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THE ADVANCED ALGORITHM OF STATISTICAL SIMULATION OF SEISMIC NOISE
IN THE MULTIDIMENSIONAL AREA FOR DETERMINATION THE FREQUENCY
CHARACTERISTICS OF GEOLOGICAL ENVIRONMENT

(PexomeHAo8aHO YrieHOM pedakyiliHoi konezil 0-pom ¢his.-mam. Hayk, npodp. b.I1. Macnoeum)

The article is devoted to the theory and methods of random process and field statistical simulation on the basis of their spectral
decomposition and modified Kotelnikov-Shennon interpolation sums, as well as using these methods in environmental geophysical
monitoring. The problem of statistical simulation of the multivariate random fields (homogeneous in time and homogeneous isotropic
with respect to the n other variables) is considered for introducing into seismological researches for determination the frequency
characteristics of geological environment. Statistical model and advanced numerical algorithm of simulation realizations of such
random fields are built on the basis of modified interpolation Kotelnikov-Shennon decompositions for generating the adequate
realizations of seismic noise. Real-valued random fields § (t, x), t € R, x € R ", that are homogeneous with respect to time and
homogeneous isotropic with respect to spatial variables in the multidimensional spase are studied. The problem of approximation of
such random fields by random fields with a bounded spectrum is considered. An analogue of the Kotelnikov—-Shannon theorem for
random fields with a bounded spectrum is presented. Improved estimates of the mean-square approximation of random fields in the
space R x R " by a model constructed with the help of the spectral decomposition and interpolation Kotelnikov-Shannon formula are
obtained. Some procedures for the statistical simulation of realizations of Gaussian random fields with a bounded spectrum that are
homogeneous with respect to time and homogeneous isotropic with respect to spatial variables in the multidimensional spase are
developed. There has been proved theorems on the mean-square approximation of homogeneous in time and homogeneous isotropic
with respect to the n other variables random fields by special partial sums. A simulation method was used to formulate an advanced
algorithm of numerical simulation by means of this theorems. The spectral analysis methods of generated seismic noise realizations are
considered. There have been developed universal methods of statistical simulation (Monte Carlo methods) of multi parameters
seismology data for generating of seismic noise on 2D and 3D grids of required detail and regularity.

Keywords: statistical simulation, spectral analyzes, seismic noise.

Introduction. This article describes the problem of
improved statistical simulation algorithm for random field
realizations with a limited spectrum which depends on time
and was set in the multidimensional variables area for
implementation into seismological research to determine
the frequency characteristics of geological environment
under the building sites. The model was built and based on
improved estimates of random field mean approximation
errors the improved algorithm was formulated by this model
for numerical simulation of field realizations that are
adequate to realizations of seismogram's noises.

It is a further theoretical generalization solved in papers
[5-11] for problems concerning the increase of variables
space dimensionality, where random field domain with the
limited spectrum is focused. This generalization direction
development is important because of necessarily to use the
proposed method for statistical modeling of random fields
with a limited spectrum that depend on the time and are set
in the multidimensional variables area, where was added
dimensionality value of one or more influential parameters
additionally to the spatial coordinates.

Practically it is important to use the statistical simulation
realizations of such random fields for the release of seismic
noise dependent on one or more significant parameters
and external influence, and to obtain appropriate
estimations for the frequency characteristics of three-
dimensional geological environment observation area.
These estimations should be considered in the construction
of different objects to ensure the building's solidity.

As can be seen from the articles ([14, 16-18, 20] and
others), models and algorithms for numerical simulation of
random processes and fields based on Fourier transform,
Fourier-Bessel and series of sinc function (interpolation
Kotelnikov-Shannon formula) are relatively recently
applying in geological sciences.

The article describes the application prospects of
constructed models and algorithms for statistical modeling
of random fields based on a decomposition into modified
Kotelnikov-Shannon interpolation series for seismic noise
research problem, which depend on one or more critical
parameters for the purpose of determining the frequency
characteristics of the geological environment under the
building sites in a single, two- or three-dimensional
observation area.

1. The spectral decompositions and modified
interpolation Kotelnikov-Shennon series

It is recommended to use the approach is developed on
the basis of spectral decomposition of random fields, see
[15], and modified Kotelnikov-Shennon theorem for random
fields with a bounded spectrum which are homogeneous in
time and homogeneous isotropic with respect to the other
coordinates for the statistical simulation of observed
seismogram's noises which depend on one or several
important parameters.

Consider the following results that are proved on the
basis of mentioned theory.

