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ПОРІВНЯЛЬНИЙ АНАЛІЗ МЕТОДІВ В ЗАДАЧАХ ПОШИРЕННЯ СЕЙСМІЧНИХ ХВИЛЬ  
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(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, проф. Г.Т. Продайводою) 

Наведено теорію поширення сейсмічних хвиль в анізотропному середовищі з використанням матричного методу 
Томсона-Хаскела. Шляхом введення хвильового пропагатора показано матричний формалізм для отримання поля 
переміщень на вільній поверхні шаруватого анізотропного півпростору. Апробацію запропонованої методики показа-
но шляхом порівняльного аналізу хвильових форм, які отримано DSM методом, рефлективним та FCT методами, а 
також методом скінчених різниць. 

Вступ. Задачі математичного моделювання хви-
льових полів в шаруватих анізотропних середовищах 
залишаються актуальними. За допомогою результатів 
моделювання розповсюдження фронтів сейсмічних 
хвиль в анізотропних середовищах можна прогнозува-
ти динамічні властивості пружних середовищ, а також 
враховувати вплив анізотропії в задачах інверсії щодо 
визначення параметрів джерела. Існує достатньо ме-
тодів для вирішення таких задач, які достатньо ефек-
тивно використовуються в геофізиці, в тому числі в 
сейсмології[6]. Відомими є матричний, рефлективний і 
променевий методи, а також чисельні методи, зокре-
ма метод скінченних елементів та метод скінченних 
різниць [1, 2, 4, 5, 8, 9, 15, 16, 17]. Матричний метод та 
його модифікації, які використовуються для моделю-
вання процесів поширення сейсмічних хвиль як для 
ізотропних, так і для анізотропних середовищ є досить 
зручними і мають цілу низку переваг перед іншими 
підходами. Як переваги так і недоліки матричного ме-
тоду добре представлено в роботах [1, 3, 4, 7, 10, 14]. 

Авторами даної роботи запропоновано використан-
ня матричного методу Томсона–Хаскела для побудови 
поля переміщень на вільній поверхні анізотропного се-
редовища. Для використання матричного методу при-
ведемо такі судження. Дане середовище промодельо-

ване пачкою однорідних анізотропних шарів із парале-
льними границями. Джерело сейсмічних хвиль розгля-
дається як точкове у просторі, але розподілене в часі і 
представлено довільно-орієнтованою силою або сейс-
мічним тензором (дев'ять пар сил). Вважаємо, що на 
границях між шарами виконуються умови жорсткого 
контакту (неперервність переміщень і напружень). Ден-
на поверхня є вільною від напружень. Джерело хвиль 
розміщено всередині ізотропного шару на визначеній 
глибині z=zs. Вважаємо також, що хвилі із нижнього пів-
простору (n+1) не повертаються (умова випромінюван-
ня). Таке представлення точкового джерела достатньо 
відоме і ефективне для моделювання поширення сейс-
мічних хвиль в шаруватому півпросторі [3].  

У даній роботі розвинено модифікацію матричного 
методу і показано його апробацію. Як результат ефек-
тивного використання запропонованого підходу, здійс-
нено порівняльний аналіз синтетичних сейсмограм, 
отриманих за методом із результати, які обчислено 
іншими авторами в статтях [12, 13, 18].  

Теорія. Виведемо матричні співвідношення для по-
ля переміщень на вільній поверхні анізотропного сере-
довища, використовуючи метод матричного пропагато-
ра, коли фізичні параметри змінюються тільки в напря-
мку осі z (рис. 1).  
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Рис. 1. Модель вертикально неоднорідного поля 

Відомо, що лінійне співвідношення між тензорами 
напружень τij і деформації ekl має вигляд [11]: 
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Якщо використовувати тривимірне перетворення 
Фур'є: 
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до виразів (1) та (2), де px, py – горизонтальні повільно-
сті, то отримаємо диференціальне рівняння [11]:  
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, T, S, C – 

матриці 3×3, C i S – симетричні матриці. 
Зазначимо, що модифікація матричного методу в за-

пропонованій статті являється окремим випадком методу 
матричного пропагатора, який введений в середині мину-
лого століття Гільбертом і Бекусом і розвинутий Томпсо-
ном і Хаскеллом. Суть запропонованого підходу полягає в 
тому, що матричний пропагатор P(z, z0) задовольняє ди-
ференціальному рівнянню (3) і визначається як 
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де І – одинична матриця n-го порядку.

0 0b( z ) P( z,z )b( z )
 

. (5) 

Рівняння (5) означає, що матричний пропагатор P(z, 
z0) породжує вектор переміщень-напружень b(z) на 
глибині z, діючи на цей вектор на глибині z0. Вектор b 
можна переписати наступним чином [11]: 

b Dv
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, (6)
де D – матриця власних векторів матриці А, а вектор v



представлено через потенціали квазі-P i двох квазі-S 
хвиль: 
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Підставивши (6) в (3), отримано диференціальне рі-
вняння:  

v j vz
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, (7)

де Λ – діагональна матриця, елементами якої є власні 
значення матриці А, а матриця D – матриця власних 
векторів матриці А.  
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Величини 
2

U D
p sq ,...,q  – вертикальні повільності, де 

символи U i D позначають поширення хвиль вверх і 
вниз відповідно. Для ізотропного середовища qU=-qD.  

