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DETERMINING THE FOCAL MECHANISM OF AN EARTHQUAKE  

IN THE TRANSCARPATHIAN REGION OF UKRAINE 
 

(Reviewed by the editorial board member G. Prodaivoda) 
In the paper, the theory of seismic wave propagation in anisotropic media is presented, with the use of the matrix method when de-

termining the mechanisms of local earthquakes. These issues are of importance in seismic studies in the Carpathian region where the 
number of seismic stations is insufficient.  

The work is aimed at the development of a methodology for calculating displacements on the surface of anisotropic medium and de-
termining the mechanisms of local earthquakes with the use of the graphic method. The purpose of the graphic method consists in mak-
ing it possible to use seismic records at the stations with indistinct polarities of first P-wave motions. The ratio between the amplitudes 
of direct P- and S-waves is used as an auxiliary parameter.  

The research results are illustrated with examples of using the records of 04.04.2013 event near Nyzhnye Selyshche 
(φ=48,1977, λ=23,4663, h=1,73 km, ML=2). Comparative analysis is carried out of seismograms calculated with the matrix method 
and those recorded at a seismic station, which confirms the effectiveness of the methodology for determining the seismic source 
parameters. Based on the graphic method, spectral and geometric parameters of the seismic source have been obtained: seismic 
moment, radius of shear dislocation, slip area, mean fault slip, stress drop, energy and magnitude.  

Scientific novelty of the work consists in developing a method of calculating the displacement field in anisotropic media with 
the use of the matrix method and in amending the graphic method so as to ensure determining the mechanisms of local earth-
quakes in the Carpathian region where the number of seismic stations is limited.  

Practical application of the work is in determining the source parameters of local earthquakes, based on the developed ap-
proaches, which is of crucial importance in local seismological studies.  

The version of the matrix method developed in this work for calculating seismic wave propagation in anisotropic media can 
be used for determining the tensor of seismic moment with the number of seismic stations being limited.  

 
Introduction 
Determining earthquake focal mechanisms in the Tran-

scarpathian region of Ukraine is one of the most topical is-
sues in local seismological investigations. As the level of 
local seismic activity is low, the number of reliable polarities 
of first motions at local seismic stations is very often insuffi-
cient to determine the mechanism in a traditional way, which 
necessitates the development of alternative methods and 
improvement of the traditional ones.  

An approach is often used where nodal planes are plot-
ted on a lower-hemisphere stereographic projection to best 
fit the polarities of first arrivals of P waves at the stations, the 
location of a station polarity on the projection depending on 
the station azimuth and take-off angle of the ray of first arri-
val connecting the source and the station. 

These focal mechanisms are determined using a 
method that attempts to find the best fit to the direction of 
P-wave first motions observed at each station. For a dou-
ble-couple source mechanism (or only shear motion on the 
fault plane), the compression first motions should lie only in 
the quadrant containing the tension axis, and the dilatation 
first motions should lie only in the quadrant containing the 
pressure axis. Accuracy of the focal mechanism solution 
depends on the input data: velocity model and coordinate 
of the hypocenter (they determine the take-off angle), qual-
ity of seismic records and sign inversion on the seismome-
ter, so that "up" is "down" (they determine the entry wave 
character). 

But sometimes there is not enough information about 
the first arrivals of P waves. Both information about fuzzy 

arrivals of P-waves (which can mean proximity to the nodal 
plane) and the value logarithm of the amplitude ratio of S-
wave and P-wave amplitude at each station is important for 
the distribution of compression and tension by nodal lines 
in the quadrants. 

However, it is appropriate to develop other methods for 
determining the parameters of an earthquake source. One 
of these methods is based on the expressions for dis-
placement field on free surface of an anisotropic medium 
and spectra of real records from stations that recorded 
these events. 

Using the Thomson – Haskell matrix method of 
constructing wave fields on the free surface is also feasible. 
A method has been developed here for mathematical 
modeling of elastic waves in medium consisting of 
homogeneous anisotropic layers with parallel boundaries. 

At the boundaries between the layers, the condition of 
the hard contact is performed. A free surface is free of 
stress. Wave source is located inside an anisotropic layer at 
a certain depth z=zs. The radiation condition is also fulfilled 
(the wave of the lower half space (n+1) does not return).  

