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METHODOLOGY FOR THE AUTOMATED DETECTION
OF ANOMALOUS GEOSPATIAL ZONES IN SATELLITE IMAGERY USING STATISTICAL
ANALYSIS AND A CUSTOM QGIS PLUGIN

(MpedcmaeneHo yneHom pedakyiliHoi konezii 0-pom 2eozp. Hayk, npod. .0. JlaweHkKom)

Background. This article presents a methodology for the automated detection of anomalous geospatial zones,
implemented as a plugin for the QGIS geographic information system. The developed tool enhances the efficiency of spatial
analysis and enables the rapid identification of areas with potential changes for monitoring natural and anthropogenic processes.

Methods. The proposed approach is based on thresholding and statistical analysis of satellite imagery within the QGIS
environment. The plugin provides interactive adjustment of image processing parameters and automatically detects geodynamic
anomalies, which are then vectorized and delivered to the user for further analysis. The algorithm utilizes Python libraries (NumPy, SciPy,
GDAL, PyQt, QGIS API) to handle various types of satellite data and applies standard deviation-based criteria to identify anomalous areas.

Results. The testing of the plugin developed by the authors confirmed its effectiveness in processing satellite imagery
types such as InSAR, thermal infrared (TIR), and NDWI-based images. The plugin successfully identified areas of vertical
displacement of the Earth's surface, detected thermal anomalies, and delineated regions with moisture deficits. This approach
substantially improves the accuracy of geospatial analysis.

Conclusions. The developed plugin is an effective tool for the automated monitoring of changes in the Earth's surface
and the assessment of hydrogeological conditions. Its integration within the QGIS environment enables the efficient adjustment of
analysis parameters and the generation of results in vector data format. Plugin testing confirmed its practical value and revealed
potential directions for further improvement, particularly regarding the separate processing of positive and negative displacement
values to enhance the accuracy of anomaly interpretation.

Keywords: automated detection, geospatial zones, QGIS plugin, satellite imagery, geodynamic anomalies, spatial analysis.

Background

In the modern, rapidly changing world, various types of
emergencies increasingly arise, including natural disasters,
military conflicts, and man-made accidents. In such
situations, rapid response is critically important, as it
involves assessing the situation and making optimal or
efficient decisions to mitigate negative consequences.
However, the process of territorial assessment is often time-
consuming and complex due to the large volume of data that
must be processed, as well as the lack of effective tools for
timely data collection and analysis.

Contemporary methods for analyzing satellite imagery play
a key role in monitoring environmental changes, assessing
anthropogenic impacts, and detecting geodynamic processes.
Nonetheless, traditional approaches such as visual
interpretation and manual digitization have significant limitations
when dealing with large-scale areas or vast datasets. Their
effectiveness is often compromised by the subjectivity of
interpretation, dependence on the operator's qualifications,
and the difficulty of reproducing results, which complicates
long-term analysis and automated change mapping.
Therefore, new tools capable of automating these processes
and enhancing the accuracy of outcomes are needed to

overcome these challenges and ensure timely analysis
(Tempa, & Aryal, 2022).

Under these circumstances, the availability of a
comprehensive tool capable of conducting rapid and
accurate analysis of satellite images to detect destruction
and assess the overall condition of affected areas becomes
essential (MASAI Project, n.d.). Such tools represent a vital
component for improving emergency response efficiency.
The automation of satellite image analysis through the use
of Geographic Information Systems (GIS) helps to minimize
the shortcomings of traditional methods by standardizing the
detection of anomalous zones that emerge as a result of
image processing (Janz etal., 2021). In particular,
geostatistical algorithms facilitate more accurate anomaly
recognition, reduce the impact of data noise, and enhance
overall analysis efficiency. The integration of such solutions
into the QGIS environment opens new opportunities for
automated monitoring of surface changes, especially in the
context of hydrogeological condition assessments and the
analysis of anthropogenic impacts (lvanik et al., 2022).

This study presents a custom-developed plugin for the
QGIS software that enables the identification of anomalous
zones derived from satellite image processing — namely,
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areas that deviate from background values and indicate
changes or anomalies within the studied region. A key
feature of the plugin developed by the authors is its
applicability to various types of satellite data. Specifically,
the study demonstrates the use of the plugin with INSAR
images, thermal infrared (TIR) imagery, and optical indices
derived from multispectral images (e.g., NDWI in the green
and near-infrared (NIR) bands). The plugin is lightweight and
user-friendly, requiring no additional pre-processing or
complex computations. The user simply uploads an image,
defines parameters for extracting polygons with anomalous
values, and the plugin automatically performs the analysis
and generates results. The plugin is freely available under
an open-access license at https://github.com/rnrhs/
autocountour_qgis_plugin (Marhes, 2025), ensuring its
broad accessibility to researchers and professionals working
in the fields of remote sensing and geospatial technologies.
Its open-source nature also allows for easy modification,
extension of functionality, and integration into diverse
analytical workflows, which is a crucial aspect for supporting
both scientific research and applied engineering practices.
The primary objective of the developed plugin is the
automated detection of anomalous zones that exceed

Initialize Select Raster

Plugin

predefined threshold values, separating them from the main
data array that does not meet the anomaly criteria. The
threshold serves as a criterion for identifying deviations from the
average or statistically expected values, enabling the extraction
of geospatial objects with abnormal displacements or other
parameters that warrant further analysis.