Рішення диференціального рівняння (7) запишемо в 
такому вигляді:  

1
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, (9) 

де Q(z, z1) – хвильовий пропагатор. Тоді із використан-
ням співвідношень (5,6,9) матричний пропагатор P 
представлено через хвильовий пропагатор Q у вигляді:  

1
1P( z,z ) DQD . (10)

Для введення джерела сейсмічних хвиль, які поши-
рюються в шаруватому анізотропному середовищі роз-
глянемо стрибок переміщень-напружень на границі z=zs: 
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Співвідношення між компонентами вектора F і тен-
зором сейсмічного моменту або довільно орієнтованою 
силою показано у [8]. Використовуючи (5-11), виведемо 
наступні матричні рівняння для шаруватої моделі ані-
зотропного середовища: 
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де G – характеристична матриця середовища. 
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Із (14), враховуючи умову випромінювання, а також 
той факт, що напруження на вільній поверхні дорівню-
ють нулю, маємо: 
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Як результат отримано поле переміщень на вільній 
поверхні анізотропного середовища: 
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Із (15) випишемо три компоненти хвильового поля 
на вільній поверхні шаруватого анізотропного середо-
вища у спектральній області у вигляді: 
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де px, py – повільності, які визначено на горизонтальній 
площині у кожному шарі анізотропного середовища, zR 
– епіцентральна відстань, ω – кругова частота.

Застовуючи до (15) тривимірне перетворення Фур'є,
отримано рішення прямої задачі для поля переміщення 
на вільній поверхні анізотропного середовища в часовій 
області у вигляді:  
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Порівняльний аналіз. Для підтвердження достові-
рності описаної модифікації матричного методу, прове-
дено порівняльний аналіз синтетичних сейсмограм, 
побудованих на основі описаної вище теорії, із резуль-
татами отриманими іншими методами і опублікованими 
в статтях [12, 13, 18].  

Для порівняння синтетичних сейсмограм розгляне-
мо статтю [13], в якій матричним DSM методом показа-
но розв'язок для прямої задачі сейсміки в частотному 
діапазоні до 2 Гц для анізотропного середовища. У да-
ній роботі синтетичні сейсмограми побудовано для ані-

зотропної PREM структури [13], яка включає трансвер-
сально-ізотропні шари на глибинах від 22,4 до 220 км. 
Розглянуто поверхневий землетрус, джерело сейсміч-
них хвиль якого розміщене на глибині 5 км. Джерело 
описане тензором сейсмічного моменту, в якому: Mxz = 
Mzx = 1, решта компонент тензора рівні нулю. Одну із 
компонент поля переміщень представлено на рис.2(а). 
На рис. 2(b) представлено синтетичну сейсмограму (х-
компонента) за запропонованою методикою для такої ж 
моделі середовища і вогнища землетрусу. 

a 
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Рис. 2. Синтетичні сейсмограми: 

а) синтетична сейсмограма побудована DSM методом [13], 
б) синтетична сейсмограма побудована за модифікацією матричного методу 
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Порівнюючи синтетичні сейсмічні записи, зроблено 
висновок, що отримана сейсмограма з використання 
матричного методу (рис. 2) достатньо добре корелює із 
сейсмограмою, яка побудована DSM методом (рис. 1). 
Зазначимо, що для побудови сейсмограм на рис.2 ви-
користано FFT фільтр, який виконує фільтрацію за до-
помогою перетворення Фур'є для аналізу частотних 
складових в сигналі. У даній роботі використано низь-

кочастотний фільтр, який відсікає ті частотні компонен-
ти, амплітуди яких вище певного порогового значення.  

Розглянемо сейсмічні записи в статті [18], в якій описа-
но порівняння результатів, отриманих рефлективним та 
FCT методами. Проведемо порівняльний аналіз сейсмо-
грам, отриманих запропонованим матричним методом і 
рефлективним та FCT методами. У роботі [18] синтетичні 
сейсмограми побудовано для трьох шаруватого анізотро-
пного середовища, параметри якого подано у табл. 1. 

Таблиця  1  
Параметри середовища 

№ Потужність шару, м Густина, кг/м3 С11, ГПа С13, ГПа С33, ГПа С44, ГПа С66, ГПа 

1 600 2100 30 8,4 25 10 8
2 240 3500 20 6,4 19 5,5 4
3 360 2100 30 8,4 25 10 8

Джерело, яке представлено довільно-орієнтованою 
силою є розташоване на глибині 168м; епіцентральна 
відстань становить 456м. Часова функція джерела опи-
сано функцією (Ricker wavelet): 

  22 2 21 2 ( ft )f t e   , (16) 

де f = 10Гц. 