1.1 Time homogeneous and homogeneous isotropic
with respect to the spatial variables random fields

Consider a real valued mean square continuous

random field (¢,x),t € R,x e R" ,in RxR" which is time

homogeneous and homogeneous isotropic with respect to
the other variables. This means that

1) EE(t,x)=const for all teR and xeR" (we
assume that E&(z,x)=0),
2) E&(t,x)&(s,y)=B(t-s,p) forall z,seR and for

all x,yeR", where B(t,p) is a correlation function that
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depends on the shift of the time Tt=¢—s and distance
between the vectors and , that is on p.
The correlation function of a real valued random field

&(t,x) in RxR" which is homogeneous with respect to

time ¢ and homogeneous isotropic with respect to the
spatial  variables admits the following integral
representation, see [15, p. 11], as

B(t—s,p):Ij:jgwel(w)"%(KP)CD(du»dk)» ()

n-2 _n-2

where )’,1(2):221“(%)J,,_2(2)z 2
2
is a spatial-temporal spectral measure on Borel sets

and O (du,d).)

h(m,n)

E,:(tsp9els~ s Vp— 29
m=0 [=1

where (p,0,,...,
%85 (0),s

en_z,(p) are spherical coordinates of point
9,1_2,(p) are orthonormal spherical harmonics

Qm+n-2)(m+n-3)! is
the number of linearly independent spherical harmonics of

of orderm, number h(m,n)=

n
order n, ¢ = 2”11“(%)712 is a constant and {Zf77 (.)} are

sequences of real valued orthogonal random measures on
Borel subsets of the set (—,+x)x[0,+00) such that

Elen (Bl ) = O,EZ,Z (Bl )ZZ (Bz ) = 5515?@(31 mBz) ©)
for all Borel subsets B, and B, of RxR,_,
and 1,q =1,2,..h(m,n); here ®(u,\) is the spectral func-
tion of the random field.

m,p=0,1,..

Py (P)=——| (m+n-2)pW s (1) + S0

—_— —,m+
n 2 2 2

for m>0, Sp,

are Gegenbauer polynomials, see [2, p. 177],
defined in terms of their generating function

o0
27N en ("Ml <2 1l
m=0

o (z) is the Lommel function.Let ¢, (z)
which are

(1—22t+t

B(1-s,p)=B(t~s

)=¢, ). S5 (0.,

x2| =6 IMIMZ Z

J

n— /P — /P

J; 2 ( 1) n-2 ( 2)
2

(=00, 40) % (0, +e0),
first kind of order.
The next statement for the spectral decomposition of

J,(x) is the Bessel function of the

such random field in Rx R" is mentioned in [15, p. 11].
Theorem 1. A mean square continuous random field

F,(t,x) in RxR" which is time homogeneous and

homogeneous isotropic with respect to the other variables
admits the following spectral decomposition

en—zs(P).rw ot J‘0+°°

—00

)

Moreover, the spectral measures Z,l,1 (B),m=0,1,...,
1=1,2,..h(m,n), are uniquely determined with probability
one by the following relations

Z,, ([M2)x[11:72)) =

oMt _ gt

_lzmj I+®j,z —ltI:(PmY :| P,y (P) X

xS!, (6,--,0,_5,0)&(,p,6,....0,_5,0)dm,dpdt,
where m, () is the Lebesgue measure in a unit sphere

(4)

S, of R S'(.) are orthonormal spherical harmonics of

order, and
n n=2

%0, (P)=—17p > J, (1p).
n 2

nr(m+n)
2\ 2 )

2
o, (P)Sy o (vp)+2 (mj
"2

n
27 2 —
The correlation function of a mean square continuous

(vp)—vpJ

random field &(z,x) in RxR" which is homogeneous with

respect to time ¢ and homogeneous isotropic with respect to
the other variables admits the following expansion, see [11],

o h(m,n)

’
e]a * n27(P)><
m=0 [=1

®)

XSI (e L0" 2,([)”) 2

(YPl )%

where x; =0,,..,0,_,, ¢, x, =6,,...,0,_,, 0.

EE(t,r,6],..,0,_5,¢")E(s,7,0],...,

x84 (0],...,

')J‘+OOJ.+wel(t_S)”
n-2>@ 0 Jo

n-2>@

2
Jn—2

(t—s)
——" "D (du,dhr),

n—z

(sz) 2

If one considers the "restriction" of the random field
€(t,x) to the sphere of a fixed radiusr=p then the

correlation function of such random process can be written as
o h(m,n)

V=SS S (6.0, 5.0)x

m=0 [=1

()
(yr)"

(6)
(du,d)).
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Than follows that spectral coefficients are expressed in
terms of the spectral function as

Jn n-2 (nr)
% He-shu "
t Si" j I = W@(dld,d?&) (7)

Consider the following decomposition of a mean square
continuous random field &(z,x) which is homogeneous

with respect to time and homogeneous isotropic with
respect to the other variables, that is

a(t,r,el,...,en72,¢)=
o h(m,n) (8)

=3 S (61,6, ,0 )L (1,7),
m=0 [=1

where
Jua (ar)
tr I J~+00 [(t—s)u Z—Hzrln (du,d}.),
() 2
m=0,1,...; l=0,1,...h(m,n).

