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THE ADVANCED ALGORITHM OF STATISTICAL SIMULATION OF SEISMIC NOISE  

IN THE MULTIDIMENSIONAL AREA FOR DETERMINATION THE FREQUENCY 
CHARACTERISTICS OF GEOLOGICAL ENVIRONMENT 

 
(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, проф. Б.П. Масловим) 
The article is devoted to the theory and methods of random process and field statistical simulation on the basis of their spectral 

decomposition and modified Kotelnikov-Shennon interpolation sums, as well as using these methods in environmental geophysical 
monitoring. The problem of statistical simulation of the multivariate random fields (homogeneous in time and homogeneous isotropic 
with respect to the n other variables) is considered for introducing into seismological researches for determination the frequency 
characteristics of geological environment. Statistical model and advanced numerical algorithm of simulation realizations of such 
random fields are built on the basis of modified interpolation Kotelnikov-Shennon decompositions for generating the adequate 
realizations of seismic noise. Real-valued random fields ξ (t, x), t  R, x  R n, that are homogeneous with respect to time and 
homogeneous isotropic with respect to spatial variables in the multidimensional spase are studied. The problem of approximation of 
such random fields by random fields with a bounded spectrum is considered. An analogue of the Kotelnikov–Shannon theorem for 
random fields with a bounded spectrum is presented. Improved estimates of the mean-square approximation of random fields in the 
space R  R n by a model constructed with the help of the spectral decomposition and interpolation Kotelnikov–Shannon formula are 
obtained. Some procedures for the statistical simulation of realizations of Gaussian random fields with a bounded spectrum that are 
homogeneous with respect to time and homogeneous isotropic with respect to spatial variables in the multidimensional spase are 
developed. There has been proved theorems on the mean-square approximation of homogeneous in time and homogeneous isotropic 
with respect to the n other variables random fields by special partial sums. A simulation method was used to formulate an advanced 
algorithm of numerical simulation by means of this theorems. The spectral analysis methods of generated seismic noise realizations are 
considered. There have been developed universal methods of statistical simulation (Monte Carlo methods) of multi parameters 
seismology data for generating of seismic noise on 2D and 3D grids of required detail and regularity. 

Keywords: statistical simulation, spectral analyzes, seismic noise. 
 
Introduction. This article describes the problem of 

improved statistical simulation algorithm for random field 
realizations with a limited spectrum which depends on time 
and was set in the multidimensional variables area for 
implementation into seismological research to determine 
the frequency characteristics of geological environment 
under the building sites. The model was built and based on 
improved estimates of random field mean approximation 
errors the improved algorithm was formulated by this model 
for numerical simulation of field realizations that are 
adequate to realizations of seismogram's noises. 

It is a further theoretical generalization solved in papers 
[5-11] for problems concerning the increase of variables 
space dimensionality, where random field domain with the 
limited spectrum is focused. This generalization direction 
development is important because of necessarily to use the 
proposed method for statistical modeling of random fields 
with a limited spectrum that depend on the time and are set 
in the multidimensional variables area, where was added 
dimensionality value of one or more influential parameters 
additionally to the spatial coordinates. 

Practically it is important to use the statistical simulation 
realizations of such random fields for the release of seismic 
noise dependent on one or more significant parameters 
and external influence, and to obtain appropriate 
estimations for the frequency characteristics of three-
dimensional geological environment observation area. 
These estimations should be considered in the construction 
of different objects to ensure the building's solidity. 

As can be seen from the articles ([14, 16-18, 20] and 
others), models and algorithms for numerical simulation of 
random processes and fields based on Fourier transform, 
Fourier-Bessel and series of sinc function (interpolation 
Kotelnikov-Shannon formula) are relatively recently 
applying in geological sciences. 

The article describes the application prospects of 
constructed models and algorithms for statistical modeling 
of random fields based on a decomposition into modified 
Kotelnikov-Shannon interpolation series for seismic noise 
research problem, which depend on one or more critical 
parameters for the purpose of determining the frequency 
characteristics of the geological environment under the 
building sites in a single, two- or three-dimensional 
observation area. 

