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СТАТИСТИЧНЕ МОДЕЛЮВАННЯ СЕЙСМІЧНОГО ШУМУ  
У ЧОТИРИВИМІРНІЙ ОБЛАСТІ ЗМІННИХ ДЛЯ ВИЗНАЧЕННЯ  

ЧАСТОТНИХ ХАРАКТЕРИСТИК ГЕОЛОГІЧНОГО СЕРЕДОВИЩА 

(Рекомендовано членом редакційної колегії д-ром геол. наук, проф. М.Н. Жуковим) 

Розглянуто задачу статистичного моделювання випадкових полів у чотиривимірній області змінних (однорідних за ча-
сом та однорідних ізотропних за 3-D просторовими координатами) при впровадженні у сейсмологічні дослідження для ви-
значення частотних характеристик геологічного середовища. Побудовано модель та сформульовано алгоритм чисельно-
го моделювання реалізацій таких випадкових полів на основі модифікованих інтерполяційних розкладів Котельникова-
Шеннона для генерування адекватних реалізацій шуму сейсмограм. 

Вступ. У статті розглянуто задачу статистичного 
моделювання реалізацій випадкових полів з обмеже-
ним спектром, які залежать від часу та задані у триви-
мірній області, для впровадження в сейсмологічні до-
слідження з потребами визначення частотних характе-
ристик геологічного середовища під будівельними май-
данчиками. Побудовано модель та на основі оцінок 
похибок середньоквадратичного наближення таких ви-
падкових полів цією моделлю сформульовано алгоритм 
для чисельного моделювання реалізацій полів, адеква-
тних реалізаціям шуму сейсмограм. 

Це є подальшим узагальненням вирішених у роботах 
[2, 3, 4, 5, 15] задач стосовно збільшення розмірності 
простору, в якому зосереджена область спостереження. 

Реалізації статистичного моделювання таких випад-
кових полів важливо використовувати на практиці для 
виділення сейсмічного шуму від зовнішнього впливу і 
для того, щоб отримати відповідні оцінки частотних 
характеристик геологічного середовища тривимірної 
області спостереження. Вказані оцінки необхідно вра-
ховувати при будівництві об'єктів різного призначення з 
метою забезпечення надійності споруд. 

Моделі та алгоритми статистичного моделювання 
випадкових процесів та полів на основі розкладів в ря-
ди Фур'є, Фур'є-Бесселя та в ряди по синк-функціям 
(інтерполяційні формули Котельникова-Шеннона) вико-

ристовується в геологічних науках порівняно недавно: 
[14, 11, 8, 12, 10 ] та ін. 

В статті розглянуто перспективи застосування побу-
дованих моделей та алгоритмів статистичного моделю-
вання випадкових процесів та полів до задачі дослі-
дження параметрів сейсмічного шуму для потреб ви-
значення частотних характеристик геологічного сере-
довища під будівельними майданчиками на тривимірній 
області спостереження. 

1. Модель та алоритм
При статистичному моделюванні спостережених

шумів сейсмограм використовувався метод, розробле-
ний на основі спектрального розкладу [9] та модифіко-
ваної теореми [2] Котельникова-Шеннона для випадко-
вих полів з обмеженим спектром, однорідних за часом 
та однорідних ізотропних за просторовими тривимірни-
ми координатами. 

Вказано розклад у модифікований ряд Котельнико-
ва-Шеннона для таких випадкових полів та тримано 
оцінки їх середньоквадратичного наближення частко-
вими сумами цього розкладу з використанням резуль-
татів [7] та [2]. 

На основі такого розкладу побудовано модель [15] 
гауссівського однорідного за часом та однорідного ізо-
тропного за просторовими тривимірними координатами 

випадкового поля  t , , ,     на 3R R з обмеженим спе-

ктром, зосередженим на інтервалі - ,   , у вигляді : 
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0,1,...m M ; 0,1,...l m ; ,k N N   − послідовності гаус-
сівських випадкових процесів, які задовольняють умовам:  
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Причому,  ( , )mb t s  − послідовність додатньо ви-

значених ядер на R R , які можна обчислити за прос-

торово-часовим спектром ( , )du d   випадкового поля 

( , , , )t     та для яких виконується така умова: 
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    . Вони мають наступний вигляд: 
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де  mJ u  − функція Бесселя першого роду порядку m .