На рис. 3. показано дві сейсмограми із [18], які 
отримано рефлективним та FCT методами. На рис. 4 
представлено сейсмограму, яку отримано запропоно-
ваним матричним методом. Порівняльний аналіз сейс-
мограм показує на достатньо високу кореляцію хвильо-
вих форм.  

Рис. 3. Накладання синтетичних сейсмограм отриманих рефлективним та FCT методами  
для моделі середовища із табл. 1 та із використанням часової функції у вогнищі (16) [ 18] 
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Рис. 4. Синтетична сейсмограма побудована нашим методом для середовища, параметри якого наведені в табл. 1 

Розглянемо ще один випадок для порівняльного 
аналізу. Для цього порівняно результати, які отримано 
запропонованою модифікацією матричного методу із 
результатами, що подано в статті [12], в якій сейсмо-
грами побудовано методом скінчених різниць для од-
норідного анізотропного середовища. Параметри мо-
делі середовища подано в табл. 2. Джерело сейсмічних 
хвиль представлено силою, яка орієнтована в напрямку 
х і розташована на глибині 1000 м. Епіцентральна від-

стань становить 500 м. Часову функцію джерела зада-
но функцією Ricker wavelet (16), де f = 20 Гц. 

У статті [9] визначено поле переміщень-напружень 
на глибині 500 м (рис. 5, 6), у той час, як матричний 
метод розроблено для поля переміщень на вільній по-
верхні. Тому вступи хвиль на рис. 5 (a, б) і рис. 6 (a, б), 
не співпадають. Крім того, на рис. 5 (б) і на рис. 6 (б) 
форми P- і S-хвиль є в протифазі через вплив денної 
поверхні, а також не враховано поглинання Qp,Qs. 

Таблиця  2  
Параметри середовища 

Густина, кг/м3 С11, ГПа С13, ГПа С33, ГПа С44, ГПа С66, ГПа 

3000 10.123 3.093 8.996 1.925 3.850
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Рис. 5. Ux-компонента за різними методами:  

a) Ux-компонента отримана методом скінченних різниць [12],
б) Ux-компонента побудована запропонованим матричним методом 
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Рис. 6. Uz-компоненти за різними методами:  

а) Uz-компонента отримана методом скінченних різниць [12],  
б) Uz-компонента побудована запропонованим матричним методом 

Висновки. 
1. У запропонованій роботі представлена методика

визначення поля переміщень сейсмічних хвиль в анізо-
тропних середовищах з використанням матричного ме-
тоду Томсона–Хаскела та його модифікацій, що пока-
зано в роботах Молоткова Л.А. [4], Dunkin I.W. [9], Fryer 
G.J. [10-11] та інших відомих вітчизняних і зарубіжних 
вчених. Шляхом введення хвильового пропагатора Q 
показано зв'язок між матричним пропагатором P і мат-
рицею власних векторів D (10), що дозволило отримати 
поле переміщень на вільній поверхні шаруватого анізо-
тропного півпростору. 

2. Здійснено апробацію запропонованої методики
шляхом порівняльного аналізу хвильових форм, які 
отримано іншими методами. Зокрема показано достат-
ньо добру кореляцію сейсмограм, отриманих DSM ме-
тодом [13] і матричного методу (рис. 1,2) для анізотро-
пної PREM структури, яка включає трансверсально-
ізотропні шари на глибинах від 22,4 до 220 км. Викорис-
тання часової функції джерела у вигляді (16) продемо-
нстровано на прикладах побудови сейсмограм рефлек-
тивним та FCT методами (рис. 3) та матричним мето-
дом (рис. 4). Порівняльний аналіз хвильових форм під-
тверджує можливості використання матричного методу 
для задач сейсмології у випадку розподілених у часі 
вогнищ землетрусів. Такий же висновок можна зробити, 
використовуючи для порівняння чисельні методи, що 
представлено на рис. 5-рис. 6.  

3. На думку авторів, слід досліджувати поширення сей-
смічних хвиль у більш складних моделях для анізотропного 
середовища, що буде показано у наступних роботах. 
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СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДОВ В ЗАДАЧАХ РАСПРОСТРАНЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН  
В СЛОИСТЫХ АНИЗОТРОПНЫХ СРЕДАХ 

Исследованы особенности построения механизмов очагов для землетрясений в Карпатском регионе Украины. Рассмотрено прин-
цип и особенности построения механизма очага графическим методом. С помощью предложенного метода построено механизм очага 
для землетрясения, произошедшего 23.11.2006г. около г. Берегово. Сделано сравнение механизмов, построенных графическим мето-
дом и с помощью комплекса программ. 
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COMPARATIVE ANALYSIS OF METHODS IN PROBLEMS OF SEISMIC WAVES PROPAGATION  
IN LAYERED ANISOTROPIC MEDIA 

The theory of seismic wave propagation in anisotropic medium using the matrix method of Thomson-Haskell is presented. The matrix 
formalism for field displacements on the free surface of an anisotropic layered half-space by introducing the wave propagator is shown. A 
comparative analysis of the results of our method with the synthetic seismic records obtained by DSM, reflective and FCT methods, and the method 
of finite differences is shown.  




