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Мета статті – отримати математичні конструкції для геологічних об'єктів типу синкліналей та антикліналей, об-

ґрунтувати єдиність оберненої задачі відновлення аналітичних моделей горизонтально-шаруватого геологічного середо-
вища з кількома густинними межами розділу для цих конструкцій у визначеному заздалегідь класі Чорного контактних по-
верхонь та апробувати розроблену методику для їх ітераційного обчислення. Сукупність цих двох моделей утворює нову 
уточнену постановку оберненої задачі гравіметрії для контактної поверхні. Це необхідно для покращення відомих процедур 
підбору у розв'язанні обернених задач гравітаційних і магнітних полів. 

Обернена задача визначення контакту у горизонтально-шаруватому середовищі з кількома густинними межами зведе-
на до розв'язання нелінійного інтегрального рівняння, яке описує контакт, обмежений заданими сталими асимптотами у 
плоскій області. Проте у такій постановці практика обчислень ускладнюється проблемою еквівалентності розв'язків.  

Для цієї моделі наведені дві теореми розділення полів – для випадку кількох однозв'язних об'ємів і для випадку кількох 
шарів, що не перетинаються. Теореми єдиності засновані на теоремах розділення полів, які дозволяють звести розв'язок 
оберненої задачі за сумарним зовнішнім полем n об'єктів (рудних тіл, меж розділу шарів) до розв'язку оберненої задачі для 
окремих об'єктів – за значеннями поля від цих геологічних об'єктів.  

Вказано чисельні схеми для визначення початкового наближення густинного контакту у багатошаровому геологічному 
середовищі. Ці алгоритми формально співпадають на першому кроці ітерацій. Аналогічні схеми на основі ітераційної конс-
трукції Чебишева запропоновані і для ітераційного уточнення поведінки "асимптот" контакту. 

Здійснено моделювання синтезованих початкових наближень антикліналей" і "синкліналей" за цими алгоритмами. Вка-
зано альтернативний спосіб обчислень, який базується на визначенні різних моментів кривої контакту. Для обчислення 
інтегралу отримано відповідний вираз у скінченних квадратурах. 

За результатами моделювання виявлено, що нові аналітичні конструкції для обчислення багатошарових контактів 
при їх чисельному моделюванні за способом Ньютона швидше збігаються порівняно із класичними методами обчислень 
контакту. Їхню стійкість на даних великої розмірності доцільно перевірити на польових даних. Спроби обійтися грубими 
наближеннями успіху не мали: збіжність на порядок менша та досить сумнівний геологічний зміст. 

Ключові слова: теорія потенціалу, аналітична модель, контактна задача, класи контактних поверхонь, розділення гра-
вітаційних полів, моделювання. 

 
Постановка проблеми. У рамках перебудови ана-

літичної бази теорії потенціальних полів визначено 
аналітичні моделі гравітаційного поля та складно по-
будованого горизонтально-шаруватого геологічного 
середовища [5]. Перша модель отримана з еквівален-
тного зображення рівняння сили тяжіння [7], який ви-
пливає з аналізу плоского нормального потенціалу 
сили тяжіння у локальному околі точки вимірювань. 
Хоча можливий і інший підхід до розробки аналітичних 
конструкцій поля [9]. Друга модель формалізована 
обмеженнями, властивими класу Чорного контактних 
поверхонь. Ці моделі виросли з  нових підходів до чи-
сельного обґрунтування методів обробки великих об-
сягів геофізичної інформації. Сукупність цих двох мо-
делей утворює нову постановку оберненої задачі 
гравіметрії для контактної поверхні.  

Аналіз публікацій. Визначення контакту у відомих 
моделях середовища [8] трактується як обчислення 
різниці відхилень деякої теоретичної моделі середо-
вища від заданого її опорного елемента, від якого ці 
відхилення не надто великі. Але при цьому постулю-
ється наявність апріорної інформації про елементи 
геометрії (глибину, форму, орієнтацію) цього опорного 
елемента моделі для формування початкових набли-
жень. Вдалий вибір початкових наближень досі визна-
чає успіх ітераційних алгоритмів підбору [2]. 