Сформульовано алгоритм статистичного моделю-
вання реалізацій гауссівських однорідних за часом та 
однорідних ізотропних за тривимірними просторовими 
змінними випадкових полів ( , , , )t     з обмеженим за 
часом t  спектром. 

Алгоритм 
1. Вибираємо, відповідно до необхідної точності

ε > 0, натуральні числа N та М для моделі (1) за допо-
могою однієї з наступних нерівностей: 
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де   –полярний радіус,   – будь-яке фіксоване число, 

яке задовольняє умові: supuv u   , 
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Моделюємо послідовності гауссівських випадкових 

величин (   – фіксований полярний радіус) 1
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k    
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1
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, 0,1,...m M ; 0,1,...l m ; ,k N N   які задо-

вольняють умовам (2). 
2. Обчислюємо вираз (1) у заданій точці

    2 2 2t , , , T ,T A , A R       , підставляючи в нього

обчислені за попередніми пунктами 1 та 2 величини N 
та М і послідовності значень гауссівських випадкових 
величин. 

3. Перевіряємо згенеровану за п. 3 реалізацію ви-
падкового поля  t , , ,     у точках сітки в області спо-

стереження на адекватність даним цього випадкового 
поля шляхом порівняння відповідних статистичних ха-
рактеристик. 

1. Практичне використання моделі поля із прос-
торово-часовою кореляційною функцією

Для практичного використання розробленого алгори-
тму та моделі (1) чисельного моделювання реалізацій 
дійснозначних однорідних за часом t , однорідних ізо-

тропних за змінними r , ,   на 3R R  випадкових полів 

 t ,r , ,    з обмеженим спектром із просторово-часовою 

кореляційною функцією  zB ,   необхідно зазначити

наступне. При моделюванні випадкових полів із такою 
кореляцією можна скористатись різними підходами [6]. 
При цьому потрібно врахувати, що моделі просторово-
часової кореляційної структури підрозділяють на два 
види: перший, що враховує розподіл на просторову та 
часову компоненти та другий – такий, що цього розподілу 
не передбачає. Нижче наведено згадані моделі, які ма-
ють на даний час найбільше поширення. 

Метрична модель використовує узагальнену змінну, 
яка моделює евклідову просторово-часову метрику для 
коваріаційної функції: 

   2 2 2
zB , B a b ,       

де a, b – дійснозначні коефіцієнти. Така модель базу-
ється на припущенні однакового типу моделі для прос-
торової та часової коваріаційної функції із можливими 
відмінностями тільки у радусі кореляції. 

Лінійна модель розділяє просторово-часову коварі-
ацію на просторову та часову компоненти та її загальна 
формула є їх сумою: 

     z x tB , B B ,     

де  tB   – часова компонента коваріаційної функції;

 xB   – просторова компонента коваріаційної функції.

Модель добутку просторово-часової коваріації та-
кож заснована на розділенні залежності за простором 
та часом, але, на відміну від попереднього випадку, 
модель будується, як добуток цих компонент: 

     z x tB , kB B ,     (4)

де k  – параметр. 
Просторово-часова модель коваріації може бути пе-

реписана в термінах просторово-часової варіограми: 

              0 0z t x x t x t, k B h B h ,             (5)

де  z ,    – просторово-часова варіограма;  t   –

часова компонента варіограми;  x h  – просторова

компонента варіограми;  0 0zB ,  – плато просторово-

часової варіограми  z ,   ;  0xB  – плато просторової

компоненти варіограми  x h ;  0tB  – плато часової

компоненти варіограми  t  .