The solution is shown here for the direct problem when 
a point source represented by a randomly oriented force on 
an arbitrary boundary of a layered anisotropic medium is 
preset. A "wave propagator" is introduced in order to pre-
sent the theory of the matrix propagator in a homogeneous 
anisotropic medium. The basic expressions for the stress-
displacement field with using the matrix propagator and the 
radiation condition are obtained. In fact, the direct problem 
is reduced to the determination of the propagator P(z,z0). 
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To determine the earthquake source parameters, we use 
the spectra of real records and the basic expressions for 
the stress-displacement field with the matrix propagator.  

Matrix method. Direct problem 
We assume the usual linear relationship between 

stress τij and strain ekl  

l
ij ijkl kl ijkl

k

u
c e c

x


   


  (1) 

where T
x y zu ( u ,u ,u )


 is displacement vector. 

 

 
Figure 1. Vertically inhomogeneous field model 

 

The equation of motion for an elastic homogeneous 
anisotropic medium, in the absence of body forces, is 
[Fryer et al, 1984] 

2 2

2
i l

ijkl
i k

u u
c

x xt

 
 

 
, (2) 

where ρ is the uniform mass density, and ijklc  are the ele-

ments of the uniform elastic coefficient tensor which satisfy 
the symmetry conditions 

klijijlkjiklijkl cccc  , 
so that only 21 independent constants are involved. 

The suffixes can take the values 1, 2, or 3, and the summa-
tion convention for repeated suffixes is assumed. 

Taking the Fourier transform of (1) and (2), we obtain 
the matrix equation [6] 

b
j A( z )b( z )

z


 



 
,  (3) 

where 
u

b
 

   


  is the vector of displacements and scaled 

tractions, 
1 T

xz yz zz( , , )
j

     



. With the definition of b


 

the system matrix A has the structure: 

T

T C
A

S T

 
  
 

; 

where T, S and C are 3×3 sub matrices, C and S are sym-
metric. 

For any vertically stratified medium, the differential system 
(3) can be solved subject to specified boundary conditions to 
obtain the response vector b at any desired depth. If the re-

sponse at depth z0 is 0b( z )


, the response at depth z is 

0 0b( z ) P( z,z )b( z )
 

  (4) 

where P(z, z0) is the stress-displacement propagator. The 
matrix propagator is defined as 

0 0

0 1 1 1 1 2 2 1

z z

z z

P( z,z ) I A( )d A( ) A( )A( )d d ...             , (4*) 

where I is the 6 x 6 identity. If D is the local eigenvector 
matrix of A then 

1D AD     (5) 
where Λ is diagonal. The diagonal elements of Λ are the 
eigenvalues of A which are the vertical phase slownesses 

zq p . In general, we may write 

1 2 1 2

U U U D D D
p s s p s sdiag( q ,q ,q ,q ,q ,q )  ,  (6) 

where superscripts U and D denote upgoing and downgo-
ing disturbances, the subscript P denotes quasi-P and S1, 
S2 denote the two types of quasi-S. For an isotropic me-

dium U Dq q  , but for general anisotropy there is no 

such simple relationship between the vertical slownesses 
[9]. However, for our choice of Fourier transform and the 
definition of A in (3), it follows from the radiation condition 
that Im(qD)>0 and Im(qU)<0. 

Given the eigenvector matrix D, we may define a 
wavevector v


 from the transformation 

b Dv
 

. (6) 

As in the isotropic case the elements of v


may be 
identified with the amplitudes of upward and downward 
travelling plane waves, 

T
DDDuuu

T
Du vvv ],,,,,[],[ 


  (7) 

where φ, denotes qP amplitude and ψ, χ the two qS ampli-
tudes. As before, U and D denote up and down. 

If the elastic parameters are locally constant, then D is 
independent of z and substitution of (6) and (5) into (3) 
yields 

v
D j ADv
z


 



 
  (8) 

with the solution 
1

1 1 1
j ( z z )v( z ) e v( z ) Q( z,z ) v( z )    

  
          (9) 

where z1 is a reference depth. From (7) it is apparent that 
Q may be regarded as a 'wave propagator' since it is the 
solution to 

1
1

Q( z,z )
j Q( z, z )

z


 


, 1 1Q( z ,z ) I  (10) 

We note from (6) that within the uniform layer, Q has 
the structure [6] 

1

0
0
u

D

E
Q( z,z )

E

 
  