Note that we use in (8) a notation similar to (2).
Since EE(t,r,0,,..,0,_5,9)=0 we have

E&in (¢,r)=0.

Theorem 2. If §(1,7,6,,...,6,_,,¢) is a random field in

RxR" which is homogeneous in time and homogeneous
isotropic  with respect to the spatial variables

r,0;,....0,_,,¢ then
EE.am( )E_,I;( ) 8zzslbm (t—s,r), ©)

where 8 is the Kronecker symbol, {b, (t—s,r)} is a

sequence of positive definite kernels in Rx R, of the form

(7) and such that Z h(m,n)b,, (0,r) <o
m=0
The variance of the random field &(t,r,6,,...,0,_5,¢)
is expressed in terms of the spectral coefficients as

Dé(tar’el""’en—Z’(p) =

=" Zrz( )Zh m,n)b,, (0,r).1

Consider particular cases which have been studied in
6, 8, 10]. Let and %(0,2)=1, h(m,2)=2 than the

variance of the random field é';(t,r,(p) is expressed in

(10)

terms of the spectral coefficients as

DE(t,r0) = by (0.1)+ 2 by (0.7,

m=0
where by (0,r)= [ j;w./m(xr)m(du,dx).
Let and h(m,3)=

random field é(t,r,e,(p) is expressed in terms of the

2m+1 than the variance of the

spectral coefficients as

DE(t,7,0,0) TEZ(m-}— )b (0,p),

J% ()

where b, (0,7) = jj:rw?m—d)

, o @(dudh),

Thus the expansion (8) can be used for statistical

simulation of random fields in RxR" which are
homogeneous with respect to time and homogeneous

isotropic with respect to the variables ,0,,...,0,_,,¢ if the

spectral function (or correlation function) is specified.
1.2 Time homogeneous random fields with a

bounded spectrum

Consider a random field &(z,7,0,,...,6,_,,¢) in
RxR".We say that £(2,7,6,,...,0,_,,9) is a random field
with a bounded spectrum if all its spectral measures

! (B) in (4) are concentrated in [-@®,®]x R, ,& > 0.
Let &(,7.6,,...0,.,,0), teR, reR,, 6 €[0,n],

i=l..,n—2, @€[0,2n] be a random field in RxR"
which is time homogeneous and homogeneous isotropic

with respect to the variables r,0,,...,0,_,,¢ . Assume that

the spectrum ®(U,A) of the field & is bounded with
respect to time ¢, U c[-®,»], A cR,; andlet ®U,A)

ﬂl

be concentrated in [-@®,®]x R, .

Let o be an arbitrary number such that ® > @ . Put
E_,N ([,r,el,...,en_z,(p) =

sin ® t—@
& (kn ® (1)
= z &l —.7,0,,....0,_5,0 T
k=—N o m(t_n)
®

Then the following assertion holds, see [11].

Theorem 3. Let &(1,7,6,,...,6,_,,¢) be a random field
in RxR" which is time homogeneous and homogeneous
isotropic with respect to the variables r,0,,...,0,_,,¢. If the
spectrum of é(z,r,el,...,en_z,(p) is bounded in time t then

the mean square approximation with the help of partial sum
(11) is such that
2

E|e(£.7.6,,..20, 5.0) =&y (£.7.0,,...0, 5.0) <

2
<X (1) - ZFZZh(m " (O ). (12)
N2 (l_j m=0
[0)
where
Jiz (7»1’)

ot

. (0,7) Lmrw e ®(du,dr).  (13)

Corollary. Let £(¢,r,6,,...,0

sVp—2>s

@) be a random field
in RxR" whose spectrum is bounded in time t. Then
é(z,r,el,...,en_z,(p) admits the following Kotelnikov—
Shannon decomposition:

E(£,7,0150,0,2,0) =

. km
jSll’l(,l) l‘—; (14)
n 2,

)
o t——
®
where the series on the right hand side of (14) converges
in the mean square sense for ® > ® .

) Z é[kn
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2. The improved mean square estimate for the

approximation and advanced procedure for the
statistical simulation
The Kotelnikov—Shannon decomposition (14) of

random fields in RxR" with a bounded spectrum which
are time homogeneous and homogeneous isotropic with
respect to the other variables it is possible to use for the
statistical simulation of such random fields with their
defined statistical characteristics. By the simulating is
important to improve the estimate of the mean square
approximation (12) for using it in the advanced procedure
for the numerical simulation realizations of these random

fields. The variants of such estimates are obtained in the
next theorems.