Methods

The algorithm governing user interaction with the plugin
interface comprises a series of sequential steps designed to
enable efficient processing of satellite imagery and the detection
of zones with potential geodynamic anomalies (Fig. 1).

The image processing workflow within the developed
plugin begins with its launch in the QGIS environment. Prior
to this, the plugin must be installed following the official QGIS
guidelines (QGIS Project, 2024). Subsequently, the user
selects the raster image to be processed and adjusts the
sensitivity parameters to configure anomaly detection
settings. As the user modifies the sensitivity threshold,
corresponding changes are dynamically visualized on the
map, allowing threshold values to be fine-tuned through
iterative selection to enhance the accuracy of anomaly
detection. The final output is generated in the form of vector
data, which is well-suited for further spatial analysis.

Set Generate

Anomaly
Threshold Geometries

Fig. 1. Schematic representation of the sequence of user-side operations

The proposed QGIS plugin algorithm, grounded in
statistical analysis and geoinformation approaches,
facilitates the effective identification of anomalies in raster
data by employing threshold-based and statistical
techniques for the automated detection of anomalous
regions in satellte imagery, followed by automatic
vectorization of the results. The core principle of the
algorithm is the assumption that anomalous values can be
identified as deviations from the average statistical level,
defined within a specified threshold coefficient.

Threshold analysis is based on determining a value
beyond which the data are considered anomalous (Folini,
Lenzi, & Biraghi, 2022). The threshold can be set manually
or computed adaptively depending on the data distribution.
Although this method is relatively straightforward to
implement, it requires appropriate threshold selection to
avoid false positives. The main stages of the threshold
analysis include:

e noise removal and interpolation of missing values;

o determination of the threshold value — which can be
specified by the user or automatically calculated (e.g., as a
percentage of the maximum deviation or based on a
histogram of data distribution);

» application of the threshold criterion — comparing each
pixel to the threshold and highlighting zones exceeding this
level, followed by contour smoothing;

o filtering of spurious regions.

Statistical analysis is employed to identify areas that
significantly deviate from the average level of values. One
common approach involves the use of standard deviation to
detect anomalies:

x|x>p+ko, (1)
where u denotes the mean value, o the standard deviation,
and k a coefficient defining the anomaly level.
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This method accounts for statistical properties of the data
distribution, thereby improving detection accuracy (Folini,
Lenzi, & Biraghi, 2022).

Numerous statistical methods for anomaly detection are
based on conventional statistical thresholds, classifying
anomalies into weak (approximately 5 %) and strong
(approximately 0.3 %) categories. These classifications rely
on standard deviation metrics and the assumption of normal
distribution (Cleveland, 1993; Zhukov, 2008; Meng et al.,
2017), and form the basis for data classification. These
principles underpin the proposed plugin algorithm for
detecting anomalous zones in satellite imagery.

The algorithm is implemented in the QGIS plugin using
several Python libraries:

o NumPy — for efficient statistical computations and array
processing;

e SciPy — for mathematical analysis and spatial filtering
techniques;

o GDAL - for handling geospatial data and raster image
processing.

In addition to these statistical analysis libraries, the
developed plugin also utilizes a number of other Python
packages to ensure full functionality and seamless
integration with QGIS. Notably, components from the PyQt
library are imported to construct the graphical user interface
for parameter configuration (QSettings), translations
(QTranslator), core functionality (QCoreApplication), icon
management (Qlcon), and dialog windows (QAction).

For spatial data handling, the plugin uses QGIS libraries such
as QgsProject, QgsRasterLayer, and QgsVectorLayer for
managing projects and layers, QgsRasterBandStats for
computing statistics, and QgsMessagel.og for message logging.
Additionally, the GDAL, OGR, and OSR libraries support the
manipulation of raster and vector data, while NumPy provides the
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computational backend. The plugin also integrates resources
from an external file (resources.py) and implements a dialog
window to facilitate user interaction (Fig. 2).

All raster and vector data processed within the system
adhere to a unified coordinate reference system, which is
essential for accurate integration and geospatial analysis. To
ensure consistency, the plugin retrieves the coordinate
system and projection information of the selected raster
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layer. Initially, the active raster layer is identified via the map
layer control element (mMapLayerComboBox). The data
source path of the selected layer is then obtained, and the
corresponding raster file is opened using the GDAL library.
The GetProjection() method is employed to extract the
layer's projection description in Well-Known Text (WKT)
format, which enables precise identification of the spatial
parameters and coordinate system of the data.
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Fig. 2. User interaction dialog in the developed plugin

A detailed breakdown of the AutoContour plugin's
functionality is provided to elucidate its underlying principles
by separating it into distinct logical modules.