 

 (11)  

with  

1 11 1 2
u uu
s sp

j ( z z )q j ( z z )qj ( z z )q

uE diag e ,e ,e
        

, 

1 11 1 2
D DD
s sp

j ( z z )q j ( z z )qj ( z z )q

DE diag e ,e ,e
        

      (12) 

Using (6) and (9), the stress-displacement vector at any 
level z within the uniform medium is 

1
1 1b( z ) DQ( z,z )D b( z )

 
.  (13) 

By comparison with (4), the desired propagator for the 
uniform interval is 

1
1 1P( z,z ) DQ( z,z )D   (14) 

To find this propagator, it is necessary to find the ei-
genvalues (vertical slownesses), the eigenvector matrix D, 
and its inverse D-1. In the isotropic case these are known 
analytically, so the construction of the propagator is 
straightforward. In the anisotropic case, analytic solutions 
have been found only for simple symmetries, so in general, 
solutions can be found numerically.  

The layered anisotropic medium, which consists of n 
homogeneous anisotropic layers on (n+1) anisotropic half 
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space (Figure 1), is considered. The matrix propagator (4*) 
can be represented by a "wave propagator" in each layer 
for an anisotropic layered medium. The source in the form 

of a stress-displacement discontinuity 1s sF b b 
 

 is 

placed on the s-boundary (Fig. 1); it is easy to write the 
following matrix equation, using (13-14): 

1 1
s

n n,s s z z
b P b  


 

,  

1 1 1
1 1 1 1 1 1

s
n n n n n s s s s z z
v D D Q D D Q D b  

      
  


, 

1 1 2 2 1 1 0 0

1 1
1 1 1 0

s
s s ,s s ,s , ,z z

s s s

b P P P P b

D Q D DQ D b

  

 

   

   

 

 , 

1 1 1 1
1 1 1 1 1 0

1 1 1 1 1 1
1 0 0

n ,s
n n n n s s s s s ,

n ,s n ,s n ,s
s ,,

v D Q D D Q D (b F ) G (G b F )

G G b G F Gb G F

   
   

     

         

     

  

   , 

where 
1 1 1 1 1
1 1 1 1 2 1 1 1n n n n s s sG D D Q D D Q D D DQ D    
          

– characteristic matrix of a layered anisotropic medium. 
1 1

1 0 1 0 1 0n s , s ,v Gb G G F G( b G F ) G( b F ) 
         

     , (15) 

where 1
1s ,F G F 

  , 1 1
1

n ,s
s ,G G G   . 

Using (15) and the radiation condition (with a half-wave (n 
+1) not returned), and also the fact that the tension on the free 
surface equals zero, we obtain a system of equations: 

1

2

0
1

11 12 13 14 15 16
0

221 22 23 24 25 26
0

31 32 33 34 35 36 3

41 42 43 44 45 46 4

51 52 53 54 55 56
5

61 62 63 64 65 66
6

0
0
0

( )
x

( )
y

( )
z

P
D

S
D

S
D

u FG G G G G G
u FG G G G G G

G G G G G G u F
v G G G G G G F

G G G G G Gv F
G G G G G Gv F

    
       
        
   
   
        











 
 
 
 
 
 
 
 
 
 

  (16) 

or 
0 0 0

11 12 13 11 1 12 2 13 3 14 4 15 5 16 6

0 0 0
21 22 23 21 1 22 2 23 3 24 4 25 5 26 6

0 0 0
31 32 33 31 1 32 2 33 3 34 4

( ) ( ) ( )
x y z

( ) ( ) ( )
x y z

( ) ( ) ( )
x y z

G u G u G u (G F G F G F G F G F G F )

G u G u G u (G F G F G F G F G F G F )

G u G u G u (G F G F G F G F G

        

        

       

     

     

   
35 5 36 6F G F )







 

  (17) 

As a result, the displacement field of the free surface of 
the anisotropic medium is in the spectral domain as: 

0

0 13 1

0

x

y

z

u

u u (G ) y

u



 
 

   
 
 

 
  (18) 

where 

11 12 13
13

21 22 23

31 32 33

G G G

G G G G

G G G

 
   
 
 

, 

a

y b

c

 
   
 
 