We wuse partial sum (8) and partial sum of
decomposition (14) for a random field &(z,7,6,,....6,_,,9)
which are time homogeneous and homogeneous isotropic
with respect to the variables 7,0,,...,0,_,,¢ to construct a
model for such field if its spectrum is bounded with respect
to time t and concentrated on an interval [—@®,®]x R, .

The following partial sum is taken as an approximation
model of such a random field

N sinw(t—kn) M h(mn) i
o (0000, 200) =6, 3 0SS5 (000,00 (7). (19
k=N m(,_ﬁj m=0 11 o
(O]

where é;(k—n,r),m,pzo,l,...M; k,q=—-N,N,
)

l,s=1,..h(m,n), is a sequence of Gaussian stochastic
processes such that

e Js(e)
(O] (O] (O]

=3875"h, (M ’j e e

p-m >
()

(16)

Itis known that {b,, (¢ —s,7)} is a sequence of positive
definite kernels in Rx R, that can be calculated by means
of the spatial-temporal spectrum ®(du,d}) of the random
field &(z,7,6,,...,0

o Vp_2>»

(p) by expression (13) and such that

satisfies following condition > & (m,n)b,, (0,r) < .

fk=—0

For formulating the advanced procedure of numerical
simulation the realizations of Gaussian random field
é(l,r,el,...,en_z,(p) which is time homogeneous and
homogeneous isotropic with respect to the variables
7,0,,..,0,_,,0 whose spectrum is bounded in it is
necessary to derive more improved mean square
estimate for the approximation of such random field by its
approximation model (15). Such results are deduced in
the next theorems.

Theorem 4. The mean square estimate for the

approximation of random field &(t,r,6,,....8,_,,¢) =&(¢,x)

in RxR".n>3 which is time homogeneous and
homogeneous isotropic with respect to the variables
7,0,,....0,_,,¢0 whose spectrum is bounded in tby its
approximation model (15) assumes following expression

n 2M +n+1
r—=|rj=—/——
22V (2j ( 2

2 -
E|§(l,x)—EN’M (t)x)|z SYN(Zt) 2;2 :
-2)

T

(18)
- +® (4o
uk:j_d)jo A D (du,d)).

Using the results from [10] another improved mean
square estimate for the approximation of random field

where

Y(¢)=

(19)

L () o

n 2M +n+1
| 2p| 24 tnt]
222 (2) ( 2 )

(17)

0 <eg,
(D) r(n—ljr(zMMu)“ZM*z
2 2
&(¢,7,0,,...0,_,,9) by the model (15) is obtained.

Following theorems 5 and 6 are proved.
Theorem 5. The mean square estimate for the

approximation of random field &(t,r,0,,...,0,_,,¢) = &(t,x)

in RxR".n>3 which is time homogeneous and
homogeneous isotropic with respect to the variables
7,0,,..,0,_,,0 whose spectrum is bounded in tby its
approximation model (15) is written as follows

E|E.;(t7x)_EN,M (t,x)|2 <24,

where ®>v=sup,., |u| is an arbitrary number, A is an

interval [—&,®],

Ly (t):%(zjhinmﬂ. (21)
1 T

Theorem 6. The mean square estimate for the
approximation of random field &(t,7,0,...,0,_,,¢) =&(t,x)

(-1 N> ((mM+D) F(n—ljr(2M+n+2
2

(20)

Homaz <&
)

in RxR".,n>3 which is time homogeneous and
homogeneous isotropic with respect to the variables
7,0,,....0,_,,¢0 whose spectrum is bounded in tby its
approximation model (15) admits following expression



ISSN 1728-2713 FEONOris. 2(69)/2015 ~83~

n 2M +n+1
r—\r=——m—
8 . 2p2M+2 (z) ( 2 j

__ 2 < T ~
E|§(t,x) S (t,x)| < 2p, (N -DT ((M+1)!)2 r(n_ljr(2M+n+2)H2M+2 <& (22)
2 2
The improved mean square estimate for the Applying previous principles of expansion and thinking
approximation of a random field é(t,r,el,-u,@n_z,w) in as well as to the estimates (17), (20), (22), the similar three

mean square estimates for the approximation of a random

RxR" n>3 which is time homogeneous and homogeneous field &(t r,0,,...,0 (p) in RxR".n=2 which is time

n-2>
isotropic with respect to the variables 7,0;....,0,_,,¢ whose homogeneous and homogeneous isotropic with respect to
spectrum is bounded in ¢ by a model (15) are derived. Thus | the variables 7.6,,...,0, ,, whose spectrum is bounded