1. The spectral decompositions and modified 
interpolation Kotelnikov-Shennon series 

It is recommended to use the approach is developed on 
the basis of spectral decomposition of random fields, see 
[15], and modified Kotelnikov-Shennon theorem for random 
fields with a bounded spectrum which are homogeneous in 
time and homogeneous isotropic with respect to the other 
coordinates for the statistical simulation of observed 
seismogram's noises which depend on one or several 
important parameters. 

Consider the following results that are proved on the 
basis of mentioned theory. 

1.1 Time homogeneous and homogeneous isotropic 
with respect to the spatial variables random fields 

Consider a real valued mean square continuous 

random field   , ,, nt R x Rt x   , in nR R  which is time 

homogeneous and homogeneous isotropic with respect to 
the other variables. This means that 

1)  ,E constt x   for all t R  and nx R  (we 

assume that   0,E t x  ), 

2)      s, y ,,E B t s pt x     for all ,t s R  and for 

all , nx y R , where  ,B    is a correlation function that 
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depends on the shift of the time t s    and distance 
between the vectors  and , that is on ρ. 

The correlation function of a real valued random field 

 ,t x  in nR R  which is homogeneous with respect to 

time t  and homogeneous isotropic with respect to the 
spatial variables admits the following integral 
representation, see [15, p. 11], as 
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is a spatial-temporal spectral measure on Borel sets 

    ,, 0,     nJ x  is the Bessel function of the 

first kind of order. 
The next statement for the spectral decomposition of 

such random field in nR R  is mentioned in [15, p. 11]. 
Theorem 1. A mean square continuous random field 

 ,t x  in nR R  which is time homogeneous and 

homogeneous isotropic with respect to the other variables 
admits the following spectral decomposition 
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where  1 2, ,..., ,n     are spherical coordinates of point 

 1 2, ,..., ,l
m nx S     are orthonormal spherical harmonics 

of order ,m  number      
 

!2 2 3
,

! !2

m n m nh m n
mn

   


 is 

the number of linearly independent spherical harmonics of 

order n, 2 1 22
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 is a constant and   l
mZ   are 

sequences of real valued orthogonal random measures on 

Borel subsets of the set    , 0,    such that  

       1 1 2 1 20, ql l q p
m m p m lEZ EZ ZB B B B B       (3) 

for all Borel subsets 1B  and 2B  of R R , , 0,1,...m p   

and  , 1, 2,... ;,l q h m n here  ,u   is the spectral func-

tion of the random field. 
 

Moreover, the spectral measures   , 0,1,...,l
mZ mB   

 1,2,... ,,l h m n  are uniquely determined with probability 

one by the following relations  
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where  nm   is the Lebesgue measure in a unit sphere 

nS  of R  l
mS   are orthonormal spherical harmonics of 

order, and  
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for 0m  ,  ,S z   is the Lommel function.Let  v
mc z  

are Gegenbauer polynomials, see 2, p. 177, which are 
defined in terms of their generating function 
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The correlation function of a mean square continuous 

random field  ,t x  in nR R  which is homogeneous with 

respect to time t  and homogeneous isotropic with respect to 
the other variables admits the following expansion, see [11],  
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where 1 1 2 2 1 2,..., ,  ,  ,..., ,  .n nx x          If one considers the "restriction" of the random field 
 ,t x  to the sphere of a fixed radius r    then the 

correlation function of such random process can be written as  
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Than follows that spectral coefficients are expressed in 
terms of the spectral function as 

   
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Consider the following decomposition of a mean square 
continuous random field  ,t x  which is homogeneous 

with respect to time and homogeneous isotropic with 
respect to the other variables, that is 
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Note that we use in (8) a notation similar to (2). 