Plugin Initialization

The initialization process of the AutoContour plugin
involves the import of essential libraries, including PyQt, the
QGIS API, GDAL, OGR, and NumPy. At this stage, a
reference to the QGIS interface is stored, enabling access
to data and the ability to manage map layers. The plugin
directory is also defined, and localization is configured based
on the user's system settings. Variables are declared to
store the paths of temporary raster and vector files that are
generated and processed throughout the algorithm's
execution. This design enhances the plugin's modularity and
performance within the QGIS environment, while also
preventing unnecessary file accumulation.

Graphical Interface and QGIS Integration

The integration of the plugin with the QGIS graphical
interface is achieved through its registration in the software
menu and the addition of the corresponding tools to the
toolbar. This process is implemented using the initGui()
method, which creates control elements such as buttons and
menus, providing the user with access to the plugin's
functionalities. The main element is the action (QAction),
which is added to the toolbar and the 'Raster' menu, enabling
the execution of the automatic contouring algorithm from the
graphical interface. The plugin also supports the dynamic
loading of localized resources, ensuring the correct display of
interface elements according to the user's language settings.

For proper management of the plugin's operation, a
mechanism for unloading is provided through the unload()
method, which is responsible for clearing the interface and
removing the corresponding menu items and buttons from
the toolbar. User interaction with the algorithm is facilitated
through the AutocountourDialog window, which allows the
user to set processing parameters, such as the
segmentation threshold. The window supports interactive
adjustment of parameters, enabling real-time control over
the analysis results. Thus, the developed architecture
ensures flexible integration of the plugin into the QGIS
environment and facilitates its use for spatial data analysis.
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Raster Data Processing

The algorithm for processing raster data is based on their
mathematical representation as a discrete two-dimensional
function (Kotsiubivska, & Tymoshenko, 2019):

R!ZZ—)R, R(l,j) = Tij» (2)
where R (i.j) is the pixel value at position (i.j), rij is the pixel
intensity (e.g., reflectance, spectral brightness in a certain
wavelength range, or another parameter).

The statistical analysis of the raster image begins with
the calculation of its key characteristics, such as the average
brightness value. The average brightness value for the entire
raster image is calculated using the formula:

W= T, (3)
where M and N correspond to the dimensions of the raster
image (rows and columns, respectively), and the product
MxN defines the total number of pixels in the image.

The average value defines the background of the image,
enabling the identification of local deviations.

The standard deviation is determined using the formula:

o= /%ziNzl(li—mz. (4)

This parameter indicates the variability of brightness and is
critical for the subsequent identification of anomalous zones.

Anomalous zones are identified using a statistical
criterion based on deviations from the mean value to detect
anomalous values in the case of a normal distribution of a
random variable. This approach is widely used in the
processing of satellite images and geospatial data analysis
(Gavade, & Rajpurohit, 2021). According to this approach,
values of the random variable that fall outside the range

|+ ko, (5)
where p is the expected value, o is the standard deviation,
and k is the anomaly coefficient, are considered potentially
anomalous.

In this context, for raster data processing, this rule allows
for the identification of areas where the intensity values
significantly differ from the mean level, which may indicate
the presence of natural or anthropogenic anomalies (Folini,
Lenzi, & Biraghi, 2022). This method is based on the
assumption of a Gaussian distribution of pixel intensity, which
is typical for many natural phenomena and remote sensing of
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the Earth (Hytla etal., 2009). Thus, the determination of
anomalous zones is described by the formula:
I; = p+ko. (6)

This allows for the identification of regions where the
values substantially exceed the background level. The
approach relies on the assumption of a normal distribution
of pixel intensities, which is typical for natural processes and
satellite data.

Raster image binarization involves obtaining a mask
M(i.j), which is converted into a new raster file, where
1 corresponds to anomalous zones and 0 to the normal
background:

. 255, ifM(i,j) =1,
Mbin(lr]) - { 0, lfM(l,]) =0. (7)

This mask allows for the visualization of anomalous
areas and their storage in a standard format, such as
GeoTIFF. At this stage, the projection and coordinate
system of the input raster are assigned to the resulting mask.

Vectorization and Processing of Anomalous Zones

The process of vectorizing anomalous zones in a raster
image is based on the gdal.Polygonize() algorithm, a
function in the GDAL library that converts pixel regions with
identical values into a set of closed polygons.
Mathematically, this process can be represented as the
construction of the set

P = (A}, (8)
where 4; denotes individual regions formed by connected
pixels with the same intensity value, and N represents the
total number of identified anomalous zones.

Vectorization allows the conversion of a discrete
representation of spatial data into a more suitable form for
further analysis, ensuring effective processing and storage
of information in geospatial vector formats such as Shapefile
or GeoJSON.

