблиці, градієнт nu  і права частини гра-
ничної умови (8) співпали з точністю ε =10-6 за 5 ітера-
цій у першому варіанті і за 6 – у другому. Модулі градіє-
нтів точного і наближеного співпали з точністю 10-7.  

Кожну з граничних задач розв'язували для різних 
перших наближень і положень допоміжних точок [5], що 
визначають фундаментальні розв'язки. Рис. 2 відпові-
дає випадку, коли допоміжні точки взяті на площині 

13 =x . Число ітерацій у варіантах не перевищувало 
10. Хоча граничні значення точних і наближених градіє-
нтів співпали з точністю ε =10-7, вони самі співпали з 
меншою точністю через погану обумовленість взагалі 
задач з похідними в граничних умовах (для них, на від-
міну від задачі Діріхле, не діє принцип максимуму) і це 
слід врахувати в практичному моделюванні. 

 

№ 
nU  

1

nU
x

∂
∂

 
2

nU
x

∂
∂

 
3

nU
x

∂
∂

 

1 234,561 3,875 3,876 0,518 

2 275,455 6,281 4,188 0,839 

3 313,623 9,262 3,087 1,236 

4 330,394 10,819 2,202 1,442 

5 313,686 9,262 3,086 1,234 

6 275,596 6,283 4,191 0,837 

7 275,607 4,190 6,282 0,837 

8 350,166 8,581 8,581 1,713 

9 440,122 15,497 8,533 3,412 

10 490,258 20,553 5,588 4,712 

11 440,203 15,269 8,533 3,412 

 
Рис. 2. Розв'язання зовнішньої граничної задачі Алексідзе (8) і фрагмент відповідної таблиці даних, ×103 
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Точка 0321 === xxx , яка створює поле у задачі 
(11), є однією з допоміжних точок [5], що визначають 
фундаментальні розв'язки. Це пояснює чималу точність 
визначення похідних ixu ∂∂  за наближеним значен-
ням розв'язку. Якщо ця точка не входить до складу до-
поміжних точок, точність визначення похідних гірша, 
особливо для 3xu ∂∂ . 

У дослідженні похибки розв'язку граничної задачі (8) 
задіяно 36 фундаментальних розв'язків, рівномірно роз-
ташованих на площині 13 =x , межею S  є площина 

53 =x . Ліва і права частина граничних умов (8) після 
4-ї ітерації співпали з точністю ε =10-6, відносна похиб-
ка розв'язку u  сягла 10 %, абсолютна – 10-1; для похід-
них – похибки сягають 80 %. Збільшення числа функцій 
до 49 знизило похибку розв'язку u  і похідних до 3-5 %, і 

3xu ∂∂  – до 20 %. Дальше нарощення до 64 збільши-
ло похибку розв'язку і похідних до 70%, хоча права і 
ліва частини граничної умови (8) після 8 ітерацій спів-
пали з точністю ε =10-5. Цей ефект пояснюють [4] немі-
німальністю систем фундаментальних розв'язків і малі-
стю детермінанта матриці коефіцієнтів для фундамен-
тальних розв'язків. 

Коли напрям градієнта на всій границі S  складає з 
внутрішньою нормаллю гострий кут, зовнішня гранич-
на задача (3) розв'язується із задовільною точністю і 
похибка зумовлена не поганою збіжністю ітерацій (14) 
(число ітерацій мале), а поганою обумовленістю грани-
чної задачі з косою похідною. 

Гранична задача з косою похідною уздовж напряму l  

0=Δu , ( )S
l
u
S

ψ=
∂
∂  (11) 

за умови, що напрям зовнішньої нормалі N  неорто-
гональний напряму l  ( l  в жодній точці границі G  не 
співпадає з дотичною) 

( ) 0,inf
2

>
∈

lN
Sx

 (12) 

не має відмінного від сталого розв'язку [8]. У граничних 
задачах (8-10) ця умова виконується на будь-якій скін-

ченній частині площини S , оскільки поле створене 
точковим джерелом, а на всій нескінченній площині – 
ні, оскільки в нескінченно віддаленій точці площини S  
( ) 0,

2
=

∞=x
lN . Для внутрішньої граничної задачі (11) і 

точкового джерела P  поза областю G  умова (12) для 
достатньо гладкої границі не виконується, оскільки 
завжди існуватиме точка на S , в якій радіус-вектор з 
початком в P  ортогональний до нормалі. Чисельні 
експерименти на сфері G  виявляють погану обумов-
леність граничної задачі (11): граничні умови задоволь-
няються добре, а обчислені і точні значення градієнту 
u  і його похідних – істотно різні.  