Since  1 2, , ,..., , 0nE t r       we have 

  0.,l
mE t r   

Theorem 2. If  1 2, , ,..., ,nt r      is a random field in  

nR R  which is homogeneous in time and homogeneous 
isotropic with respect to the spatial variables 

1 2, ,..., ,nr     then 
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m q m l mE bt r s r t s r       (9) 

where k
l is the Kronecker symbol,    ,mb t s r  is a 

sequence of positive definite kernels in R R  of the form 

(7) and such that    
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The variance of the random field  1 2, , ,..., ,nt r      

is expressed in terms of the spectral coefficients as 
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Consider particular cases which have been studied in 
[6, 8, 10]. Let  and   1,0, 2h     2,2h m   than the 

variance of the random field  , ,t r   is expressed in 

terms of the spectral coefficients as 
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Thus the expansion (8) can be used for statistical 

simulation of random fields in nR R  which are 
homogeneous with respect to time and homogeneous 
isotropic with respect to the variables 1 2, ,..., ,nr     if the 

spectral function (or correlation function) is specified. 
1.2 Time homogeneous random fields with a 

bounded spectrum 

Consider a random field  1 2, , ,..., ,nt r      in 

nR R . We say that  1 2, , ,..., ,nt r      is a random field 

with a bounded spectrum if all its spectral measures 
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with respect to the variables 1 2, ,..., ,nr    . Assume that 

the spectrum ( , )U   of the field   is bounded with 

respect to time t ,  ,,U      ;R   and let ( , )U   

be concentrated in  , R   . 

Let   be an arbitrary number such that    . Put 
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Then the following assertion holds, see [11]. 

Theorem 3. Let  1 2, , ,..., ,nt r      be a random field 

in nR R  which is time homogeneous and homogeneous 
isotropic with respect to the variables 1 2, ,..., , .nr     If the 

spectrum of  1 2, , ,..., ,nt r      is bounded in time t then 

the mean square approximation with the help of partial sum 
(11) is such that 
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Corollary. Let  1 2, , ,..., ,nt r      be a random field 

in nR R  whose spectrum is bounded in time t. Then 

 1 2, , ,..., ,nt r      admits the following Kotelnikov–

Shannon decomposition: 
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where the series on the right hand side of (14) converges 
in the mean square sense for    . 
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2. The improved mean square estimate for the 
approximation and advanced procedure for the 
statistical simulation  

The Kotelnikov–Shannon decomposition (14) of 

random fields in nR R  with a bounded spectrum which 
are time homogeneous and homogeneous isotropic with 
respect to the other variables it is possible to use for the 
statistical simulation of such random fields with their 
defined statistical characteristics. By the simulating is 
important to improve the estimate of the mean square 
approximation (12) for using it in the advanced procedure 
for the numerical simulation realizations of these random 

fields. The variants of such estimates are obtained in the 
next theorems. 

We use partial sum (8) and partial sum of 

decomposition (14) for a random field  1 2, , ,..., ,nt r      

which are time homogeneous and homogeneous isotropic 
with respect to the variables 1 2, ,..., ,nr     to construct a 

model for such field if its spectrum is bounded with respect 

to time t and concentrated on an interval   ., R    

The following partial sum is taken as an approximation 
model of such a random field  

   
 ,

, 1 2 1 2
0 1

sin
, , ,..., , ,..., , ,,

h m nN M
l l

N M n n m n m
k N m l

k
t

k
t r c S r

k
t

 
  

                     
 

    (15) 

where , , 0,1,... ;,l
m

k
m p Mr

    
 , , ;k q N N   

 , 1,... ,,l s h m n  is a sequence of Gaussian stochastic 

processes such that 

 

0,  , , ,

... ... ... ... ... .,

l l s
m m p

s m
l p m

k k q
E Er r r

k q
b r

                
       

     
 


 (16) 

It is known that   ,mb t s r  is a sequence of positive 

definite kernels in R R  that can be calculated by means 

of the spatial-temporal spectrum  ,du d   of the random 

field  1 2, , ,..., ,nt r      by expression (13) and such that 

satisfies following condition     ., 0,m
k

h bm n r




   

 

For formulating the advanced procedure of numerical 
simulation the realizations of Gaussian random field 

 1 2, , ,..., ,nt r      which is time homogeneous and 

homogeneous isotropic with respect to the variables 

1 2, ,..., ,nr     whose spectrum is bounded in  it is 

necessary to derive more improved mean square 
estimate for the approximation of such random field by its 
approximation model (15). Such results are deduced in 
the next theorems. 