Для горизонтально-шаруватого середовища з кіль-
кома густинними межами шарів введено аналітичні мо-
делі поля і геологічного середовища, в яких опорні 
елементи (глибина і асимптоти) розраховуються в про-
цесі ітерацій. Ці розв'язки у вигляді нелінійних рівнянь 
справедливі „в малому", для локальних областей, роз-
міри яких істотно залежать від розмірів аномальної об-
ласті і точності апроксимації складових поля [4].  

Мета статті. Обґрунтуванню єдності цих моделей у 

визначеному заздалегідь класі (1, )( , )Ch     та апро-
бації конструктивних алгоритмів для їх обчислення при-

свячена ця стаття. 
Загалом єдиність розв'язку обернених задач граві-

метрії гарантована лише в кількох класах аномальних 
джерел. Зокрема, для контактних задач однозначне 
визначення густини  1 3,    і кусково-неперервної межі 

розділу середовищ  3 1x   справедливе для класу Ост-

ромогильського    1,Ost ,a b , у якому 
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],[, 21 bacc   – внутрішні або граничні точки відрізку 
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де 1 2, 0h h  . Тут  
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1Sz h  , 2iz h  , 1 20 h h  .  
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Зауваження 1. Підкласи  
 1,Ost 
  і  

 1,Ost 
  класу 

   1,Ost ,a b  можна вважати моделями антикліналей і 

синкліналей. 
Загалом задача визначення контакту у горизонтально-

шаруватому середовищі з кількома густинними межами 
зведена до розв'язання нелінійного інтегрального рівнян-
ня, яке описує контакт, обмежений заданими сталими 

асимптотами у плоскій області 2G  (1, )( , )Ch     [5]: 
2 2

1 1
12 2

1 1 3 1

( )
( ) ln

( ) ( )

b

a

x H
u x k d

x x

  
 

    .   (6) 

Однозначність відновлення контакту у цій задачі га-

рантована на класі Чорного (1, )( , )Ch     за умов, що 

значення h  (скінченна дуга кривої ( )z  ) і величина 

стрибка щільності 2 1      відомі. Клас (1, )( , )Ch     

визначено, як підклас Страхова, а саме, у класі (5) ви-

ділена горизонтальна смуга G , обмежена згори і знизу 

прямими 1 1z h , 2z h , 1 20 h h    . Цю смугу роз-

діляє на два шари із густиною 1 , 2  нескінченно глад-

ка крива G  з асимптотою z h , 1 2h h h  , зірчас-

тою щодо нескінченно віддаленої точки. На смугу дода-

тково накладена умова ( ) ,z h k


     0,   

0, ( )z G     .  

Така геометрія множини коректності дозволяє без 
зайвих ускладнень формувати початкові наближення 
для обчислення множин контактів. Проте у такій поста-
новці практика обчислень ускладнюється проблемою 
еквівалентності розв'язків. Проілюструємо цю проблему.  

Проблема розділення поля. У практиці гравірозві-
дки вирішальну роль відіграють задачі, у яких зовнішнє 
поле створюють складні розподіли мас, наприклад, n 
попарно неперетнутих об'ємів kG , 1, 2, ,k n  , або n 

меж розділу шарів різної густини, що попарно не пере-
тинаються. У задачах із складними розподілами мас 
єдиність розв'язку оберненої задачі вірна для досить 

вузьких класів, тобто, за наявності великої апріорної 
інформації про джерела аномалій.  

Теореми єдиності оберненої задачі гравірозвідки 
для складних розподілів мас засновані на теоремах 
розділення полів, які дозволяють звести розв'язок обе-
рненої задачі за сумарним зовнішнім полем n об'єктів 
(рудних тіл, меж розділу шарів) до розв'язку оберненої 
задачі для окремих об'єктів – за полями від цих об'єктів. 