Розв'язок внутрішньої граничної задачі (8) для оди-
ничного куба G  (зовнішня нормаль має 6 різних на-
прямів, початок координат (0,0,0) – на відстані 0,2 від 
нижньої кромки куба, 24 допоміжні точки узяті на кубі зі 
стороною 1,4) за (10) при 

( ) ( ) ( ) 1,0 131211 === uuu ααα  такий: після 5-ї ітерації 
граничні значення задовольнялися (ε <1%), а набли-
ження u  і його похідні не мали спільного з точним роз-

в'язком 2
3

2
2

2
1 xxxhU ++=  і його похідними; наро-

щення числа ітерацій до 24 не збільшило точність на-
ближень. У табл. 1 у 4-х точках границі, що є точками 
коллокації, дані точні і наближені значення градієнта і 
похідних. У решті точок значення функції через симет-
рію співпадають з одним з наведених в табл. 2. Додали 
25-й фундаментальний розв'язок, який співпадає з точ-
ним розв'язком задачі (8). Після 4-ї ітерації граничні 
умови та значення розв'язку і похідних задовольнялися 
з точністю ε =10-3. Щоб розділити вплив нестійкості 
граничної задачі (11) на сумарну похибку розв'язку за-
дачі (8), вирішено задачу (11) для функції 

2
3

2
2

2
1 xxxhU ++= . Останні стовпці табл. 1 дають її 

розв'язок u  у тих же точках: похибка зумовлена нестій-
кістю задачі (14), а не повільною збіжністю ітерацій (7). 

 
Таблиця  1. Розв'язок внутрішньої граничної задачі (8) та задачі з косою похідною (11) для одиничного куба 

№  u  

1x
u

∂
∂  

2x
u

∂
∂  

3x
u

∂
∂  nu  

1x
un
∂
∂  

2x
un
∂
∂

3x
un
∂
∂  u  

1x
u
∂
∂  

2x
u

∂
∂  

3x
u

∂
∂  

1 21 29 29 19 39 4 4 45 30 10 10 78 
2 8 1 1 1 28 0 0 8 12 1 1 5 
3 14 14 8 11 36 18 2 8 19 11 6 18  
4 9 3 2 6 30 18 0 8 13 1 2 8 

 
Збіжність ітерацій (5) для плоского випадку має осо-

бливості: розв'язок зовнішньої граничної задачі (4) з 

граничною умовою ( ) 11 2
2

2
1 ≡+=

S
xxSψ  і точним 

розв'язком 2
2

2
1ln xxu +=  для одиничного круга з 

центром в початку координат з напрямами 
( )ϕα += tcos0

1 , ( )ϕα += tsin0
1  (t – центральний кут, 

ϕ  – збурення початкового напряму градієнта шуканої 
функції) має похибки, що залежать від положення точок 
ітерації. У табл. 2 дано кількість ітерацій N до умови їх 

зупинки ( ) 5
1 101grad −<−= kuε , максимальні похиб-

ки розв'язків після кожної ітерації у точках коллокації 
для похідних – 1ε

410−< , а посередині між точками кол-

локації в кінцевому розв'язку 2ε
410−≈ , де 

( )

iii x
u

x
u

x
u

∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ 2,1

2,1 maxε . 
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Таблиця  2. Параметри розв'язку плоскої зовнішньої граничної задачі (4) для одиничного круга 
ϕ  0,001 0,1 0,1 1 1 1,57 1,57 3,14 
N 1 2 3 2 3 2 3 1 

( )ugrad1ε   3×10-6 5×10-3 4×10-6 8,5×10-1 5×10-6 9,98×10-1 6×10-5 4×10-6 

 
Розв'язок внутрішньої граничної задачі за сприятли-

вих умов визначається з точністю до сталої (тому не 
порівнюємо точний і наближений розв'язки) і знаку (при 

πϕ =  1-ша ітерація задовольняє граничній задачі). 