Theorem 4. The mean square estimate for the 

approximation of random field    1 2, , ,..., , ,nt r t x       

in , 3nR R n   which is time homogeneous and 
homogeneous isotropic with respect to the variables 

1 2, ,..., ,nr     whose spectrum is bounded in t by its 

approximation model (15) assumes following expression 

     

  

2 2 2
2 0

2M 2, 2 2 2

2 1
2 2 2 2 ,, ,

1 2 2!11 2 2

M

N M

n M n
rtE t x t x

n M nN M





                  
                  

 


 (17) 

where 

 
4 1t

t

  
  


 (18) 

 
0

.,k
k du d

 


     




  (19) 

Using the results from [10] another improved mean 
square estimate for the approximation of random field 

 1 2, , ,..., ,nt r      by the model (15) is obtained. 

Following theorems 5 and 6 are proved. 
Theorem 5. The mean square estimate for the 

approximation of random field    1 2, , ,..., , ,nt r t x       

in , 3nR R n   which is time homogeneous and 
homogeneous isotropic with respect to the variables 

1 2, ,..., ,nr     whose spectrum is bounded in t by its 

approximation model (15) is written as follows 

     
    

2 2 2 2
2 0

0 2M 2, 2 22

2 1
2 2 22 ,, ,

1 2 2!1
2 2

M

N M

n M n
L rtE t x t x

n M nN M





                   
            

   

   (20) 

where supuv u    is an arbitrary number,   is an 

interval   ,   , 

 0
2 2

.sin
1

L t t
e

   
 

 (21) 

Theorem 6. The mean square estimate for the 

approximation of random field    1 2, , ,..., , ,nt r t x       

in , 3nR R n   which is time homogeneous and 
homogeneous isotropic with respect to the variables 

1 2, ,..., ,nr     whose spectrum is bounded in t by its 

approximation model (15) admits following expression 
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   
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



        
          
           

   

   (22) 

The improved mean square estimate for the 

approximation of a random field  1 2, , ,..., ,nt r      in 

, 3nR R n   which is time homogeneous and homogeneous 

isotropic with respect to the variables 1 2, ,..., ,nr     whose 

spectrum is bounded in t  by a model (15) are derived. Thus 
the lemma 8 [3, p. 117] is used.  

 

Applying previous principles of expansion and thinking 
as well as to the estimates (17), (20), (22), the similar three 
mean square estimates for the approximation of a random 

field  1 2, , ,..., ,nt r      in , 2nR R n   which is time 

homogeneous and homogeneous isotropic with respect to 
the variables 1 2, ,..., ,nr     whose spectrum is bounded 

in t  by a model (15) are obtained as 

     22 0 2
, 1 22 2

2 2 1
,, ,

2
1

N M
tE r rt x t x

MN

                

  


 (23) 
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               
                                       (24) 

   
 

2 2
0, 1 22

8 2 1
2 ., ,

22 1
N ME r rt x t x

MN

              
                                      (25) 

Where r  is a polar radius   is an arbitrary number such 

that sup .
u

v u


    

Then the procedure for the statistical simulation the 
realizations of a Gaussian random field which is time 
homogeneous and homogeneous isotropic with respect to 

variables  1 2, ,..., ,nr     can be stated as follows if its 

spectrum is bounded in t. 
The procedure: 
1. According to a prescribed accuracy 0  , choose 

positive integer numbers N  and M  for the model (15) by 
using one of the following inequalities (23), (24), (25) (in 
case 2n  ) and (17), (20), (22) (in case). 

2. For a fixed polar radius r , generate values of the 

Gaussian stochastic processes , 0,1,... ;,l
m

k
m Mr

    
 

, ;k N N    1,..., ,,l h m n  such that satisfy conditions (16). 

3. Evaluate the expression in (15) at a given point , by 
substituting the numbers N  and M  and values of 
Gaussian stochastic processes evaluated in steps 1 and 2. 