, 

)~~~~~~( 616515414313212111 FGFGFGFGFGFGa  , 

)~~~~~~( 626525424323222121 FGFGFGFGFGFGb  , 

)~~~~~~( 636535434333232131 FGFGFGFGFGFGc  . 
Using (18) and the three-dimensional Fourier transform, 

we obtain a direct problem solution for the displacement 
field of the free surface of an anisotropic medium in the 
time domain as: 

2
3

1
8

x y

R

j ( t p x p y )

x y R x y

u( x, y,z ,t )

u( p , p ,z , )e dp dp d  





   
 



 , 

where zR – epicentral distance, px, py – horizontal slowness. 
The stress-displacement discontinuity is determined via 

the seismic in matrix form [7]: 
1

55
1

44

1
33

1
13 33

1
23 33

xz

yz

zz

z

x xx zz y xy

x yx y yy zz

x zx xz y zy yz )

c M

c M

c M
F ( z z )

p ( M c c M ) p M

p M p (M c c M )

p (M M ) p (M M











 
 
 
 
      
  
 
    


  (19) 

where Mxx, Myy, Mzz, Mxz, Myz, Myx, Mxy, Mzy, Mzx – compo-
nents of the seismic moment tensor, and c13, c23, c33, c44, 
c55 – components of the stiffness matrix. 

Matrix method. Inverse problem 

We can write the stress-displacement discontinuity F


 
for weak seismic events as: 





























0
0
0

3

2

1

F

F

F

F


. (20) 

Using (16, 19, 20), we obtain a system of equations, 
which has a unique solution: 

0 0 0
11 12 13 11 1 12 2 13 3

0 0 0
21 22 23 21 1 22 2 23 3

0 0 0
31 32 33 31 1 32 2 33 3

( ) ( ) ( )
x y z

( ) ( ) ( )
x y z

( ) ( ) ( )
x y z

G u G u G u (G F G F G F )

G u G u G u (G F G F G F )

G u G u G u (G F G F G F )

      
      


     

  

  

  

.  (21) 

1s ,F G F 
  ,  (22) 

where 1s ,G  is the characteristic matrix of the source. 

Using (21, 22), we find explicitly the stress-displacement 

vector F


. From (19) equations for the determination of the 
seismic moment tensor components are derived: 

1 55

2 44

3 33

xz zx

yz zy

zz

M M F c

M M F c

M F c

   
   

  

  (23) 

To determine the angles of orientation of the plane of 
rupture (φs, δ, λ), we use the trigonometric system of equa-
tions which represent the known components of seismic 
moment tensor via the angles of orientation of the plane of 
rupture [1]: 
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0

0

0

2
2

2

xz s s

yz s s

zz

M M (cos cos cos cos cos cos )

M M (cos cos cos cos sin cos )

M M sin sin

         

          

  

, (24) 

where М0 – seismic moment determined from the spectrum 
of seismograms. The found angles of orientation of the 
plane of rupture (φs, δ, λ) are substituted in the following 
equation to find the total seismic moment tensor [1]: 

2
0

0

2
0

2 2
12 2 2
2

2 2

xx s s

xy yx s s

yy s s

M M (sin cos sin sin sin sin )

M M M (sin cos cos sin sin sin )

M M (sin cos sin sin sin cos )

           

           

          

.(25) 

As a result, we write the seismic moment tensor using 
the symmetry condition: 

xx xy xz

xy yy yz

xz yz zz

M M M

M M M M

M M M

 
 

  
 
 

.  (26) 

 
Determining the focal mechanism by graphical 

method 
Today, the focal mechanism solution for earthquakes in 

a region of low seismic activity is a topical issue. It is of 
crucial importance for the Transcarpathian region of 
Ukraine, where the number of stations is limited and seis-
mic activity is low. It is impossible to determine a focal 
mechanism with software packages. 

It is proposed to determine the focal mechanism by ap-
plying the traditional graphical method based on the first 

arrival P-waves [10] using the information about fuzzy first 
motion [5] and the S/P amplitude ratio [8]. 

To test the graphical method, an event dated 
04.04.2013 21:15:14.36 is considered (φ=48.1977, 
λ=23.4663, h=1.73 km) near the village Nyzhnye Sely-
shche. This event was recorded by 9 stations (Figure 2) 

 

 
Figure 2. Map of seismic stations in the Transcarpathian 
 region and the specified location near to the epicenter  

of events near Nyzhnye Selyshche village 
 

The polarities of first motion P-waves were defined from 
complete records seismograms taking into account the pos-
sible inversion of the sign on the z-component. A logarithm 
of the amplitude ratio S/P is calculated using data from the 
three components seismic records of this event at each sta-
tion [8]. Input data for the azimuth and take-off angle are 
calculated by software packages for this event (Table 1). 