Для тієї ж задачі (4) при радіусі кола 2=r  узяті чи-
сла 220

2
0
1 ==αα  (напрям градієнта співпав з пря-

мою 21 xx = ). Цей напрям у точках 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2
2,

2
2  і 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2
2,

2
2  кола утворює з нормаллю кут 90°, тому 

не виконується умова (12). Точний розв'язок цієї задачі 
u = 0.693, а значення граничної умови ( )Sψ  = 0,5. Рис. 

3 ілюструє розв'язок задачі (4) (9 ітерацій, 1x , 2x  – ко-
ординати граничних точок коллокації). Градієнти на-
ближеного і точного розв'язку близькі, самі розв'язки і 
їхні похідні істотно різні, оскільки наближення 

220
2

0
1 ==αα  не забезпечує умови (12).  

 

 

 

nu  
1x
un
∂
∂  

1x
u

∂
∂  

2x
un
∂
∂  

ugrad  

2x
u

∂
∂  

 
Рис. 3. Розв'язок зовнішньої граничної задачі (4) для круга з 2=r  при 220

2
0
1 ==αα  

 
Отже, для збіжності ітерацій (5) необхідно не лише, 

щоб точний розв'язок задовольняв умові (12), а і вибір 
початкових наближень, для яких в ітераціях (5) не виника-

ли б коефіцієнти k
iα , які не забезпечують умови (12). 

Розв'язання внутрішньої граничної задачі для оди-
ничного круга з центром в початку координат і гранич-

ною умовою ( ) ( ) ( )22
2

1 111 −+−= xxSψ  за ітераці-

ями (5) здійснено за напрямом градієнта 8315.00
1 =α , 

5556.00
2 =α , що, як і будь-який постійний напрям, не 

забезпечує виконання умови (12). Рис. 3 ілюструє на-

ближений розв'язок задачі після 8 ітерацій. Точний роз-

в'язок ( ) ( )22
2

1 11ln −+−= xxu , але комплексно-

спряжена ( ivu +=ω  – голоморфна функція) з ним 
функція v  завдяки відношенню Коші-Рімана теж задо-

вольняє цій задачі. За цих 0
iα  ітерації (5) збігаються не 

до точного розв'язку u , а комплексно-спряженої функ-
ції v , що особливо видно на прикладі горизонтальних 
похідних (рис. 4). 
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ugrad

( )Sψ

2x
u

∂
∂  1x

u
∂
∂  

 
 

Рис. 4. Розв'язок внутрішньої граничної задачі (4) для одиничного круга 
 

Моделювання аномалій. На практиці відшукують 
не потенціал vuw +=  сили тяжіння, а потенціал u  
аномалії сили тяжіння, де потенціал нормальної сили 
тяжіння v  вважають відомим. За лінійних наближень 
граничних задач граві- і магнітометрії цей перехід до 
аномалії не змінює не лише рівняння, а і вигляд опера-
тора граничних умов, необхідно лише за граничну фун-
кцію ( )Sψ  узяти аномалію сили тяжіння. 

У нелінійних граничних задачах перехід до аномалії 
змінює ліву частину граничних умов (3, 4), так як опе-
рація обчислення модуля градієнта не дистрибутивна: 

vuw gradgradgrad +≠ . Якщо гранична функція 

( )Sψ  – модуль градієнта потенціалу w  сили тяжіння, 
для потенціалу аномалії u  одержуємо нелінійну грани-
чну задачу: 

0=Δu , 

( ) ∞∞
==

=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ ∑∑ vuvS

x
u

x
v

x
u

i iii i

,grad2 22
3

1

23

1
ψ  (13) 

граничні значення якої за нульового потенціалу норма-
льної сили тяжіння співпадають з граничними умовами 
(3). Для розв'язання цієї задачі задіяно один з варіантів 
таких послідовних наближень (умови на ∞  опущені): 

01 =Δ +nu , 
( ) ( ) ( )S

grad
2 2

3

1

1

ψ
ψ

v
S

uvgrad
x
u

x
u

x
v

S

n

i i

n

i

n

i −=
+

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂∑

=

+

, 

01 =Δ +nu , 

( ) ( ) ( )S
grad

2 2

3

1

1

ψ
ψ

ψ
v

S
S

x
u

x
u

x
v

S

i i

n

i

n

i −=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂∑

=

+

,  (14) 

01 =Δ +nu , ( ) 22
3

1

1 grad2 vS
x
u

x
u

x
v

Si i

n

i

n

i

−=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂∑

=

+ ψ . 