The vectorization algorithm consists of several key
stages. The first stage employs a scan-line algorithm, which
identifies the boundaries of anomalous objects through the
sequential scanning of the raster image. Next, the connected
components of each object are determined and grouped into
closed contours based on the topological properties of pixel
connections. The final stage involves saving the resulting
contours in vector form, enabling further spatial analysis,
such as the calculation of geometric characteristics, the
determination of the area and perimeter of anomalous
zones, and integration with other geospatial data. This
approach ensures high analysis accuracy and enables the
automation of the anomaly identification process in satellite
images and other geospatial data.

Upon completion of the polygonization stage, the
obtained vector objects undergo filtering to eliminate

User Block

* Plugin Initialization

* Raster Selection

» Sensitivity Adjustment

Raster Block
« Input Raster Reading

potential artifacts or noise that may have been generated
during the analysis. The primary criterion for identifying such
artifacts is the area of the polygon, which is determined using
Gauss's formula (Gavade, & Rajpurohit, 2021):

S = % | 271 ()41 — X17) |, 9
where S; is the area of the polygon, x;, y; are the coordinates
of its vertices, and n is the number of vertices of the polygon.

Among all identified anomalous zones, the polygon with
the largest area is selected, as it is most likely to be an
artifact or noise formation. If its area significantly exceeds
the average area of other objects, it is removed from further
analysis. The remaining polygons are preserved for further
processing and interpretation, enhancing the accuracy and
reliability of the geospatial analysis results.

The final step is to save the resulting vector objects as a
new layer in Shapefile format.

Temporary File Management

During the operation of the plugin, temporary files are
automatically created and managed, including the generation of
directories for storing intermediate raster and vector data. This
process may increase memory load and impact data
processing performance. To ensure optimal use of system
resources, all temporary files are automatically deleted either
after their utilization is complete or upon the closure of QGIS.
This approach helps prevent the accumulation of redundant
data, enhances disk space efficiency, and minimizes memory
usage, which is particularly critical when processing large
volumes of geospatial data.

The aforementioned data processing sequence on the
system side relies on active modules for raster and vector
data that are executed each time user-defined parameters
are modified (Fig.3). These parameters include the
selection of the raster layer and the specification of a
sensitivity threshold (Jain, Duin, & Mao, 2000). The defined
sensitivity threshold determines the subset of data that

satisfies the following expression:
rastergrrqy—W

. >0, (10)
where the expression considers only positive values, as the
modulus (interpreted by the system as the abs function)
denotes the absolute value function. Here, rasteraray refers
to the data matrix, p is the mean of the matrix, o is the
standard deviation, and 6 is the sensitivity coefficient
(threshold). The computed results are immediately made
available to the user in the form of polygons representing
anomalous values within the data array.

Thus, each change in user parameters ftriggers a
processing cycle of raster and vector modules in sequence,
enabling the visual evaluation of anomalous values based
on the specified threshold.

» Mask Creation Based on the Specified Threshold
« Raster File Generation

Vector Block

* Polygonization
« Vector File Generation

Fig. 3. Schematic representation of the sequence of processes executed on the system side
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Results

The results produced by the developed plugin (Fig. 4)
were analyzed based on three types of satellite imagery:
INSAR images for detecting vertical surface displacements,
thermal infrared (TIR) images for determining land surface
temperature (LST), and multispectral images in the green
and near-infrared (NIR) spectral bands used to calculate the

Normalized Difference Water Index (NDWI). The automated
analysis of these imagery types using the plugin significantly
simplifies the interpretation of spatial data, thereby
enhancing research efficiency and supporting timely
decision-making in the fields of environmental monitoring
and land management.
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Fig. 4. General view of the developed plugin in QGIS software

Case 1: InSAR Imagery Analysis

The modern development of engineering infrastructure and
urban areas is accompanied by substantial anthropogenic
pressure on the Earth's surface. Construction of bridges, dams,
underground utilities, and high-rise structures disturbs the
natural equilibrium, potentially leading to vertical displacements
of the Earth's crust, localized deformations, or even
catastrophic failures (Kril, 2017). Accordingly, monitoring such
processes is critically important for ensuring infrastructure
safety and sustainable development.

The analysis of Sentinel-1 satellite imagery using the
Differential Interferometric Synthetic Aperture Radar (D-
INSAR) method serves as a powerful tool for detecting
vertical surface displacements, particularly in urbanized
environments (Minh, Hanssen, & Rocca, 2020). This method
enables the detection of even minor topographic changes
with high precision, making it indispensable for assessing
geodynamic processes, risk forecasting, and informed
decision-making in urban planning and engineering geology.
The application of D-INSAR is especially relevant in zones of
active construction, seismically hazardous areas, regions of
underground resource extraction, and locations prone to
subsidence or landslides (Kruglov, Hudak, & Kruhlov, 2025).
The use of Sentinel-1 radar imagery facilitates the
observation of displacement dynamics over time and the
identification of long-term deformation trends.