4. Check whether the realization of the stochastic 

random field  1 2, , ,..., ,nt r      in the grid points in area 

of observation generated in step 3 fits the data of this 
random field by testing the corresponding statistical 
characteristics. 

3. Practical use of field simulation with space-time 
correlation function 

Different approaches [10] can be applied for practical 
use of the algorithm and model (18) for numerical 
simulation of real and homogeneous in time t 
implementations, that are homogeneous and isotropic with 

respect to variables 1 2, ,..., ,nr     on nR R of random 

fields  1 2, , ,..., ,nt r     , which have a limited spectrum 

and space-time correlation function  ,zB   . It should be 

noted that models of space-time correlation structure are 
divided into two types: first takes into account the 
distribution of the spatial and time components and other 
with no such distribution. Work [7] gives an example of 
application and most commonly used models, namely 

metric model, linear model, model of space-time 
covariance product and model of product and sum. 

Different approach can also be used to simulate space-
time correlation that allows classifying the undivided space-
time stationary covariance functions. This approach is based 
on the frequency representation of covariance function. 

Practical use example in seismology of developed 
algorithm and numerical simulation model for real and 
homogeneous in time t implementations, two-dimensional 
homogeneous isotropic random fields with a limited 

spectrum and space-time correlation function  ,zB    by 

method which divides the spatial and time components with 
product-sum formula described in [6]. 

The realization value arrays of random process 

 , ,t    ( ,   – fixed) were simulated as noise 

seismograms for each observation point on each 
component: EW, NS, and Z. They give important 
information about soil vibration properties within the 
territory of building and operating sites. These properties 
are also required for design of new antiseismic buildings 
and constructions, and providing earthquake resistance of 
existing buildings in order to avoid dangerous resonance 
effects. Random disturbances from random external factors 
were removed from the simulated noise seismograms by 
statistical averaging filters. These disturbances include 
vibrations caused by the movement of trains or heavy car 
and so on. The adequacy of value array results from the 
simulated by statistical methods noise seismograms were 
tested on real seismograms from observation points. 

The statistical modeling method of random fields can 
also solve a major simulation problem of the artificial 
realization of noise seismograms that simulated for 
imaginary observation points, located between the real 
points of observation or at a small distance from them. All 

values except time t, in  1 2, , ,..., ,nt r      are fixed and 

spectral analysis was performed of random process 
realizations. Amplitude and phase spectra of such noise 
realization may be used to obtain the frequency 
characteristics of the geological environment under building 
sites, describing its ability to change (increase or decrease) 
the amplitude of the seismic waves during earthquakes [1, 
8]. Numerical simulation of soil strata frequency 
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characteristics in some cases can significantly reduce the 
cost of seismic zoning of building sites by reducing the 
number of instrumental observation points for earthquakes, 
explosions and microseism. 

4. Spectral analysis of generated noise 
Frequency characteristic estimates for the geological 

environment with multidimensional observation area (under 
construction sites) can be obtained by calculating and 
constructing the amplitude and phase spectra of noise in 
seismogram observation points in that area, considering 
fixed all arguments except time [4]. Calculations of the 
amplitude and phase spectra can be made by direct 
method [1, p. 179], i.e. periodogram method. Then based 
on these results the spectral ratio of the Earth crust was 
build, which is independent of the spectrum of incident 
seismic waves, but determined entirely by the geological 
environment structure under the observation point. 

Those spectral methods that use frequency as an 
independent parameter provide information about the 
structure and filtration properties of the upper crust layers, 
because any medium is a filter that due to resonance and 
reverberation effects increases the oscillation amplitude for 
some frequencies and reduces for the other [1, p. 270]. 
The ability to simulate the effects depends on amplitude 
and phase frequency characteristics of the geological 
environment for observation points situated under building 
sites and operating platforms, allows studying the 
geological section features and predicting places where 
significant increase in the seismic oscillation intensity is 

possible due to resonance effects and oscillation field inter-
ference nodes. 