З'ясування чисельної швидкості збіжності ітерацій 
(14) має практичний інтерес, бо на кожній ітерації роз-
в'язується гранична задача і слабкозбіжні процеси істо-
тно погіршують практичну експлуатацію алгоритмів.  

Збіжність (14) обчислено методом [4] на границі S  у 

вигляді площини 53 =x  на моделі  

2
3

2
2

2
1 xxx
hU

++
= , 

( )23
2
2

2
1

1

hxxx
V

+++
= , 

( ) ( )VUS += gradψ  

на 36 вузлах коллокації в точках (х1 = -25+10k, х2 = -
25+10j, x3 = 5, k, j = 1, 2, 3, 4, 5) границі S  для 36 фун-
даментальних розв'язків, полюси яких є під вузлами 
коллокації на площині 13 =x . Ітерації тривали до вико-

нання умови ( ) ( ) εψ <−+ Suv nS
gradmax . При ε =10-3 

1-й ітераційний процес завершився за 3 ітерації, другий 
– за 36, а останній – за 103 ітерації, а при ε =10-4 – за 
4, 79 і 147 відповідно. 

Для першої з ітерацій (14) розв'язана гранична за-
дача з похідною уздовж 3x  на границі. Допоміжні точки 
для фундаментальних розв'язків узяті на площині 

13 =x . Наближення розв'язку і його похідних добре 
співпадають між собою (при ε =10-3 з точністю 10-2, при 
ε =10-4 з точністю 10-3), але далекі від точних. У табл. 3 
дані їх середньоквадратичні значення у вузлах колло-
кації (1-й стовпець) і у середині між ними (2-й стовпець), 
а в табл. 4 – відповідні похибки для різних ε = 10-k (k = 
1, 2.., 5) і N. 
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Таблиця  3. Наближені розв'язки нелінійної граничної задачі (14) на площині 
N  u  

1xu ∂∂  2xu ∂∂  3xu ∂∂  

36 0.565 0.598 0.029 0.021 0.029 0.021 0.026 0.067 
64 0.605 0.611 0.032 0.028 0.032 0.028 0.038 0.053 
120 0.616 0.614 0.030 0.032 0.030 0.032 0.047 0.044 

 
Таблиця 4. Похибки розв'язків нелінійної граничної задачі (14) на площині при різних рівнях точності 

k ( )uε  ( )1xu ∂∂ε  ( )2xu ∂∂ε  ( )3xu ∂∂ε  N 

1 0.206 0.025 0.019 0.007 0.019 0.007 0.025 0.056 
3 0.048 0.172 0.019 0.006 0.019 0.006 0.018 0.057 
5 0.050 0.173 0.019 0.006 0.019 0.006 0.018 0.057 

 
 

36 
1 0.492 0.479 0.017 0.010 0.017 0.010 0.026 0.033 
3 0.018 0.066 0.013 0.004 0.013 0.004 0.011 0.030 

 
64 

1 0.647 0.613 0.013 0.013 0.013 0.013 0.026 0.023 
2 0.028 0.027 0.001 0.001 0.001 0.001 0.003 0.003 
4 0.005 0.007 0.001 0.001 0.001 0.001 0.002 0.002 

 
121 

 
За табл. 4 виявлено, що збільшення точності апро-

ксимації граничних умов у вузлових точках коллокації без 
збільшення кількості вузлових точок (і, отже, збільшення 
числа функцій, що беруть участь у розкладанні) не впли-
ває на похибку (починаючи з k = 2). Ці обставини вияв-
ляють нелінійну поведінку похибок чисельного розв'я-
зання граничних задач з похідними і спонукають дослі-
джувати похибки розв'язків кожної конкретної задачі. 