the lemma 8 [3, p. 117] is used. in ¢ by a model (15) are obtained as

2 ~
~ 2 v (1) 20, 2 (1 Lo j
Elg(t,x)— t,x) < ——t+—| =, +r <eg, 23
|§( ) =& ( )| Yz (1 d)jz v\ g PR (23)
)
= > (ot 2 (1 2
E(t,x) =&y (1,x)| <20)———5+——| —ril; +r7[i, | <s, (24)
| > | (0)__1)2 DJZ M\ 2
~ 2 - 8 2 1 2
EZ:,(t,x)—&NM(l‘,x) S2u0—+—(—rﬂl+r }12)<8- (25)
| ’ | (2N -1) ™M \2
Where r is a polar radius ® is an arbitrary number such metric model, linear model, model of space-time
that @ > v = sup|u|. covar.iance product and model of product and. sum.
ueh Different approach can also be used to simulate space-
Then the procedure for the statistical simulation the | time correlation that allows classifying the undivided space-
realizations of a Gaussian random field which is time time stationary covariance functions. This approach is based

homogeneous and homogeneous isotropic with respect to on the fl'equency I'epl’esentation of covariance function.

variables (r,0,,...,8,_,,¢) can be stated as follows if its Practical use example in seismology of developed
n algorithm and numerical simulation model for real and

spectrum is bounded in ¢. homogeneous in time t implementations, two-dimensional
The procedure: homogeneous isotropic random fields with a limited
1. According to a prescribed accuracy &> 0, choose | spectrum and space-time correlation function B, (t,p) by

positive integer numbers N and M for the model (15) by

) . " . method which divides the spatial and time components with
using one of the following inequalities (23), (24), (25) (in

product-sum formula described in [6].

case n=2)and (17), (20), (22) (in case). The realization value arrays of random process
2.For a fixed polar radius r, generate values of the é(t,p,(p) (p,¢0 — fixed) were simulated as noise
Gaussian stochastic processes Efm (@,r),m =0,1,..M; seismograms for each observation point on each
® component: EW, NS, and Z. They give important

k= _m; I=1,.., h(m, n), such that satisfy conditions (16). information about soil vibration properties within the

territory of building and operating sites. These properties
are also required for design of new antiseismic buildings
and constructions, and providing earthquake resistance of

3. Evaluate the expression in (15) at a given point , by
substituting the numbers N and M and values of

Gaussian stochastic processes evaluated in steps 1 and 2. existing buildings in order to avoid dangerous resonance
4. Check whether the realization of the stochastic | effects. Random disturbances from random external factors
random field §(t, r, 61,...,6n_2,(p) in the grid points in area were removed from the simulated noise seismograms by

statistical averaging filters. These disturbances include
vibrations caused by the movement of trains or heavy car
and so on. The adequacy of value array results from the
simulated by statistical methods noise seismograms were
tested on real seismograms from observation points.

The statistical modeling method of random fields can
also solve a major simulation problem of the artificial
realization of noise seismograms that simulated for
imaginary observation points, located between the real
points of observation or at a small distance from them. All

values except time t, in §(¢,7,6,,...,0,_,,¢) are fixed and

fields &(z,7,0;....0,_,,¢), which have a limited spectrum spectral analysis was performed of random process
realizations. Amplitude and phase spectra of such noise
) ) realization may be used to obtain the frequency
noted that models of space-time correlation structure are characteristics of the geological environment under building
divided into two types: first takes into account the sites, describing its ability to change (increase or decrease)
distribution of the spatial and time components and other the amplitude of the seismic waves during earthquakes [1,
with no such distribution. Work [7] gives an example of 8]. Numerical simulation of soil strata frequency
application and most commonly used models, namely

of observation generated in step 3 fits the data of this
random field by testing the corresponding statistical
characteristics.

3. Practical use of field simulation with space-time
correlation function

Different approaches [10] can be applied for practical
use of the algorithm and model (18) for numerical
simulation of real and homogeneous in time t
implementations, that are homogeneous and isotropic with

respect to variables r,0,,....0,_,,¢ on RxR"of random

n-2»

and space-time correlation function B, (t,p) . It should be
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characteristics in some cases can significantly reduce the
cost of seismic zoning of building sites by reducing the
number of instrumental observation points for earthquakes,
explosions and microseism.

4. Spectral analysis of generated noise

Frequency characteristic estimates for the geological
environment with multidimensional observation area (under
construction sites) can be obtained by calculating and
constructing the amplitude and phase spectra of noise in
seismogram observation points in that area, considering
fixed all arguments except time [4]. Calculations of the
amplitude and phase spectra can be made by direct
method [1, p. 179], i.e. periodogram method. Then based
on these results the spectral ratio of the Earth crust was
build, which is independent of the spectrum of incident
seismic waves, but determined entirely by the geological
environment structure under the observation point.

