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Soil Water Repellency (SWR) is a natural property of soils with impacts on soil erosion, water infiltration, superficial and sub-
surface hydrology, nutrients leaching and plant growth.  

Purpose: Study the spatial distribution and identify the most accurate interpolation method to estimate SWR in an abandoned 
agricultural field. 

Methodology: A plot with 21 m2 (07x03 m) was designed. Inside this plot SWR was measured in the field every 50 cm. In order 
to identify the most reliable map, we tested several interpolation methods, as Ordinary Kriging (KRG), Inverse Distance to a 
Weight (IDW) with the power of 1, 2, 3, 4 and 5, Radial Basis Function (RBF) (Inverse, Multiquadratic, Multilog, Multiquadratic, 
Natural Cubic Spline and Thin Plate, Spline) and, Local Polynomial, with the power of 1 and 2. 

Findings: The results show that SWR was very heterogeneous, even in small distances, showing that soil hydrological prop-
erties can change very quickly in space. The spherical model was the best predictor of SWR and the most accurate interpolation 
method was the Multilog and the more biased the Natural Cubic Spline. 

Originality: The test of several interpolation methods in SWR spatial distribution were not explored in detail, and this study 
represents an advance in this field.  

Practical value: A better interpolation of SWR and other variables will help to have a better understanding of small scale 
processes in larger areas. Mapping with a better accuracy will improve models and contribute to a better prediction. 

 
Introduction 
Soil water hydrophobicity (SWR) is a natural property of 

soils. Among other factors, SWR depends on soil moisture, 
mineralogy, texture, pH, organic matter, aggregate stability, 
fungal and microbiological activity and plant cover. It has 
implications for plant growth, soil water infiltration, superficial 
and subsurface hydrology, soil erosion and nutrients leach-
ing [5]. Depending on the level, SWR can also have positive 
impacts on soil structure and aggregate stability, carbon 
sequestration and protects soil from crusting [17, 1, 11]. 

Soil water repellency has been widely studied around 
the world in the most diverse climate regions [13] and envi-
ronments, including forests [7, 14] grasslands, pastures 
[20], heathlands [35], steppes [8], sand dunes [5], golf 
fields [22], fire affected areas [4, 17, 21, 27] and agriculture 
fields [30, 32, 11, 10]. Previous studies showed that soil 
management in agricultural areas have important implica-
tions concerning the persistence, intensity and spatial dis-
tribution of SWR. Blanco-Canqui and Lal [2] and Roper et 
al. [31] observed that no-tillage soils have a higher SWR 
than tilled soils. The authors attributed this to the presence 
of soil organic matter that normally increases SWR [35].  

Soil water repellency is highly variable in space and time 
[11, 29], even in small distances [16], imposing a challenge 
in mapping this small distance variation. Small scale varia-
tion modelling is important to understand large scale proc-
esses [3, 24]. Mapping small scale variations is complex due 
to the heterogeneous data distribution, and normally it is 
recommended to test several interpolation methods in order 
to know the less biased spatial predictor [26]. The objective 
of this work is testing the best interpolation method to esti-
mate SWR in an abandoned agricultural field. 

Materials and Methods 
The studied area is located in an abandoned agricultural 

field located near Vilnius city (54 49' N, 25 22', 104 masl), 
Lithuania. The mean annual rainfall is 735 mm and tempera-
ture is 8.8°C. In a flat area an experimental plot with 21 m2 
(07x03 m) was designed and SWR repelency was assessed. 
Inside this plot, we measured SWR in the field every 50 cm, 

collecting a total of 105 sample points. Measurements were 
carried out on 28 May, 2012, after a period of 15 days without 
rainfall. Soil water repellency was assessed placing 5 droplets 
(±0.05 ml) in soil surface and measuring the water drop pene-
tration time (WDPT) in seconds (s) [33].  