Приклад  1 . Нехай зовнішнє поле створюється ма-
сами з носієм у вигляді об'єднання n cкінченних однозв'яз-
них об'ємів kG , 1, 2, ,k n  , що попарно не перетина-

ються, з межами  kG , що не мають попарно загальних 

точок. Густина мас в кожному з об'ємів kG  – обмежена. 

Теорема розділення полів. Якщо відомі зовнішні 
один щодо одного гладкі замкнуті кінцеві поверхні k , 

1, 2, ,k n  , строго усередині кожної з яких є одна і 

тільки одна компонента kG  носія мас, то за заданим 

сумарним зовнішнім полем (поза об'єднанням об'ємів 

kG ) поля компонент kG  визначаються однозначно. 

З цієї теореми легко отримати теореми для склад-
них розподілів мас, аналогічні теоремам Новікова і Ра-
ппопорта-Сретенського – для об'ємів kG , зірчастих що-

до заданої точки, чи таких, які мають середню густину. 
Густина ( )  і система контактних меж, що не перети-
наються, відновлюється однозначно [6]. 

Приклад  2 .  Нехай в n -шаруватому двомірному 
середовищі кожен з шарів kG  має постійну густину k . 

Нехай межі розділу шарів  kG  – нескінченні криві з го-

ризонтальними асимптотами kz h  і kz h  

( 0, 0k kh h   ) ліворуч і праворуч (рис. 1). 

 

 
Рис. 1. Розподіл густин у декількох шаруватих джерелах аномалій 

 
Теорема розділення полів. Якщо кожна із меж 

розділу kG  містить горизонтальний відрізок kG  

( const  , k ka b   ), відомі проекція деякої його час-

тини на вісь Ох k kx     і прямі j , які відділяють 

межі шарів, то за заданим зовнішнім (при 0z  ) сума-
рним полем g  з точністю до сталих визначаються 

поля jg від окремих меж.  

Наслідок [3]. Якщо при цьому відомі положення 

асимптот jz h  і jz h  і перепад густини j , межі 

kG  ( 1, 2, ,k n  ) розділу шарів відновлюються за 

заданим сумарним полем однозначно. 
Задля відновлення контакту на основі виразу (6) за-

пропоновано ряд ітераційних схем (16)-(18) [5]. Розв'яз-
ки легко отримати за відомого 0 1 0 0( ) : ( ) ( ) ( )z z z h      . 

Зауважимо, що ці алгоритми формально співпадають 
на першому кроці ітерацій, оскільки 1 0z z , а на насту-

пних кроках вони – формально різні. Аналогічні схеми 
запропоновані і для ітераційного уточнення поведінки 
"асимптот" H const . Власне, початкове наближення 

контакту можна задають як 0 0 0( ) ( , )z H g H       або 

0 0 0( ) ( )z H k g      , де a b   , 0 0H   – задана ста-
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ла ліва "асимптота" функції 0z  [ , ]a b , 

( ) ( ) ( )g g g a     , 0( , )g H   – аналітично продовжене 

на рівні 0H  значення ( )g  , 0k  – шукана амплітуда 

ундуляцій. 
Для обчислення 0k  визначена схема Чебишева [5]  

2

1 3

( ) ( ) ( )

( ) 2 ( )
n n n

n n
n n

f z f z f z
z z

f z f z


  

 
,   (7) 

де 
2 2

2 2
2

( ) (1 ) ln[(1 ) ]

ln( ) 2 arctg
(1 )

f z c c z

z
c c z z

z c c

    

   
 

 

2 2 2 2(1 ) ln[(1 ) ] ln( )c c H c c H        

2
2 arctg .

(1 )

H
H g

H c c
 

 
          (8) 

Зауважимо, що послідовні наближення кореня (0)z  
рівняння ( ) 0f z   можна отримати простіше, ніж 

П. Л. Чебишев. А саме: якщо корінь (0)z  розташована у 
вузькому інтервалі [ , ]  , і nz  обрано звідси ж, то з то-

чністю до малих 3-го порядку щодо (0) (0); ,nz z z  

[ , ]nz     маємо:  

(0) (0) (0) 2( )
0 ( ) ( ) ( )( ) ( )

2
n

n n n n

f z
f z f z f z z z z z


      . 