 

Tab le  1  
Input data for the focal mechanism solution 

Stations First arrival Azimuth,˚ Take-off angle,˚ lg As/Ap 

NSLU + Pg 269 -53 - 
KORU -Pg 260 31 0.43 
MEZ -Pg 6 31 0.084 
BRIU -Pn 295 42 0.65 
TRSU -Pn 253 42 0.57 
BERU хPn 274 42 2.64 
MUKU -Pn 297 42 0.71 
UZH -Pn 299 45 0.88 
KSV -Pn 83 45 1.05 

 

The graphical method is used to determine the focal 
mechanism for this event according to the input data [10]. 
The data about first motion P-wave is plotted using a lower-
hemisphere stereographic projection. The point-projection 
rays from the source to the station were applied on the 
stereonet. The red points are the points of compression 

(where the P-wave first motion recorded was up), the blue 
points are the points of dilatation (where the P-wave first 
motion recorded was down), and black points are the 
points of fuzzy first motion. Several averaged versions of 
the nodal plane locations are determined out of all the pos-
sible alternative versions for this event (Figure 3). 

 

 
Figure 3. Averaged versions of the nodal planes locations for event 04.04.2013 21:15:14.36  

(φ=48.1977, λ=23.4663, h=1.73 km) near the village Nyzhnye Selyshche 
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The determining criteria for the most suitable locations 
of the nodal planes for the 4.04.2013 earthquake were: 
fuzzy first motion on the station BERU, a small logarithm 
value of amplitude ratio S/P at the station MEZ indicates a 
location projection station in the middle of the quadrant, 
and the logarithm value of the amplitude ratio S/P at the 

station KSV, which is larger than 1, indicates the proximity 
to the nodal line. Consequently, the focal mechanism for 
event 04.04.2013 21:15:14.36 (φ=48.1977, λ=23.4663, 
h=1.73 km) near the village Nyzhnye Selyshche is repre-
sented by diagram (Figure 4) with parameters in Table 2. 

 
Table  2  

Parameters of the focal mechanism for the event 04.04.2013 21:15:14.36  
(φ=48.1977, λ=23.4663, h=1.73 km) near the village Nyzhnye Selyshche 

Plane1 Plane2 P T N 
Strike (φs) Dip (δ) Slip (λ) Strike (φs) Dip (δ) Slip (λ) Azm Plunge Azm Plunge Azm Plunge 

174˚ 45˚ 173˚ 269˚ 85˚ 45˚ 33˚ 27˚ 142˚ 34˚ 274˚ 44˚ 
 

 
Figure 4. The focal mechanism determined by graphic method for the event04.04.2013 21:15:14.36 

(φ=48.1977, λ=23.4663, h=1.73 km) near the village Nyzhnye Selyshche 
 

Seismic moment and other spectral parameters are 
computed by (27-33) [2] for each station and the average 
values of these parameters are represented in Table 3. 

The seismic moment is computed according to: 
3

0 04 p aM rv u / ( S )    ,  (27) 

where r  – is hypocentral distance, pv - P-wave velocity, ρ 

– density, 0u  – low-frequency level (plateau) of the dis-

placement spectrum, Θ – average radiation pattern and aS  

– surface amplification for P waves.  
The radius of shear dislocation R  is computed from 

the relationship: 
3 36

2 3
p

c

. v
R

f



,  (28) 

where cf - is the corner frequency of the P wave. The size 

of the circular rupture plane is computed as: 
2A R  . (29) 

The average source dislocation is according to 

0D M / A  ,  (30) 

where the shear modulus is computed by 
2 3pv /   . (31) 

The stress drop, seismic energy and magnitude ML are 
computed according to:  

3
07 16M / R  ,  (31) 

5
0 1 6 10sE M .    ,  (32) 

4 1 8sML (lg E ) / .  .  (33) 

With the seismic moment and the parameters of the 
focal mechanism, the moment tensor M is defined from 
(24, 25) [1]:  

11

-11.42494 -54.24707 -54.15575
-54.24707 1.96935 5.69199 10
-54.15575 5.69199 9.45559

M

 
   
 
 

 (34) 

Approbation of the inverse problem 
The inverse problem is solved for the event, which took 

place near the village Nyzhnje Selyshche. 
The orientation angles of the fault plane are determined 

by the graphic method (φs = 174º, δ = 45 º, λ = 173º) and 
the focal mechanism is determined for the event. The 
seismic tensor (27) is obtained by substituting the orienta-
tion angles of the fault plane and the magnitude of seismic 
moment in (24, 25).  