In this case, the plugin was supplied with an InSAR
satellite image of the city of Kharkiv (Fig. 5a), processed
using the D-InSAR technique. After processing, the plugin
automatically identified anomalous values indicating the
presence of surface changes within the study area. These
anomalies may correspond to vertical crustal deformations
caused by either natural or anthropogenic factors. The
resulting output provides a visualization of elevation
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changes, enabling detailed examination of geodynamic
processes in the region and further analysis of zones
exhibiting anomalous displacements (Fig. 5b). The
statistical characteristics derived from the processed INSAR
imagery demonstrate significant variability in surface
displacement values (Table 1). The largest anomalous area
(polygon ID 193) shows a minimum displacement of —
0.11 m, a maximum of —0.05 m, and an average of —0.07 m.
Such negative values may indicate ground subsidence.
Other significant polygons, such as ID 205 and ID 400,
exhibit similar average values, pointing to the existence of
subsiding areas in the region. The range of values in most
cases does not exceed 0.03 m, indicating the localized
nature of the detected changes.

Displacements with positive values (e.g., polygons
ID 799, 632, and 596) indicate uplift of the Earth's surface.
For instance, polygon ID 632 demonstrates a minimum
value of 0.05 m, a maximum of 0.08 m, and a mean value of
0.05m. Such values may reflect specific geodynamic
processes, including ground uplift or deformation driven by
anthropogenic or natural factors. In all cases, the standard
deviation remains relatively low (0.01-0.004 m), confirming
the uniformity of changes within each identified polygon.
Overall, the resulting characteristics allow for a quantitative
assessment of the extent of surface changes and facilitate
the identification of zones requiring continued monitoring.

Thus, the automation of D-InSAR data analysis within
QGIS significantly enhances the efficiency of deformation
monitoring while ensuring a more objective, reproducible,
and scalable approach to assessing geodynamic processes
across various territories. This enables timely detection of
potentially hazardous zones, which is especially important
for areas undergoing intensive urban development or those
with complex engineering and geological conditions.
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Fig. 5. Input image processed using the D-InSAR method (a); detected anomalous zones of vertical displacement (b)

Table 1
Polygon ID Area, m? Min Max Mean Standart deviation Range Sum of squares
193 1536244 -0,11 -0,05 -0,07 0,01 0,05 1,87
205 169109 -0,09 -0,05 -0,07 0,01 0,03 0,1
799 147380 0,05 0,07 0,05 0,01 0,03 0,08
400 131831 -0,08 -0,05 -0,07 0,01 0,03 0,09
632 93853 0,05 0,08 0,05 0,01 0,03 0,05
82 66415 -0,08 -0,05 -0,06 0,01 0,03 0,03
369 60226 -0,09 -0,05 -0,07 0,01 0,03 0,07
596 59012 0,05 0,08 0,06 0,01 0,03 0,05
308 49301 -0,08 -0,05 -0,06 0,004 0,02 0,02
840 42160 0,05 0,07 0,06 0,01 0,03 0,02
269 41401 -0,08 -0,05 -0,06 0,004 0,02 0,02
506 40645 -0,08 -0,05 -0,06 0,004 0,02 0,01

Case 2: Landsat 8/9 (Thermal Infrared Sensor)

Satellite imagery acquired via the Thermal Infrared
Sensor (TIRS) onboard Landsat 8/9 satellites serves as a
critical data source for monitoring temperature variations on
the Earth's surface. This is particularly relevant in the context
of climate change, as such data enable the identification of
warming trends, overheating in urbanized areas, and
fluctuations in soil moisture (Lischenko, Pazynych, &
Filipovych, 2017; Filipovych, & Shevchuk, 2018).

Thermal sensor data, especially from TIRS, are
employed for the monitoring of geothermal resources,
detection of elevated temperatures in zones of volcanic
activity, and analysis of terrain changes related to geological
displacements and ground deformation. Furthermore, these
data are valuable for assessing the ecological state of
landscapes — particularly in areas affected by mining —
where surface temperature shifts may indicate land
degradation. Thermal imagery is also instrumental in
detecting and forecasting exogenous processes such as
erosion or landslides, as well as in evaluating anthropogenic
impacts and pollution caused by human activities (Vivaldi
et al., 2022). Additionally, thermal data contribute to climate
change modeling and the analysis of urbanization effects,
especially in detecting urban heat islands.

The analysis of Land Surface Temperature (LST) using the
developed plugin includes the application of criteria for
detecting minor anomalies, comprising no more than 5 % of the
total dataset. The input image (Fig. 6a) is an atmospherically
corrected Landsat product representing LST in degrees Celsius
for the year 2020. The study area is located in the central part
of Kyiv Oblast and is characterized by extensive agricultural
land use, which has a notable environmental impact on
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surrounding ecosystems — particularly the Supiy River — and
features a clearly defined urban heat island in the city of
Yahotyn, Kyiv Oblast, Ukraine.

The input thermal image (Fig.6a) has the following
characteristics: maximum temperature of 32.79 °C, mean
temperature of 23.08 °C, minimum temperature of 14.07 °C,
temperature range of 18.72 °C, and a standard deviation of
3.37 °C. Based on these metrics, 182 anomalous polygons
were identified, each containing values that meet the predefined
anomaly criteria. In total, the number of pixels with anomalous
values amounts to 21.62 out of 455.60 (4.75 %).