Those spectral methods that use frequency as an
independent parameter provide information about the
structure and filtration properties of the upper crust layers,
because any medium is a filter that due to resonance and
reverberation effects increases the oscillation amplitude for
some frequencies and reduces for the other [1, p. 270].
The ability to simulate the effects depends on amplitude
and phase frequency characteristics of the geological
environment for observation points situated under building
sites and operating platforms, allows studying the
geological section features and predicting places where
significant increase in the seismic oscillation intensity is

possible due to resonance effects and oscillation field inter-
ference nodes.

Among the many ways to eliminate the influence of
various factors that affect the spectrum shape of seismic
waves during earthquakes, explosions and microseism except
that due to the influence of the upper crust section part, the

way should be noted based on the use of the vertical |SZ ((,3)|

component spectra relations to the horizontaI|SN(g))|

component. Spectra must be calculated for the same wave.
This ratio is called the crust spectral ratio 7' () .

|Sz(@)|/|Sy(@)| =T (@)
The ratio 7T(w) is independent of the spectrum of

incident seismic waves, but determined entirely by the
geological environment structure under the observation
point. Figures 1 a and 1b show graphs of amplitude

spectra|S(m)| for the initial simulated noise realization for
imaginary observation point with the oscillation
components Z and NS respectively, Figure 1 represents
earth crust transmission ratio graph 7 (), that was built
on the smoothed amplitude spectrum ratio of simulated
noise seismogram realization on the fluctuation

Z-component to the similar spectrum of fluctuation
component NS for an observation point.

16 {s(o)l 20 15(o)| 14 o)
i
- 12
40
12 .
10 30 :
: : " 6
6 20
| A )
t 10 n
| | |
2 2
0 T T T T T T 0 T T T T T 0 T T T T T T
012 3 456 0 1 2 4 5 & 0123456
o, [y o, Iy o, ru
a Cc

Fig. 1. Graphs of amplitude spectra |S((D)| for simulated array noise realization for imaginary observation point

on the component a) Z and b) NS; c) the graph of transmission ratio T((,)) for smoothed amplitude spectra
of simulated noise realization for imaginary observation point

Interpretation of crust transmission ratio for these
observations was conducted by comparing them with
theoretical ratio calculated for well-known models of the
upper section part. It should be noted that one of the
important tools for impact assessment of the geological
section upper part on seismic movements are widely
known Nakamura method H/V or QTS (Quasi-Transfer
Spectra), developed by Japanese scientist Yutaka
Nakamura. The method uses records of microseismic
noise registered for the horizontal and vertical oscillation
components using borehole observations for the
construction of a quasi-transmitting spectrum of soil strata.
Nakamura method allows determining resonant eigen
frequency of soil strata using spectrum ratios of horizontal
and vertical components of the natural seismic noise. The
maximum values of the microseism spectrum ratio of

horizontal to vertical component are explained by multiple
reflection of SH waves.

Figure 1 shows graph T (@) of smoothed amplitude

spectra transmission ratio for imaginary observation point
that can be used to determine the increase of seismicity
level on different parts of the building site, relative to the
real observation point.

Conclusions. The model and algorithm of statistical
simulation for time-homogeneous and multidimensionally
homogeneous isotropic random fields with a limited
spectrum were developed. These results continued
research set in works [4-9] for modeling and generation
method of noise seismogram implementations at flat
observation area [5] and seismograms from three-
dimensional observation area [6] and it is an important
supplement to the Monte Carlo method used in geology
and described in [14].
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HHI "IHcTuTyT reonorii”, Byn. BacunbkiBcbka 90, M. Kuis, 03022 YkpaiHa

MOKPALLEHUA ANTOPUTM CTATUCTUYHOIO MOAENIOBAHHA CEACMIYHOIO LLYMY B BATATOBUMIPHIA
OBJIACTI 3MIHHUX AnA BU3HAYEHHA YACTOTHUX XAPAKTEPUCTUK FrEONIOINYHOI0 CEPEAOBULLA