Звідси при ( ) 0nf z   (що вірно, бо лише для кратних 

коренів ( ) ( ) 0f z f z  ) отримуємо 

(0) (0) 2( ) ( )
( )

( ) 2 ( )
n n

n n
n n

f z f z
z z z z

f z f z


    

 
. 

Завдяки малості різниці (0) 2( )nz z , поклавши 
2

(0) 2 ( )
( )

( )
n

n
n

f z
z z

f z

 
    

, отримаємо 
2

(0)
3

( ) ( ) ( )

( ) 2( ( ))
n n n

n
n n

f z f z f z
z z

f z f z


   

 
, 

звідки випливає вираз (7).  
Зауваження 2. Величини ( ) 0Sf z  , ( ) 0if z  , а за 

значних 0H   маємо ( ) 0Sf z  , ( ) 0if z  . Отже, корені 

Bz , Hz  рівнянь  ( , ) 0, ( , ) 0B S H if z g f z g   дають набли-

ження Sz  і iz  знизу і зверху, що впливає на "якість" 

початкового наближення 0 0( )z z  . 

Зауваження 3. Величини Sz  і iz  невпевнено визна-

чаються при великих H , особливо якщо самі Sz  і iz  

великі. Тому додатково, крім Sz  і iz , визначають при 

( ) ( ) 0g g b g a    , крім заданої лівої H   і праву "аси-

мптоту" H   кривої ( )z z  , тільки у виразі ( )f z  замість 

Sg  або ig  беруть g  для визначення H  .  

Враховуючи всі припущення попередньої статті [5] 
та зроблені вище, приступаємо до обчислень. 

Моделювання початкових наближень. Розглянь-
мо схему відшукання початкового наближення для кон-
тактів, що описуються функціями (3, 4) з класів "анти-

кліналей" (1, 2)
( ) ( , )Ost a b  і "синкліналей" (1, 2)

( ) ( , )Ost a b . Ти-

повими представниками цих класів є функції типу „ан-
тикліналь" та „синкліналь", відповідно (рис. 2): 

( ) (1 ) , 0 1,z H a            (9) 

( ) (1 ) , 0 1.z H a            (10)  

Для відшукування 0k  систему координат зручно обрати 

так, щоб точка екстремуму ( )g x  була на початку коорди-

нат, тобто 
[ , ]

( ) (0)
c d

extr g x g . Тоді і інтервал [ , ]c d  обираєть-

ся "симетрично" щодо початку, так само як і ,a c b c   . 
При цьому для моделі (9) (ліворуч на рис. 2) вірні відношен-
ня 1 arctgC H  , 1 2H z   , 1 2   , а для моделі (10) 

2 arctgC z  , 1 2H z   , 1 2   . 

Функція 2 2 2 2( ) 2 ln( ) 4 arctg 2 ln( )
c

f z c c z z c c H
z

       

4 arctg ,
c

H g
H

   де Sg g  для антикліналі, ig g  – 

для синкліналі (обидва значення – зі своїми знаками). Її 

похідні ( ) 4arctg
c

f z
z

  ; 
2 2

4
( )

c
f z

c z
  


. Оскільки 

( )f H g , то для синкліналі ( ) 0f H  , для антикліналі 

( ) 0f H  . В обох випадках маємо 
2 2

4
( ) 0

c
f H

c H
   


. 

Тому ( ) ( ) 0f H f H   для синкліналі і ( ) ( ) 0f H f H   для 

антикліналі. У обох випадках для визначення Sz  і iz  

використовується процес (7). Спроби обійтися грубими 
наближеннями Sz  і iz , обчисленими не за схемою (7), 

успіху не мали, хоча у ряді випадків призводили до до-
брих результатів.  