The analyzed image exhibits a distinct spatial
heterogeneity in thermal conditions, reflecting the complex
interaction of natural and anthropogenic factors. The
maximum recorded temperature is 32.79°C, the minimum is
14.07 °C, and the mean value is 23.08 °C, with a temperature
range of 18.72°C and a standard deviation of 3.37 °C
(Tab. 2). In total, 182 anomalous figures were identified,
occupying 21.62 pixels out of 455.60, representing 4.75 % of
the total image area. All anomalous areas were classified into
two categories: low-temperature anomalies (ranging from
14.06 °C to 16.33 °C), primarily associated with reservoirs
and water bodies, and high-temperature anomalies (ranging
from 29.45 °C to 32.79 °C), typical for dry open surfaces such
as farmland and urban areas.

This thermal segmentation is also evident in the
detailed analysis of selected features: for example, ID 159
and 88 show average temperatures of 14.81 °C and
15.37 °C, respectively, characteristic of moist or aquatic
surfaces, whereas areas such as ID 109, 160, and 139
display elevated mean values above 30 °C, corresponding
to dry open territories or urban zones. The variation in
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standard deviation within the range of 0.27-0.71 °C
indicates differing levels of temperature uniformity across
individual geospatial objects. Large spatial structures, such
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as ID 159, exhibit stable temperature gradients, which are
crucial for the comprehensive analysis of landscape
thermal conditions (Fig. 6b).
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Fig. 6. Input LST image (a); detected anomalous zones of high and low temperature (b)

Table 2
Polygon ID Area, m? Min Max Mean Standart deviation Range Sum of squares

159 7453792 14,07 16,33 14,81 0,4 2,27 1344,38

88 3057343 14,49 16,33 15,37 0,38 1,85 492,43

109 1260731 29,83 32,79 30,76 0,65 2,96 581,46

26 683546 29,83 31,43 30,23 0,33 1,6 83,48

160 624957 29,83 32,47 30,68 0,71 2,64 345,52

17 454758 29,83 31,3 30,26 0,28 1,47 40,33

139 434077 29,83 31,96 30,5 0,44 2,13 93,28

102 433149 29,83 31,09 30,34 0,32 1,27 48

126 355727 29,83 31,21 30,25 0,35 1,38 48,54

79 329596 29,83 31,97 30,56 0,41 2,14 62,27

51 326010 29,83 31,49 30,24 0,38 1,66 50,99

113 285461 29,83 31,71 30,73 0,41 1,88 53,64

The application of the developed plugin significantly
enhanced the efficiency of detecting geospatial objects with
anomalous thermal characteristics based on user-defined
criteria, thereby ensuring higher accuracy and timeliness in
surface temperature monitoring. The obtained results can
serve as a robust analytical foundation for forecasting
climate trends, assessing ecological risks, and planning the
rational use of land resources.

Case 3: Normalized Indices from Multispectral Imagery

As in the previously discussed cases, anomalous values
help to identify the most affected zones characterized by
specific index responses. In this instance, the Normalized
Difference Water Index (NDWI) was used to detect surface
water bodies (McFeeters, 1996); however, the use of other
indices — such as NDVI, NDSI, NDDI, among others — can
be beneficial for a wide range of thematic applications.

The area under investigation is located near the city of
Yahotyn in Kyiv Oblast (Fig. 7a), along the Supiy River
(Ukraine), which is known to experience periodic suffosion-
induced subsidence (Marhes, 2024). The study of such
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physical processes in this region is of high relevance, as they
are widespread on the left bank of the Dnipro River and exert
a negative impact on agricultural productivity. NDWI was
specifically selected due to its sensitivity to moisture
accumulation in microdepressions formed by subsidence
(Trofymenko et al., 2024).

NDWI values were derived from a PlanetScope satellite
image (Planet Team, 2025), revealing predominantly dry or
minimally moist areas with only limited evidence of water
presence. Using the developed plugin, it was possible to
visualize local terrain depressions — particularly bowl-
shaped formations — where moisture accumulation was
detected (Fig. 7b). In some instances, weakly expressed
forms of linear erosion were also observed, further indicating
irregularities in the surface hydrological regime. NDWI,
which is responsive to the moisture content of vegetation
and open water bodies, yielded uniformly negative values
across the sample, ranging from —-0.72 to -0.37. This
confirms the predominance of dry soils or vegetation lacking
free surface water.
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Fig. 7. Input NDWI image (a); Detected anomalous (critical) zones in the image (b)

Analysis of the statistical data (Table 3) reveals a degree
of heterogeneity across the studied areas. The largest zone
is represented by object ID 580, covering 35,057 pixels, with
an average NDWI value of -0.5 and a relatively narrow
range (0.2), indicating a relatively homogeneous moisture
condition. In contrast, object ID 4294 is characterized by the
highest standard deviation (0.07) and a broader range

(0.31), likely due to the presence of varying surface types or
local hydrological contrasts. Other zones, particularly those
with an area below 2,500 pixels (e.g., ID 6228), display
stable NDWI values with minimal dispersion, which is typical
for small, homogeneous micro-landscapes. The dominance
of negative NDWI values across the dataset further confirms
the prevalence of arid or low-moisture microenvironments.