Some statistical analyses were carried out: Mean (m), 
Standard Deviation (SD), Coefficient of Variation (CV%) 
Minimum (Min), 1st quantile (Q1), median (M), 3rd quantile, 
Maximum (Max), Skewness (SK) and Kurtosis. The spatial 
autocorrelation of SWR was assessed with the Moran's I 
Index, a measure similar to Pearson correlation coefficient. 
A value near 0 represents a random pattern, +1 a strong 
positive autocorrelation (clustered) and -1 a strong nega-
tive autocorrelation (dispersion) [23].  

Previous to data modelling, normal distribution was 
tested with the Kolmogorov-Smirnov (K-S). Data normal 
distribution was considered at a p>0.05. This method, SK 
and Kur evaluate the data distribution and asymmetry that 
affect the interpolation methods accuracy. Previous studies 
show that it is desirable that data be as close as possible to 
normal distribution. If data is highly skewed, it may have 
negative impacts on the variogram modelling and interpre-
tation [19, 23]. In this study we used the transformations, 
currently used in previous studies, Neperian logarithm (ln), 
Square root (SQR) and Box-Cox (BC), which were not 
powerful enough to normalize data distribution [23. 24].  

The spatial patterns of SWR were analysed with an ex-
perimental omnidirectional variogram (it is assumed that SWR 
variability is equal in all directions) that observes the spatial 
continuity of SWR. The nugget effect, range, sill and nug-
get/sill ratio were measured. For the interested readers, details 
of variogram modelling can be consulted in Fu et al. [9] and 
Pereira et al. [24] [23]. Data interpolation tests were carried 
out using the most common methods, such as Ordinary 
Kriging (KRG), Inverse Distance to a Weight (IDW) with the 
power of 1, 2, 3, 4 and 5, Radial Basis Function (RBF) (In-
verse, Multiquadratic, Multilog, Multiquadratic, Natural Cubic 
Spline and Thin Plate, Spline) and, Local Polynomial, with the 
power of 1 and 2. For detailed information about these meth-
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ods Pereira and Ubeda [25] can be consulted. The best inter-
polation method was assessed with the cross validation 
method that compares the observed and estimated values of 
SWR. The cross validation was obtained by taking the value 
of a determinate sample point and estimating it from the re-
maining ones. The residuals produced were used to evaluate 
the accuracy of each method. The Mean Error (ME) and the 
Root Square Mean Error (RMSE), calculated from the residu-
als, were used to assess interpolation methods performance. 
The method with the lower RMSE was considered the best 
estimator. More information about these indices can be found 
in Pereira and Ubeda [25]. Pearson correlation coefficient was 
calculated between the observed and estimated values. Sig-
nificant differences were considered at a p<0.05. Statistical 
analyses were carried out with Statistica 7.0 and interpolation 
methods assessment with Surfer 9.0 for windows. 

Results and Discussion 
Soil water repellency varied from 1 to 772 s, and had 

an average of 25.73. The CV% was 361.09%, showing that 

in this small plot SWR was extremely high variable. The 
results of SK show that the majority of the values were 
concentrated in lower values of the distribution (Positive 
SK) that is evidence of the presence of extreme positive 
outliers. Data also showed an extremely high KUR, which 
means that data have a peaked distribution (Table 1). The 
result of the Moran's I index was 0.026, p<0.513, suggest-
ing that the distribution of SWR was random and no spe-
cific pattern was observed. According to the results of the 
K-S test, the original and transformed distributions were 
considered not normally distributed (p<0.05). To model the 
spatial distribution of SWR, we used the Ln transformed 
data since they were closer to normal distribution and pre-
sented the lower SK and KUR values (Table 1). This crite-
rion was used in previous works [14, 36, 34, 23). In this 
case we did not remove the outliers because it would mean 
loss of important information. 