The real seismic records at station Mezhyhirya is used 
for the inverse problem. The earthquake source is located 
in the first layer. Therefore, a two-layered anisotropic 
model of medium (with TI symmetry) is selected, whose 
parameters are given in Table 4.  

The orientation angles of the fault plane (φs = 177º, δ = 
45º, λ = 175º) are obtained as a result of the inverse prob-
lem solving using spectrum of real seismic record and the 
velocity model (Table 4). The seismic tensor is obtained by 
substituting the orientation angles of the fault plane and the 
magnitude of seismic moment in (24, 25):  

11

-5.73144 -54.70825 -54.57932
-54.70825 -1.03079 2.86038 10
-54.57932 2.86038 6.76224

M

 
   
 
 

(35) 

The focal mechanism is shown in Figure 4 which is 
based on the seismic moment tensor (35).  
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Table  3  
Spectral parameters for the event 04.04.2013 21:15:14.36 (φ=48.1977, λ=23.4663, h=1.73 km) near the village Nyzhnye Selyshche 

0M , Nm cpf , Hz R ,m A ,m2 
D ,m  , MPa sE ,J ML  

6.68784*1012 6.81 213.191 1.4271*105 2.85*10–3 0.302 1.07*108 2.22 
 

Table  4  
Velocity model for seismic station Mezhyhirya 

№ с11, GPa с13, GPa с33, GPa с44, GPa с66, GPa 
ρ,  

kg/m3 h, m 

1 81.12 25.342 84.397 37.036 28.127 3000 2400 
2 100.38 33.464 100.38 33.458 33.458 3367 6600 

 

Table  5  
Velocity model for seismic station Korolevo 

№ с11, GPa с13, GPa с33, GPa с44, GPa с66, GPa 
ρ,  

kg/m3 h, m 

1 76.81 24.57 76.71 24.36 24,26 3000 2400 
2 100.38 33.464 100.38 33.458 33,458 3367 6600 

where c11, c13, c33, c44, c66 – components of the stiffness matrix, ρ – density, h – thickness of layer.  
 

 
Figure 5. The focal mechanism determined by the pro-

posed method for the event which took place near the village 
Nyzhnje Selyshche (φs = 177º, δ = 45 º, λ = 175º) 

The focal mechanisms of the earthquake built by two 
different methods (Figure 4–5) are actually identical, 
which confirms the correctness and accuracy of the ma-
trix method. 

The synthetic seismograms are constructed for the 
earthquake's focal mechanism (Figure 5) and the velocity 
models (Table 4-5) to confirm the inverse problem solu-
tions. A comparative analysis is done of synthetic seismo-
grams and real records at the stations Mezhyhirya and 
Korolevo, which are filtered in the frequency range from f0 
= 0.1Hz to fmax = 5Hz (Figure 6-7).Synthetic seismograms 
are built for the obtained seismic tensor (35) and the veloc-
ity model (Table 4-5).  

 

  
Figure 6. Comparison of synthetic seismograms with real 

seismic record from station Mezhyhirya 
Figure 7. Comparison of synthetic seismograms with real 

seismic record from station Korolevo 
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Conclusion 
Comparative analysis of waveforms confirms the feasi-

bility of using the matrix method for solving seismology 
problems with earthquakes sources being distributed in 
time. Similarity of the focal mechanisms obtained by two 
different methods confirms the correctness of the solutions 
for this event. 

More accurate results in determining the earthquake 
focal mechanisms are obtained when using the spectrum 
data from stations that are located at a smaller epicentral 
distance. The best results were obtained for those stations 
where records have a lower noise level. Choosing the ve-
locity model is essential for determining earthquake focal 
mechanisms.  