Table 3
Polygon ID Area, m? Min Max Mean Standart deviation Range Sum of squares
580 35057 -0,6 -0,41 -0,5 0,02 0,2 1,3
4294 15426 -0,72 -0,42 -0,54 0,07 0,31 7,47
7362 4007 -0,43 -0,38 -0,41 0,01 0,05 0,05
2375 3836 -0,54 -0,43 -0,49 0,01 0,11 0,08
2636 3710 -0,55 -0,42 -0,49 0,01 0,13 0,06
6457 3071 -0,64 -0,47 -0,53 0,05 0,17 0,8
7820 2756 -0,43 -0,39 -0,42 0,01 0,04 0,03
7170 2630 -0,43 -0,39 -0,42 0,01 0,04 0,02
8608 2467 -0,43 -0,39 -0,42 0,01 0,04 0,02
6217 2062 -0,43 -0,38 -0,42 0,01 0,05 0,02
8962 2044 -0,43 -0,37 -0,41 0,01 0,06 0,03
6228 2008 -0,48 -0,39 -0,42 0,01 0,09 0,02

The statistical analysis of NDWI values indicates an

overall low moisture content throughout the entire study
area. These data may be used to identify drought-prone
zones, track seasonal fluctuations in moisture regimes, or
compare with other indices such as NDVI or NDBI. The most
analytically valuable areas are those exhibiting high
variability, which may serve as indicators of local
environmental changes or anthropogenic impacts.

Discussion and conclusions

The development of effective methods for analyzing
satellite imagery represents a key challenge in monitoring
both natural and anthropogenic environmental changes. The
proposed approach to automated anomaly detection is
grounded in the application of statistical methods, enabling
high accuracy and processing speed.

Traditional approaches to image analysis typically rely
on visual interpretation and manual digitization of anomalous
zones. However, this method is time-consuming, particularly
when dealing with large datasets containing numerous
anomalies. Manual identification becomes increasingly
difficult over extensive or densely built-up areas. Moreover,
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the results of such analysis often depend on the researcher's
expertise and subjective interpretation, introducing potential
error. The lack of a standardized algorithm further
complicates reproducibility, which is critical for long-term
environmental monitoring. Visual methods also fall short in
handling large volumes of spatial data and accounting for
spatial deformation patterns.

Given these limitations, the development of a plugin for
QGIS that automates the identification of anomalous
displacement zones is a timely and relevant solution.
Automation allows for the standardization of analytical
procedures, increased anomaly detection accuracy, and
significant time savings. The integration of machine learning
algorithms and geostatistical methods within the plugin
enhances the precision of anomaly recognition and helps
reduce data noise. Moreover, coupling the plugin with other
geoinformation modules facilitates comprehensive analysis
of interactions between surface deformations and
influencing factors such as hydrogeological conditions or
anthropogenic pressure.

The developed QGIS plugin streamlines satellite image
analysis and greatly simplifies the identification of anomalous
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zones. lts core functionality includes the use of threshold and
statistical analysis methods to detect changes in geospatial
data, contributing to more objective assessments and
standardized outcomes. In addition, the plugin supports various
types of satellite imagery — including INSAR, thermal infrared,
and normalized index data — making it a versatile tool for a
broad spectrum of researchers.

The algorithmic implementation is based on Python
libraries such as NumPy, SciPy, and GDAL, which enable
complex analytical computations to be seamlessly
integrated into the QGIS environment. The use of
thresholding and standard deviation calculations permits
adaptive parameter tuning for anomaly detection, thereby
reducing the likelihood of false positives.

Practical testing of the plugin has demonstrated its
effectiveness in the context of automated surface change
monitoring and hydrogeological assessment. Thanks to its
intuitive graphical interface, users can easily configure
analysis parameters and obtain results in the form of vector
data, ready for further processing.

The testing process also generated ideas for future
improvements. In particular, it was suggested to implement
separate processing of positive and negative index or
displacement values. This approach allows for consideration
of the differing nature of physical processes or phenomena
that produce anomalies of opposite signs — for example,
ground subsidence versus surface uplift caused by
anthropogenic or natural factors. Segregating these zones
would enhance the accuracy of interpretation and improve
decision-making based on the analytical results.