 

 
Рис. 2. Моделі контактів, описувані функціями з класу "антикліналей" (9) и "синкліналей" (10) 

 

Так, якщо покласти 
2 2

2 2
2 ln 4 arctg

c H c
g c H

c z H


  


 

4 arctg
c

z
z

 , то для синкліналі z H u  , , , 0H z u  , 

1 2    (знак рівності – при c  ) і, отже, 

1 24 arctg 4( ) arctg 4 4( ) 0
c c

H H u H H u
H H u
       


. 

Тому 
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2 2

2 2

2 2 2 2 2

2 2 22

ln ,
2

( ) ,

( )

g

c

g

c

c H g

c z c

c z c H e

u c H e c H










  

   

. (11) 

Для антикліналі 1 2, , 0,z H u H u       і, отже 

1 24 arctg 4( ) arctg 4 4 0
c c

H H u H z
H z
       . Тому 

2 2
2 2 22

2 2
ln , ( )

2

g

c
c H g

u H c H e c
c z c


    


.      (12) 

При невеликих значеннях u  (порівняно з H ) можна 
вчинити інакше, а саме, взяти величини 

2 2 2 2
2 2

2
ln[ ( ) ] ln( )

H
c H u c H u

c H
    


, 

2 2
( ) arctg arctg arctg

c c c cH
H u H u

H u H H c H
       

для синкліналі. Тому 4 arctg
c

g u
H

   і, отже,  

4 arctg
c

u g
H

 , (13) 

оскільки для синкліналі 0g  . Для антикліналі, хоча 

0g  , але z H u  , тому формула (13) є вірною. За-

уважимо, що ( )f H g , ( ) 4 arctg
c

f H
H

  і тому (13) є 

першим наближенням в ітераційному процесі (7). 
Інший спосіб обчислень базується на визначенні рі-

зних моментів кривої ( )z z  . У простому випадку, згі-

дно теореми Гауса ( ) 2g x dx m




  , де m  – аномальна 

маса, зосереджена в області, обмеженій кривими 

1 ( )z z  , 2z H  , a b   , вісь oz спрямована вгору. 

Через це маємо 

( ) ( ( ) ) , 1
b b b

a a a

m z d Hd z H d               .

Звідси ,S i

m m
z H z H

b a b a
   

 
 або 

1
( ) ,

2 ( )Sz g x dx H
b a





 
  
1

( ) .
2 ( )iz g x dx H

b a





 
          (14) 

У цих формулах всюди вважаємо, що 

( ) ( ) .
d

c

g x dx g x dx




   Для обчислення цього інтегралу 

отримано відповідний вираз у квадратурах. 

Висновки. Нові аналітичні конструкції (6) для обчи-
слення багатошарових контактів при їх чисельному мо-
делюванні (7) за способом Ньютона [5] швидше збіга-
ються порівняно із класичними ітераціями [1]. Їхню стій-
кість на даних великої розмірності доцільно перевірити 
на польових даних.  

Спроби обійтися грубими наближеннями, обчисле-
ними не за (7), а за (11), (12), загалом, успіху не мали: 
збіжність на порядок менша, ніж у [1]; математично ко-
ректні результати мають сумнівний геологічний зміст. 
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UNIQUNESS OF APPROXIMATION CALCULATIONS FOR MULTILAYERED DENSITY INTERFACES 
The goals of the paper are to obtain mathematical constructions for geological objects, such as synclines and anticlines; to substantiate the 

uniqueness of the inverse problem when renovating analytical models for the horizontally layered geological media with several density interfaces 
in contact surfaces predefined by Chorniy; and to try the techniques developed for their iterative calculation.  

A combination of these two models develops a new and more accurate approach to gravimetric inverse problems for the contact interface. This 
becomes necessary to improve standard fit procedures when solving inverse problems in gravity and magnetic fields. 

The inverse problem of the density interface in the horizontally layered geological media with several density interfaces is confined to the 
solution of the nonlinear integral equation that describes the contact surface restricted by the given constant asymptotes within the planar region.  

Still, this makes computation more complicated because of the problem of equivalency solutions. 
Two field separation theorems are proposed for this model – one for several 1-connected volumes and another one for the non-crossed layers. 