Po6oma npucesiiyeHa nodanbuwiii po3pobyi meopii ma memodie cmamucmu4Ho20 MoOesI08aHHsI unadKoeux rMpPoyecie ma rnosie Ha OCHOB8I ix
crnekmpanbHux po3knadie ma modugpikoeaHux iHmepnonsiyilinux psidie KomenbHukoea-llleHHOHa, a mako) 3acmocyeaHHO makux memodie y
3adayax 2e0@hi3u4HO20 MOHIMOPUHaY Ha8KONUWHBLO20 cepedosuwia. Po3ansiHymo 3adayy cmamucmu4yHo20 Modesio8aHHsI eunadkosux nosie y
6azamoeumipHili o6nacmi 3MiHHUX (0OHOPIOHUX 3a YacoM ma O0OHOPIGHUX i30MPONHUX 3a N IHWUMU 3MiHHUMU) Npu enpoeadXeHHi y celicMonozi-
4Hi docnidKeHHs Onsi 8U3HaYEHHS YaCMOMHUX Xapakmepucmuk 2eos102i4Ho20 cepedosuuya. [To6ydoeaHo mModesib ma cghopMysIbO8aHO MoOKpause-
HUl anzopumm 4YucesibHO20 Modeslto8aHHS peasi3ayili makux eunadkKoeux rnosiie Ha ocHoei MmodudghikoeaHux iHmepnonsiyiliHux po3knadie Kome-
nbHUKoBa-llleHHOHa Onsi 2eHepyeaHHsi adekeamHux peanisayili wymy celicMmoepaMm. Y cmammi eue4atombcsi GilicHO3Ha4Hi eunadkosi nons

é(t,x), teR, xeR" - 00HOpPIOHi 3a yacoM ma 0dHOPIOHI i3omponHi 3a NPOcMopPosUMU 3MIHHUMU & 6a2amoeuMipHoMy npocmopi. Posansda-

embcsi npobnema anpokcumMauyii makux eunadkosux noJsie eunadkoeumu nonsiMu 3 o6MexxeHUM criekmpom. [ns eunadkoeux nosie 3 o6MexeHUM
creKmpomM ecmaHoesieHo aHano2 meopemu KomenbHukoea-lLleHHoHa. OmpumaHo e30CKOHaneHi OyiHKU cepeOHbOK8adpamuyHo20 HabIUXeHHs

eunadkoeux nonie y npocmopi Rx R" modennio, no6ydoeaHoro Ha OCHOSI criekmpasibHo20 po3knady ma iHmepnonsyitiHoi popmynu KomensHu-
koea-llleHHoHa. Po3po6rieHo nokpawieHull anzopumm cmamucmuYyHo20 MOOesIlo8aHHs peanisayili 2aycciecbkux 0OHOPiOHUX 3a YacoM ma OOHO-
piGHUX i30MponHuUX 3a MPocmopo8uMU 3MiHHUMU 8 6azamoeumipHoMy npocmopi eunadkosux nosie 3 o6mexeHum crekmpom. HaeedeHo meope-
Mu npo ouyiHKu cepedHbOKeadpamuyHoi anpokcumayii 0OHOPiOHUX 3a YacoM ma OOHOPIOHUX i30MPOMNHUX 3a N IHWUMU 3MiIHHUMU eunadKoeux
nonie 4acmkosumu cymamu psidie crneyianbHo20 euasnsdy, 3a 00MOMO20t0 SKUX C¢hopMyIbO8aHO MOKpaweHuUli an2opumm YuceslbHO20 MoJeslo-
8aHHs1 peanisayili makux eunadkoeux rnosie. Po32nsiHymo crnocobu npoeedeHHsi criekmpasibHO20 aHasli3ly 32eHepoeaHux peanizayil wymy celic-
mozpam. Po3pobneHo yHieepcanbHi Memodu cmamucmu4YyHo20 ModesitoeaHHs1 (Memodu MoHnme-Kaprio) 6azamonapamempuyHux celicMOJ102i4HUX
OaHux, ki aromb Moxueicms eupiwumu npobremu 2eHepyeaHHsl peanisayil wymy celicMo2pam Ha NMIOUWUHi ma y mpueuMipHOMYy npocmopi Ha
cimyi Heo6xiOHOT demanbHOCMi ma peaynspHocmi.
Knroyoei cnoea: cmamucmuy4He MoOesito8aHHsI, cnekmpasnbHuli aHasi3, celicMiyHUl wyM.
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YNYYLWEHHbIX ANFTOPUTM CTATUCTUHECKOIO MOOENNPOBAHUA CEACMMWYECKOIO LUYMA
B MHOTOMEPHOW OBJIACTU MNEPEMEHHbIX _
AnAa onPEAQENEHNA YACTOTHbIX XAPAKTEPUCTUK FTEONOIMMYECKOU CPEObI