Among the many ways to eliminate the influence of 
various factors that affect the spectrum shape of seismic 
waves during earthquakes, explosions and microseism except 
that due to the influence of the upper crust section part, the 

way should be noted based on the use of the vertical  ZS   

component spectra relations to the horizontal  NS   

component. Spectra must be calculated for the same wave. 
This ratio is called the crust spectral ratio  T  . 

( ) / ( ) ( )Z NS S T   
. 

The ratio  T   is independent of the spectrum of 

incident seismic waves, but determined entirely by the 
geological environment structure under the observation 
point. Figures 1 a and 1b show graphs of amplitude 

spectra  S   for the initial simulated noise realization for 

imaginary observation point with the oscillation 
components Z and NS respectively, Figure 1 represents 
earth crust transmission ratio graph  T  , that was built 

on the smoothed amplitude spectrum ratio of simulated 
noise seismogram realization on the fluctuation  
Z-component to the similar spectrum of fluctuation 
component NS for an observation point. 

 

   
a b c 

Fig. 1. Graphs of amplitude spectra  S   for simulated array noise realization for imaginary observation point  

on the component a) Z and b) NS; c) the graph of transmission ratio  T   for smoothed amplitude spectra 

of simulated noise realization for imaginary observation point 
 

Interpretation of crust transmission ratio for these 
observations was conducted by comparing them with 
theoretical ratio calculated for well-known models of the 
upper section part. It should be noted that one of the 
important tools for impact assessment of the geological 
section upper part on seismic movements are widely 
known Nakamura method H/V or QTS (Quasi-Transfer 
Spectra), developed by Japanese scientist Yutaka 
Nakamura. The method uses records of microseismic 
noise registered for the horizontal and vertical oscillation 
components using borehole observations for the 
construction of a quasi-transmitting spectrum of soil strata. 
Nakamura method allows determining resonant eigen 
frequency of soil strata using spectrum ratios of horizontal 
and vertical components of the natural seismic noise. The 
maximum values of the microseism spectrum ratio of 

horizontal to vertical component are explained by multiple 
reflection of SH waves. 

Figure 1 shows graph  T   of smoothed amplitude 

spectra transmission ratio for imaginary observation point 
that can be used to determine the increase of seismicity 
level on different parts of the building site, relative to the 
real observation point. 

Conclusions. The model and algorithm of statistical 
simulation for time-homogeneous and multidimensionally 
homogeneous isotropic random fields with a limited 
spectrum were developed. These results continued 
research set in works [4-9] for modeling and generation 
method of noise seismogram implementations at flat 
observation area [5] and seismograms from three-
dimensional observation area [6] and it is an important 
supplement to the Monte Carlo method used in geology 
and described in [14]. 

ω, Гц 

 S   

ω, Гц 

 S   

ω, Гц 

 T   
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ПОКРАЩЕНИЙ АЛГОРИТМ СТАТИСТИЧНОГО МОДЕЛЮВАННЯ СЕЙСМІЧНОГО ШУМУ В БАГАТОВИМІРНІЙ 
ОБЛАСТІ ЗМІННИХ ДЛЯ ВИЗНАЧЕННЯ ЧАСТОТНИХ ХАРАКТЕРИСТИК ГЕОЛОГІЧНОГО СЕРЕДОВИЩА 

Робота присвячена подальшій розробці теорії та методів статистичного моделювання випадкових процесів та полів на основі їх 
спектральних розкладів та модифікованих інтерполяційних рядів Котельникова-Шеннона, а також застосуванню таких методів у 
задачах геофізичного моніторингу навколишнього середовища. Розглянуто задачу статистичного моделювання випадкових полів у 
багатовимірній області змінних (однорідних за часом та однорідних ізотропних за n іншими змінними) при впровадженні у сейсмологі-
чні дослідження для визначення частотних характеристик геологічного середовища. Побудовано модель та сформульовано покраще-
ний алгоритм чисельного моделювання реалізацій таких випадкових полів на основі модифікованих інтерполяційних розкладів Коте-
льникова-Шеннона для генерування адекватних реалізацій шуму сейсмограм. У статті вивчаються дійснозначні випадкові поля 

  ,,t x  ,t R  nx R  – однорідні за часом та однорідні ізотропні за просторовими змінними в багатовимірному просторі. Розгляда-