Параметр  можна визначити із рівняння (5): 
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щоби при нульових відстанях по простору  0h   і/або

часові (t=0) залишалась тільки потрібна компонента. 
Модель добутку-суми, яка розділяє просторову та 

часову компоненти за правилом добутку-суми, тобто 
зводить лінійну модель та модель добутку разом: 
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де 1 2 3k , k , k  – коефіцієнти, які можна визначити із на-

ступних співвідношень: 
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Відповідна просторово-часовій кореляційній функції 

 zB ,   вигляду (6) випадкового поля  t ,r , ,    модель

просторово-часової варіограми  z ,t   цього поля за-

дана виразом: 
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де  0xB  − дисперсія просторових проб,  0tB  − дис-

персія часових проб, а коефіцієнти 1 2 3k , k , k  – ті самі, 

що і для просторово-часової кореляційної функції 
 zB ,   у формулі (6).

Також можна використовувати інший підхід до мо-
делювання просторово-часової кореляції, який дозво-
ляє отримати класи нерозділених просторово-часових 
стаціонарних коваріаційних функцій. Цей підхід базу-
ється на використанні частотного представлення кова-
ріаційної функції. 

2. Спектральний аналіз виділеного та згенерова-
ного шуму 

Оцінки частотних характеристик геологічного сере-
довища тривимірнї області спостереження (наприклад, 
під будівельними майданчиками) можна отримати шля-
хом розрахунку та побудови графіків амплітудного та 
фазового спектрів шумів в сейсмограмах пунктів спо-
стережень у такій області. Розрахунки можна проводи-
ти прямим способом [1], тобто методом періодограм. 
Далі потрібно будувати спектральне відношення земної 
кори, яке не залежить від спектра падаючих сейсмічних 
хвиль, а визначається виключно будовою геологічного 
середовища під досліджуваним пунктом. 



ISSN 1728–2713 ГЕОЛОГІЯ. 2(61)/2013 ~ 71 ~ 

Висновки. Розроблено модель та алгоритм статис-
тичного моделювання однорідних за часом, однорідних 
ізотропних за тривимірними змінними випадкових полів 
з обмеженим спектром, застосування яких проілюстро-
вано на прикладі генерування реалізацій шуму сейсмо-
грам плоскої області спостереження [4] та розглянуто 
перспективу для сейсмограм тривимірної області спо-
стереження. Такі результати є продовженням напрямку 
досліджень, започаткованим у роботах [2, 3, 4 і 5] і є 
важливим доповненням до методів Монте-Карло, які 
використовуються в геології, наприклад, у [10]. 
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СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕЙСМИЧЕСКОГО ШУМА В ЧЕТЫРЕХМЕРНОЙ ОБЛАСТИ 
ПЕРЕМЕННЫХ ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ГЕОЛОГИЧЕСКОЙ СРЕДЫ  

Рассмотрена задача статистического моделирования случайных полей в четырёхмерной области переменных (однородных по 
времени и однородных изотропних за 3-D пространственными координатами) при внедрении в сейсмологические исследования для 
определения частотных характеристик геологической среды. Построена модель и сформулирован алгоритм численного моделиро-
вания реализаций таких случайных полей на основании модифицированных интерполяционных разложений Котельникова-Шеннона 
для генерирования адекватных реализаций шума сейсмограмм. 

Z. Vyzhva, Dr. Sci. (Phys.-Math.), Assos. Prof. 
Taras Shevchenko National University of Kyiv, Kyiv 

THE STATISTICAL SIMULATION OF 4-D SEISMIC NOISE FOR FREQUENCY CHARACTERISTICS  
OF GEOLOGY ENVIRONMENT DETERMINATION 

The problem of random fields in 4-D space (homogeneous in time as well as homogeneous isotropic in the 3-D space ) statistical simulation 
has been considered for the introducing into seismic research into frequency characteristics of geology environment. Statistical model of such 
random fields and numerical simulation algorithm have been developed on the basis of modified Kotelnikov-Shennon interpolation sums for 
generating of adequate realizations seismic noise. 

 