Pa6oma nocesiweHa paspabomke meopuu u Mmemodosio2uu cmamucmu4ecKko2o ModesiupogaHusi criyvaliHbIX MPOYyeccoe u rnosei Ha ocHoee
ux crnekmpasibHbIX Pa3fioxeHul u MoOOUUYUPOBaHHbLIX UHMEPNOSYUOHHbLIX psidoe KomenbHukoea-lLleHHOHa, a makxe NMPUMEHEHUI0 MmaKux
memodoe e 3adavax 2eohu3uyecKko20 MOHUMOPUH2a OKpyXaroujeli cpedbl. PaccMompeHa 3adaya cmamucmu4ecko2o ModesiupoeaHusi ciy4yal-
HbIX noneii 8 MHO2OMepPHOU obsiacmu nepemMeHHbIX (0OHOPOOHbIX MO 8PeMeHU U OOHOPOOHbLIX U3OMPOMNHbIX M0 N Opy2uUMU NepeMeHHbIM) npu
eHedpeHUU 8 celicMosioaudeckue uccriedogaHusi Oss1 onpedesieHUs1 YaCMoMHbIX Xapakmepucmuk 2eosio2u4deckoll cpedbl. [locmpoeHa modenb u
cghopmynupoeaH ynyqweHHbIlU an2opumm HYUcseHHo20 ModeslupoeaHusi peanusayull makux cry4aliHbix nosnell Ha OCHO8aHUU MOOUUUUPOBaH-
HbIX UHMEPNONSAYUOHHbIX pa3noxeHuli KomenbHukoea-LlleHHoHa Onsi 2eHepupoeaHusi aBekeamHbIx peanu3ayuli wyma celicmoepamm. B cmambe

usyvatomces delicmeumenbHo3HayHble criyyalHbie nons &(t,x), t€R, x€R" — 00HOPodHbIe Mo epemeHU U 0OHOPOOHBIE U30MPONHbIE M0 MpPo-

cmpaHcmeeHHbIM nepeMeHHbIM 8 MHO20MePHOM npocmpaHcmee. Paccmampueaemcs npobnemMa annpokcuMayuu makux ciy4aliHbix nosnel ciy-
4aliHbIMU OJIIMU C O2PaHU4YeHHbIM criekmpom. [ns cnyyaliHbix nosiel nossiMu ¢ o2paHUYeHHbIM CIIEKMPOM ycmaHoesieH aHaso2 meopemsi Ko-
menbHukoea-LlleHHoHa. [Tony4yeHbl ycoeepuieHCMmeo8aHHbIe OUEHKU cpedHeKkeadpamu4ecko20 npubnuxeHus ciy4aliHbix nonel e npocmpaHcmee

RxR" modenbto, komopasi mocmpoeHa Ha OCHOGe CMEeKMPabHO20 Pa3/IOKEHUs! U UHMePHosyuoHHol ¢hopmynsl KomensHukoea-LUeHHOHa.
PaspabomaH yny4weHHbIl an2opumm cmamucmu4ecko2o ModesiupoeaHusi peanu3ayuli 2ayccoeckux 0OHOPOOHbIX M0 8peMeHU U 0OHOPOOHbIX
U30MPOnHbIX M0 MPOCMPaHCMEEHHbIM NepeMeHHbIM Cily4aliHbIX nosel ¢ o2paHUYeHHbIM criekmpom. [loka3zaHbl meopemMbl 06 oyeHke cpedHekea-
dpamuyeckoll annpokcuMayuu OOHOPOOHbLIX M0 8pPeMeHU U OOGHOPOOHbLIX U3OMPOMNHbLIX M0 N Opy2uMu NnepeMeHHbIM ciy4aliHbIX nosel Yacmuy-
HbIMU CyMMamu psid0e creyuasibHo20 euda, npu MOMowU KOmopbiX CGHOPMYy/IuUpoeaH yiy4YyweHHbIU an2opumm YUCJIEHHO20 MOJesluposaHusi
peanu3ayuli makux cay4aliHbix nosnel. PaccmompeHbl crnocobbl npoeedeHusi CrieKmpasnbHO20 aHa/u3a c2eHepupo8aHHbIX peanu3ayull wyma
celicmozpamm. PazpabomaHb! yHugepcasibHbie Memodbi cmamucmu4yecko2o ModesnupoeaHusi (Mmemodsl Monme-Kapro) MHo2onapamempu4ecKux
celicMosio2uyeKkux 0aHHbIX, KOmopbie Aalom 803MOXHOCMb pewums MPobrieMb! 2eHepuposaHus peanusayull wyma celicMo2paMM Ha MIOCKOCMU
u 8 mpexmMepHOM NpocmpaHcmee Ha cemke Heob6xo0umoli demasnibHOCMU U pe2ysipHOCMU.
Knrouyeenie cniosa: cmamucmuyeckoe modenupoeaHue, crieKmpasnbHbIl aHanu3, celicMuyecKull Wym.