ється проблема апроксимації таких випадкових полів випадковими полями з обмеженим спектром. Для випадкових полів з обмеженим 
спектром встановлено аналог теореми Котельникова-Шеннона. Отримано вдосконалені оцінки середньоквадратичного наближення 

випадкових полів у просторі nR R  моделлю, побудованою на основі спектрального розкладу та інтерполяційної формули Котельни-
кова-Шеннона. Розроблено покращений алгоритм статистичного моделювання реалізацій гауссівських однорідних за часом та одно-
рідних ізотропних за просторовими змінними в багатовимірному просторі випадкових полів з обмеженим спектром. Наведено теоре-
ми про оцінки середньоквадратичної апроксимації однорідних за часом та однорідних ізотропних за n іншими змінними випадкових 
полів частковими сумами рядів спеціального вигляду, за допомогою яких сформульовано покращений алгоритм чисельного моделю-
вання реалізацій таких випадкових полів. Розглянуто способи проведення спектрального аналізу згенерованих реалізацій шуму сейс-
мограм. Розроблено універсальні методи статистичного моделювання (методи Монте-Карло) багатопараметричних сейсмологічних 
даних, які дають можливість вирішити проблеми генерування реалізацій шуму сейсмограм на площині та у тривимірному просторі на 
сітці необхідної детальності та регулярності. 

Ключові слова: статистичне моделювання, спектральний аналіз, сейсмічний шум. 
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УЛУЧШЕННЫЙ АЛГОРИТМ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ СЕЙСМИЧЕСКОГО ШУМА 
 В МНОГОМЕРНОЙ ОБЛАСТИ ПЕРЕМЕННЫХ  

ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ГЕОЛОГИЧЕСКОЙ СРЕДЫ 
Работа посвящена разработке теории и методологии статистического моделирования случайных процессов и полей на основе 

их спектральных разложений и модифицированных интерполяционных рядов Котельникова-Шеннона, а также применению таких 
методов в задачах геофизического мониторинга окружающей среды. Рассмотрена задача статистического моделирования случай-
ных полей в многомерной области переменных (однородных по времени и однородных изотропных по n другими переменным) при 
внедрении в сейсмологические исследования для определения частотных характеристик геологической среды. Построена модель и 
сформулирован улучшенный алгоритм численного моделирования реализаций таких случайных полей на основании модифицирован-
ных интерполяционных разложений Котельникова-Шеннона для генерирования адекватных реализаций шума сейсмограмм. В статье 

изучаются действительнозначные случайные поля   ,,t x  ,t R  nx R  – однородные по времени и однородные изотропные по про-

странственным переменным в многомерном пространстве. Рассматривается проблема аппроксимации таких случайных полей слу-
чайными полями с ограниченным спектром. Для случайных полей полями с ограниченным спектром установлен аналог теоремы Ко-
тельникова-Шеннона. Получены усовершенствованные оценки среднеквадратического приближения случайных полей в пространстве 

nR R  моделью, которая построена на основе спектрального разложения и интерполяционной формулы Котельникова-Шеннона. 
Разработан улучшенный алгоритм статистического моделирования реализаций гауссовских однородных по времени и однородных 
изотропных по пространственным переменным случайных полей с ограниченным спектром. Доказаны теоремы об оценке среднеква-
дратической аппроксимации однородных по времени и однородных изотропных по n другими переменным случайных полей частич-
ными суммами рядов специального вида, при помощи которых сформулирован улучшенный алгоритм численного моделирования 
реализаций таких случайных полей. Рассмотрены способы проведения спектрального анализа сгенерированных реализаций шума 
сейсмограмм. Разработаны универсальные методы статистического моделирования (методы Монте-Карло) многопараметрических 
сейсмологичеких данных, которые дают возможность решить проблемы генерирования реализаций шума сейсмограмм на плоскости 
и в трехмерном пространстве на сетке необходимой детальности и регулярности. 

Ключевые слова: статистическое моделирование, спектральный анализ, сейсмический шум. 
 
 
 