 
Table  1  

Descriptive statistics of SWR and results of K-S test. Original data in seconds (s) 
 m SD CV% Min Q1 M Q3 Max SK KUR K-S p 
Original data 25.73 92.93 361.09 1 1.66 2.66 7 772 6.13 43.10 0.01 
Ln 1.49 1.46 98.16 0 0.51 0.98 1.94 6.64 1.50 2.02 0.01 
SQR 3.06 4.06 132.72 1 1.29 3.06 2.64 27.78 3.85 17.02 0.01 
BC 4.95 3.51 71.06 2.48 3.03 4.95 5.09 22.48 2.77 8.69 0.01 

 
Among all the tested models, the spherical was the best 

fitted to explain SWR spatial variability (Figure 1), as ob-
served in previous studies [28]. The nugget effect was 1.2, 
the range 101 cm, the Sill, 2.22 and Nugget/Sill ratio 
54.05%. The nugget effect is normally attributed to the small 
number of samples, small distance variance and presence of 
outliers [18]. In this case the nugget effect may be due to the 
small scale variance of SWR and to the presence of outliers, 
since the data that we used was not normally distributed. 
The spatial correlation of SWR increased with the distance 
until the distance of 101 cm. This suggests that spatial corre-

lation range was higher than the sample density (50 cm), 
showing that the sample design was good to measure SWR 
variability. It is important to mention that the spatial correla-
tion was short in the space, which confirms the random pat-
tern identified with the Moran's I index. The nugget/sill ratio 
result suggested that the SWR has a moderate spatial de-
pendency. According to Chien et al. (1997), ratios less than 
25% show that the variable has a strong spatial depend-
ence, between 25 and 75%, the variable has a moderate 
spatial dependence, and when higher than 75, the variable 
has a weak spatial dependence. 

 

 
Figure 1. Omnidirectional Experimental Variogram calculated for SWR  

 

The most accurate method to interpolate SWR was 
Multilog, with a RMSE of 1.353 and the less precise was 
Natural Cubic Spline with an RMSE of 1.686 (Table 2). 
The ME of all the interpolation methods were close to 0, 
showing that the predictions were unbiased. On aver-

age, LP 1 and 2 under-estimated the original values 
(negative ME). The coefficient of correlation between 
observed and estimated were significant in all the cases 
but was not strong. They range between 0.25 in IDW1 
and 0.38 in Multilog (Table 2). 
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Table  2  
Summary statistics of the accuracy of interpolation methods. Numbers in bold indicate the most accurate method  

and underlined, the least accurate. Correlations between observed and estimated values significant at **p<0.01 and ***p<0.001 
 Type Min Max ME RMSE Obs vs Est 

KRG Ordinary (Point) -4.844 2.461 0.003 1.406 0.37*** 
Power (1) -4.997 1.587 0.011 1.425 0.25** 
Power (2) -4.702 1.733 0.013 1.377 0.32*** 
Power (3) -4.646 1.873 0.013 1.369 0.34*** 

IDW 

Power (4) -4.726 2.060 0.012 1.378 0.35*** 
 Power (5) -4.772 2.135 0.011 1.386 0.35*** 

Inverse multiquadratic -4.685 1.871 0.001 1.379 0.37*** 
Multilog -4.798 2.188 0.003 1.353 0.38*** 

Multiquadratic -4.814 2.736 0.004 1.447 0.37*** 
Natural cubic spline -4.558 4.612 0.013 1.686 0.36*** 

RBF 

Thin Plate Spline -4.738 3.754 0.007 1.552 0.36*** 
1 -4.911 2.136 -0.026 1.392 0.28** 

LP 
2 -4.695 2.437 -0.016 1.382 0.32*** 

 