The theorems of uniqueness are built on the theorems of field separation enabling the solution of the inverse problem by the summary external 
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gravity field of n objects (ore bodies, layer interfaces etc.) through the solution of the inverse problem for separate objects – by the appropriate field 
values from these geological objects. 

The numerical schemes for the definition of the initial approximation of the density interface in the multilayered geological media are stated. 
These algorithms formally coincide within the first iteration. There are also proposed analogical techniques based of the Chebyshev iteration 
construction for the iterative specification of the behavior of the contact asymptotes. 

There were modeled synthetic initial approximations of synclines and anticlines by these algorithms. An alternative calculus method for it is 
pointed out, which is based upon the definition of the different moments of the interface curves. For the integral calculation there is obtained an 
appropriate expression in the finite quadratures. 

Modeling data show that new analytical constructions for the calculation of the multilayered contact interfaces within their Newtonian 
numerical approximation converge more quickly in comparison with classic techniques for the contact definition. Their invariability for the big 
dimension field data should be tested on the real measurements. No attempts to apply rough approximations were successful: convergence was 
considerably less than in previous cases, and, besides, there was a rather ambiguous geological maintenance. 

Key words: potential theory, analytical model, contact problem, classes of density interfaces, gravity fields separation, modeling. 
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ОБ ОДНОЗНАЧНОСТИ ВЫЧИСЛЕНИЯ ПРИБЛИЖЕНИЙ МНОГОСЛОИСТЫХ ПЛОТНОСТНЫХ КОНТАКТОВ 

Цель статьи – получить математические конструкции для геологических объектов типа синклиналей и антиклиналей, обосно-
вать единственность обратной задачи восстановления аналитических моделей горизонтально-слоистой геологической среды с 
несколькими плотностными границами раздела для этих конструкций в наперед определенном классе Черного контактных поверх-
ностей и апробировать разработанную методику для их итерационного вычисления. Совокупность этих двух моделей образует 
новую уточненную постановку обратной задачи гравиметрии для контактной поверхности. Это необходимо для улучшения извест-
ных процедур подбора в решении обратных задач гравитационных и магнитных полей. 

Обратная задача определения контакта в горизонтально-слоистой среде с несколькими плотностными границами сведена к ре-
шению нелинейного интегрального уравнения, которое описывает контакт, ограниченный заданными постоянными асимптотами в 
плоской области. Однако в подобной постановке практика вычислений усложняется проблемой эквивалентности решений.  

Для этой модели приведены две теоремы разделения полей – для случая нескольких односвязных объемов и для случая несколь-
ких непересекающихся слоев. Теоремы единственности основаны на теоремах разделения полей, которые позволяют свести реше-
ние обратной задачи по суммарному внешнему полю n объектов (рудных тел, границ раздела слоев) к решению обратной задачи для 
отдельных объектов – по значениям полей от этих объектов.  

Указаны численные схемы для определения начального приближения плотностного контакта в многослоистой геологической 
среде. Эти алгоритмы формально совпадают на первом шаге итераций. Аналогичные схемы на основе итерационной конструкции 
Чебышева предложены и для итерационного уточнения поведения "асимптот" контакта. 

Осуществлено моделирование синтезированных начальных приближений "антиклиналей" и "синклиналей" по этим алгоритмам. 
Указан альтернативный способ вычислений, который базируется на определении различных моментов кривой контакту. Для вычис-
ления интеграла получено соответствующее выражение в конечных квадратурах. 

По результатам моделирования выявлено, что новые аналитические конструкции для вычисления многослоистых контактов 
при их численном моделировании способом Ньютона скорее сходятся в сравнении с  классическими методами вычислений контакта. 
Их устойчивость на данных большой размерности целесообразно проверить на полевых данных. Попытки обойтись грубыми при-
ближениями успеха не имели: сходимость на порядок меньше и довольно сомнительное геологическое содержание. 

Ключевые слова: теория потенциала, аналитическая модель, контактная задача, классы контактных поверхностей, разделение 
гравитационных полей, моделирование. 