We can conclude that the graphical method is suitable 
for determining focal mechanisms for earthquakes in the 
Carpathian region of Ukraine. 
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ВИЗНАЧЕННЯ ФОКАЛЬНОГО МЕХАНІЗМУ ЗЕМЛЕТРУСУ В ЗАКАРПАТТІ 

У роботі представлено теорію поширення сейсмічних хвиль в анізотропному середовищі з використанням матричного методу 
Томсона-Хаскела, а також визначення механізмів вогнищ місцевих землетрусів. Такі задачі є надзвичайно актуальні для вивчення сейс-
мічності Закарпаття через обмежену кількість сейсмічних станцій. 

Метою роботи є розроблення методики для побудови поля переміщень на вільній поверхні анізотропного середовища і визначення меха-
нізмів вогнищ місцевих землетрусів графічним методом. Суть графічного методу полягає у використанні сейсмічних записів на станціях з 
неточним вступом прямих Р-хвиль. Як допоміжний параметр у роботі використано відношення амплітуд прямих Р і S хвиль. 

Результати запропонованих підходів показано на прикладі використання записів події 04.0.2013 р. біля с. Н. Селище (φ=48.1977; 
λ=23.4663; h=1.73 км, МL=2). Зокрема, представлено порівняльний аналіз сейсмограм, отриманих матричним методом із реальними 
записами, що підтверджує використання методики для визначення параметрів джерела. На основі графічного методу для визначення 
механізмів вогнищ місцевих землетрусів отримано спектральні та геометричні параметри джерела: сейсмічний момент, радіус зсув-
ної дислокації, площу розриву, середню посувку по розриву, спад напруги, енергію та магнітуду. 

Наукова новизна роботи полягає у розроблені методики визначення поля переміщень у випадку анізотропного середовища з вико-
ристанням матричного методу, а також розвитку графічного методу для побудови механізмів вогнищ землетрусів Закарпаття у 
випадку обмеженої кількості станцій. 

Практична значимість роботи полягає в тому, що на основі розроблених підходів є можливість визначення параметрів вогнищ міс-
цевих землетрусів, що є важливим для вивчення сейсмічності регіону. Розроблена модифікація матричного методу для поширення сейс-
мічних хвиль в анізотропних середовищах може бути використана для визначення тензора сейсмічного моменту у випадку обмеженої 
кількості станцій. 
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ОПРЕДЕЛЕНИЕ ФОКАЛЬНОГО МЕХАНИЗМА ЗЕМЛЕТРЯСЕНИЯ В ЗАКАРПАТЬЕ 

В работе представлено теорию распространения сейсмических волн в анизотропной среде с использованием матричного мето-
да Томсона – Хаскела, а также определения механизмов очагов местных землетрясений. Такие задачи чрезвычайно актуальны для 
изучения сейсмичности Закарпатья из-за ограниченного количества сейсмических станций. 

Целью работы является разработка методики для построения поля перемещений на свободной поверхности анизотропной сре-
ды и определения механизмов очагов местных землетрясений графическим методом. Суть графического метода заключается в 
использовании сейсмических записей на станциях с неточным вступлением прямых Р-волн. Как вспомогательный параметр в работе 
использовано отношение амплитуд прямых Р и S волн. 

Результаты предложенных подходов показано на примере использования записей события 04.0.2013 г. в районе с. Н. Селище (φ = 
48.1977; λ = 23.4663; h = 1.73 км, МL = 2). В частности, представлен сравнительный анализ сейсмограмм, полученных матричным мето-
дом, с реальными записями, подтверждающий возможность использования методики для определения параметров источника. На 
основе графического метода для определения механизмов очагов местных землетрясений получены спектральные и геометрические 
параметры источника: сейсмический момент, радиус сдвиговой дислокации, площадь разрыва, среднюю подвижку по разрыву, сброс 
напряжения, энергию и магнитуду. 

Научная новизна работы заключается в разработанной методике определения поля перемещений в случае анизотропной среды с ис-
пользованием матричного метода, а также развития графического метода для построения механизмов очагов землетрясений Закарпа-
тья в случае ограниченного количества станций. 

Практическая значимость работы заключается в том, что на основе разработанных подходов является возможность определе-
ния параметров очагов местных землетрясений, что важно для изучения сейсмичности региона. Разработанная модификация мат-
ричного метода для распространения сейсмических волн в анизотропных средах может быть использована для определения тензора 
сейсмического момента в случае ограниченного количества станций. 

 