In summary, the developed plugin is an efficient tool for
remote sensing research. It reduces the time required for
satellite image analysis, increases accuracy, and
standardizes approaches to environmental change
assessment. Its integration into QGIS opens new avenues
for geoinformation analysis, representing a promising
direction for advancing monitoring methods for both natural
and anthropogenic processes.
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1KuiBCcbkMi HaLioHanNbHUIA YHiBepcuTeT iMeHi Tapaca LLleBueHka, KuiB, YkpaiHa
2lleHTp aepOKOCMiYHUX AochimKeHb 3eMni IHCTUTYTY reonoriyHUX Hayk,
HauioHanbHa akagemisi Hayk YkpaiHu, KuiB, YkpaiHa

3yniBepcuteT Yp6iHo "Kapna Bo", Yp6iHo, ITanis

METOAOJIOTA ABTOMATU3O0BAHOIO BUABJTIEHHA AHOMAJIbHMX TEONPOCTOPOBUX 30H
HA CYNYTHUKOBUX 3HIMKAX I3 BUKOPUCTAHHAM
CTATUCTUYHOI O AHANI3Y TA CMEUIANI3BOBAHOIO MNATIHA Ond QGIS

B cTyn. lpedcmasneHo memodonozito aemomMamu308aH020 8UsI8JIEHHS1 aHOMalIbHUX 2€0IPOCIMOPO8UX 30H, peasizosaHy y euansdi nnaziHa
ans eeoiHghopmayitiHoi cucmemu QGIS. Po3pobneHuli iHcmpymenm nideuuiye egpekmueHicmb npocmopoeoz0 aHanily ma 3abesnevyye weuodky ide-
Hmudgbikayiro mepumopiii 3 nomeHyiliHumMu 3mMiHamu O711 MOHIMOpPUH2y NPUPOOGHUX | MEeXHO2eHHUX Npoyecie.

Me Toawun. 3anponoHosaHull nidxid 6azyembcsi Ha UKOPUCMaHHI IOPO208020 Ma CMamuUCMUYHO_20 aHasli3y CynymHUKosuXx 3HiMKie y cepe-
doesuwi QGIS. MnaziH 3a6e3neyye iHmepakmueHe HanawmyeaHHs napaMmempie 06pobku 306paxkeHb ma agsmomamu4Ho eusiesisie 2e00uUHaMiyHi aHo-
Mmanii, siki nicns eekmopu3ayii Hadalombcsi Kopucmyeaydy O Nodanbwo20 aHanizy. Anzopumm sukopucmosye 6i6niomeku Python (NumPy, SciPy,
GDAL, PyQt, QGIS API) onsi 06po6ku pi3Hux munie cynymHukoeux 0aHux i 3acmocoeye Kkpumepii Ha ocHoei cmaHOapmHo20 eidxuneHHs1 Ons eusie-
JIeHHS1 aHOMaJslbHUX QisIsIHOK.

Pe3ynbTaTtu. TecmyeaHHs1 po3pobrieHO20 aemopamu niaziHa niomeepaduro lio2o eghekmueHicms nid 4ac 06po6Ku cynymHUKo8ux 3HiMKie
munie INSAR, mennosux iHppayepesoHux (TIR) ma 3Himkie Ha ocHosi iHdekcy NDWI. lMnaziH ycniwHo ideHmudpikyeae 30HU 8epmuKanbHUX 3MiWjeHb
3eMHOi noeepxHi, susieue memmnepamypHi aHomasii ma okpecnue obnacmi 3 degpiyumom eonoau. Takuli Nidxi0 cymmeeo nokpawye moyHicms 2eo-
iHgpopmayitiHo20 aHanisy.

B ucHoBEkKuU. Po3pobneHulii nnaziH € epekmueHUM iHcmpymeHmom 0sis1 aemomamu308aHo020 MOHIMOPUH2y 3MiH 3eMHOI MoeepxHi ma oyiHKu
2idpozeosioziyHux ymoe. Mozo inmezpauis e cepedosuwsi QGIS dae 3Mo2y onepamueHO Hasawmoeyeamu napaMempu aHanisy ma ompumyeamu
pesynbmamu y ¢ghopmami eekmopHux 0aHux. TecmyeaHHs nnaziHa niomeepdusio io2o NpPaKkmMu4Hy UiHHicmMb i eusieusio NnomeHuyiliHi Hanpsimu Ans
nodanbwoz20 800CKOHaeHHsI, 30KpeMa w000 po30inbHOi 06pobku dodamHux i 8id'eMHUX 3HaYeHb 3MiujeHb Os1 NideUWeHHs1 moYyHocmi iHmepnpe-
mauyii aHomanid.

Knio4yoBi cnoBa: aegmomamu3oeaHe eusie/ieHHsI, 2e01pocmopoesi 30Hu, nnazid QGIS, cynymHukoei 306paxeHHs1, 2e00uHaMi4Hi aHoManii,
npocmoposuli aHari3.

ABTOpPU 3asiBNSIIOTb NPO BiACYTHICTb KOHNIKTY iHTepeciB. CnoHcopu He Bpanu yvacTi B po3pobreHHi focnimpkeHHs; y 36opi, aHanisi um
iHTepnpeTauii AaHWX; y HanMcaHHi pyKonucy; B pilleHHi Npo nybnikauito pesynbTarTis.
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