Висновки. Трансформацію значень поля сили тя-
жіння у зовнішньому просторі можна здійснити через 
розв'язання граничної задачі (3) для рівняння сили тя-
жіння (2), конкретний вигляд якого залежить від обраної 
моделі Землі. У плоскому випадку ця операція зведена 
до розв'язання граничної задачі (4) з ітерацій (5). Точ-
ність її розв'язання істотно залежить від міри обумов-
леності задачі, наближень напряму шуканого градієнта, 
параметрів чисельного методу [5] (числа і положення 
фундаментальних розв'язків), та напряму зовнішньої 

нормалі, уздовж якої обчислюють похідні в граничних 
умовах (виконання умови (12). Попри це, її розв'язання 
на простих моделях за певних обмежень – успішне. 

Основними джерелами неоднозначності розв'язків 
задачі є скінченна вертикальна роздільна здатність 
розв'язку, неадекватний вибір моделі задачі чи почат-
кових наближень розв'язку.  
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ЕКОГЕОФІЗИЧНІ ДОСЛІДЖЕННЯ ТЕХНОГЕННОГО ЗАБРУДНЕННЯ  
В РАЙОНІ СКЛАДУ МІНЕРАЛЬНИХ ДОБРИВ 

 
(Рекомендовано членом редакційної колегії д-ром геол. наук, проф. С.А. Вижвою) 
 
Розглядаються особливості методики геофізичних досліджень при вивченні техногенного забруднення геологічного 

середовища. Наведені геоелектричні параметри різних типів порід верхньої частини розрізу однієї із ділянок у залежності 
від інтенсивності забруднення. 

The feathers of geophysical prospection methods for studying of geological environment technogenic pollution are shown. The 
geoelectrical parameters of various types of rocks of profile's upper part are revealed with regarding of pollution intensity. 

 
Вступ. На сьогоднішній день у світовій господарсь-

кій діяльності і зокрема в Україні загострюються про-
блеми, що пов'язані з екологічно небезпечними галузя-
ми промисловості. Найбільші підприємства були ство-
рені переважно у ХХ столітті без урахування, або з по-
рушенням вимог охорони довкілля, що спричинило сут-
тєвий техногенний влив на значних територіях і, відпо-
відно, погіршення умов життя населення. На сучасному 
етапі розвитку нагально постала задача вивчення тех-
ногенного забруднення довкілля. Оцінка і моніторинг 
геоекологічного стану довкілля можуть успішно вирішу-
ватись за допомогою комплексу геофізичних методів 
[1]. Ефективність використання геофізичної інформації 
при розв'язанні геоекологічних задач визначається, 
насамперед, різноманіттям фізичних полів, що об'єкти-
вно відбивають стан природного середовища [2]. Це 
пов'язано з тим, що зміни навколишнього природного 
середовища викликають досить суттєві зміни геофізич-
них полів. Слід відзначити універсальність геофізичної 
інформації, яка дає можливість визначати геометрію і 
властивості геологічних та техногенних тіл, а також їх 

зміни з плином часу. Це дозволяє, зокрема, оцінювати 
ступінь напруженого стану масивів гірських порід та ґрун-
тових товщ, спостерігати за коливаннями вологості і міне-
ралізації (засолення, геохімічне забруднення) та отриму-
вати надійні геофізичні параметри для їх оцінки. Суттєве 
значення має також можливість безпосередньої характе-
ристики різних складових геофізичних полів. 

Техногенне речовинне (або хімічне, точніше геохімі-
чне) забруднення навколишнього середовища, що 
включає геологічне середовище з підземними водами і 
навколоземну частину атмосфери, стосується понад 
10 % земної суші. Воно утворюється за рахунок [1]: 

− відвалів гірських порід поблизу шахт, копалень, 
де складуються супутні продукти після вилучення кори-
сних руд;  

− відходів крупних промислових і будівельних під-
приємств та міських агломерацій (шламонакопичувачі, 
відстійники, звалища, смітники);  

− поховань радіоактивних відходів, а також радіо-
активно забруднених матеріалів внаслідок аварій і ка-
тастроф на ядерних об'єктах;  

© Онищук В., Рева М., Онищук Д., 2010