The interpolation methods tested allowed us to identify 
the best spatial predictor and the most precise SWR spatial 
distribution. The map interpolated with the best method 
showed that SWR was low in the northeast part of the plot, 
and high at northwest and in the south of the area of interest 
(Figure 2a). The interpolation with the less biased method 
showed that the distribution is more heterogeneous and no 
clear pattern was identified (Figure 2b). This suggests that 
previously to mapping any variables, it is essential to test 
several methods in order to have the best data interpolation, 
as observed in previous studies [24, 23]. The maps of the 
residuals produced are in the figures 2c and 2d. The interpo-

lated map with the most accurate method residuals showed 
that the major errors were identified in the areas where SWR 
was high. This correlates the observed with the results from 
the SK which suggest that data were mostly concentrated in 
the lower values (positive SK) and few samples had high 
values. The cross-validation procedure, estimated them 
substantially lower than the original ones. The errors were 
high and heterogeneous in the less accurate method than in 
the best one, suggesting that the Natural Cubic Spline inter-
polation has produced high positive and negative errors. In 
comparison to Multilog, the values predicted by Natural Cu-
bic Spline were very distant from the original values. 
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Figure 2. Soil water repellency interpolation according to the most a), less b) accurate method  
and the residuals obtaned from the best c) and worst d) interpolation technique 

 

Conclusions 
1. Soil water repellency was highly variable in the 

studied plot and had a random pattern distribution, 
suggesting that soil hydrological properties can be very 
heterogeneous at short distances. 

2. The spherical was the best model to explain SWR 
variability. The SWR range was short, but the sample 
density was adequate to measure SWR spatial variability. 

3. The best SWR interpolator was Multilog and the less 
accurate was Natural Cubic Spline. The lowest SWR was 
identified in the northeast and south of the plot, while 
highest values were observed in the south and northwest. 

4. The interpolated maps with the most and least 
accurate method showed different spatial configurations, 
highlighting the need for testing several interpolation 
methods, previous to mapping any variables. 
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МОДЕЛЮВАННЯ ГІДРОФОБНИХ ВЛАСТИВОСТЕЙ ГРУНТІВ  

В УМОВАХ НЕОБРОБЛЮВАНИХ СІЛЬСЬКОГОСПОДАРСЬКИХ УГІДЬ 
Гідрофобність грунтів є природною властивістю, яка пов'язана з впливом ерозійних процесів, інфільтрації води, поверхневих і 

підземних гідрогеологічних процесів, поживних речовин, вилуговування і росту рослин. 
Мета: Дослідження просторового розподілу і визначення найбільш точних методів інтерполяції для оцінки гідрофобності грунтів 

у межах необроблюваних сільськогосподарських угідь. 
Методика: Було обрано ділянку площею 21 м2 (7x3 м). Усередині цієї ділянки гідрофобність грунтів визначалася з кроком 50 см. З 

метою визначення найбільш надійної карти було протестовано кілька методів інтерполяції – звичайний крігінг, зворотня відстань до 
ваги з силою 1, 2, 3, 4 і 5, Радіальна базисна функція (Зворотня, мультиквадратична, мультилогарифмічна, натуральний кубічний 
сплайн і тонкої пластини, сплайн ), Локальна поліномна з силою 1 і 2. 

Результати: Отримані результати показують, що гідрофобність грунтів дуже неоднорідна, навіть на невеликих відстанях. 
Останнє свідчить, що гідрологічні властивості грунтів можуть змінюватися дуже швидко в просторі. Сферична модель стала найк-
ращим передвісником гідрофобності грунтів. Крім того, найбільш точним методом інтерполяції виявлено Мультилогарифмічний 
метод, а найбільш обгрунтований метод кубічного сплайну. 

Новизна: Дослідження декількох методів інтерполяції просторового розподілу гідрофобності грунтів не вивчалися раніше, а отже 
наведені матеріали несуть нову інформацію у даній сфері досліджень. 

Практичне значення: Більш точна інтерполяція гідрофобності грунтів та інших показників допоможе глибше зрозуміти тонкі процеси у 
межах великих площ. Картування з вищою точністю поліпшить моделі та зробить вагомий внесок у прогнозування ерозії грунтів.  

 




