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METHODOLOGY FOR THE AUTOMATED DETECTION  
OF ANOMALOUS GEOSPATIAL ZONES IN SATELLITE IMAGERY USING STATISTICAL 

ANALYSIS AND A CUSTOM QGIS PLUGIN 
 
(Представлено членом редакційної колегії д-ром геогр. наук, проф. Д.О. Ляшенком) 
 
B a c k g r o u n d .  This article presents a methodology for the automated detection of anomalous geospatial zones, 

implemented as a plugin for the QGIS geographic information system. The developed tool enhances the efficiency of spatial 
analysis and enables the rapid identification of areas with potential changes for monitoring natural and anthropogenic processes. 

M e t h o d s .  The proposed approach is based on thresholding and statistical analysis of satellite imagery within the QGIS 
environment. The plugin provides interactive adjustment of image processing parameters and automatically detects geodynamic 
anomalies, which are then vectorized and delivered to the user for further analysis. The algorithm utilizes Python libraries (NumPy, SciPy, 
GDAL, PyQt, QGIS API) to handle various types of satellite data and applies standard deviation-based criteria to identify anomalous areas. 

R e s u l t s .  The testing of the plugin developed by the authors confirmed its effectiveness in processing satellite imagery 
types such as InSAR, thermal infrared (TIR), and NDWI-based images. The plugin successfully identified areas of vertical 
displacement of the Earth's surface, detected thermal anomalies, and delineated regions with moisture deficits. This approach 
substantially improves the accuracy of geospatial analysis. 

C o n c l u s i o n s .  The developed plugin is an effective tool for the automated monitoring of changes in the Earth's surface 
and the assessment of hydrogeological conditions. Its integration within the QGIS environment enables the efficient adjustment of 
analysis parameters and the generation of results in vector data format. Plugin testing confirmed its practical value and revealed 
potential directions for further improvement, particularly regarding the separate processing of positive and negative displacement 
values to enhance the accuracy of anomaly interpretation. 

 
K e y w o r d s :  automated detection, geospatial zones, QGIS plugin, satellite imagery, geodynamic anomalies, spatial analysis. 
 
Background 
In the modern, rapidly changing world, various types of 

emergencies increasingly arise, including natural disasters, 
military conflicts, and man-made accidents. In such 
situations, rapid response is critically important, as it 
involves assessing the situation and making optimal or 
efficient decisions to mitigate negative consequences. 
However, the process of territorial assessment is often time-
consuming and complex due to the large volume of data that 
must be processed, as well as the lack of effective tools for 
timely data collection and analysis. 

Contemporary methods for analyzing satellite imagery play 
a key role in monitoring environmental changes, assessing 
anthropogenic impacts, and detecting geodynamic processes. 
Nonetheless, traditional approaches such as visual 
interpretation and manual digitization have significant limitations 
when dealing with large-scale areas or vast datasets. Their 
effectiveness is often compromised by the subjectivity of 
interpretation, dependence on the operator's qualifications, 
and the difficulty of reproducing results, which complicates 
long-term analysis and automated change mapping. 
Therefore, new tools capable of automating these processes 
and enhancing the accuracy of outcomes are needed to 

overcome these challenges and ensure timely analysis 
(Tempa, & Aryal, 2022). 

Under these circumstances, the availability of a 
comprehensive tool capable of conducting rapid and 
accurate analysis of satellite images to detect destruction 
and assess the overall condition of affected areas becomes 
essential (MASAI Project, n.d.). Such tools represent a vital 
component for improving emergency response efficiency. 
The automation of satellite image analysis through the use 
of Geographic Information Systems (GIS) helps to minimize 
the shortcomings of traditional methods by standardizing the 
detection of anomalous zones that emerge as a result of 
image processing (Janz et al., 2021). In particular, 
geostatistical algorithms facilitate more accurate anomaly 
recognition, reduce the impact of data noise, and enhance 
overall analysis efficiency. The integration of such solutions 
into the QGIS environment opens new opportunities for 
automated monitoring of surface changes, especially in the 
context of hydrogeological condition assessments and the 
analysis of anthropogenic impacts (Ivanik et al., 2022). 

This study presents a custom-developed plugin for the 
QGIS software that enables the identification of anomalous 
zones derived from satellite image processing – namely, 
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areas that deviate from background values and indicate 
changes or anomalies within the studied region. A key 
feature of the plugin developed by the authors is its 
applicability to various types of satellite data. Specifically, 
the study demonstrates the use of the plugin with InSAR 
images, thermal infrared (TIR) imagery, and optical indices 
derived from multispectral images (e.g., NDWI in the green 
and near-infrared (NIR) bands). The plugin is lightweight and 
user-friendly, requiring no additional pre-processing or 
complex computations. The user simply uploads an image, 
defines parameters for extracting polygons with anomalous 
values, and the plugin automatically performs the analysis 
and generates results. The plugin is freely available under 
an open-access license at https://github.com/rnrhs/ 
autocountour_qgis_plugin (Marhes, 2025), ensuring its 
broad accessibility to researchers and professionals working 
in the fields of remote sensing and geospatial technologies. 
Its open-source nature also allows for easy modification, 
extension of functionality, and integration into diverse 
analytical workflows, which is a crucial aspect for supporting 
both scientific research and applied engineering practices. 

The primary objective of the developed plugin is the 
automated detection of anomalous zones that exceed 

predefined threshold values, separating them from the main 
data array that does not meet the anomaly criteria. The 
threshold serves as a criterion for identifying deviations from the 
average or statistically expected values, enabling the extraction 
of geospatial objects with abnormal displacements or other 
parameters that warrant further analysis. 

Methods 
The algorithm governing user interaction with the plugin 

interface comprises a series of sequential steps designed to 
enable efficient processing of satellite imagery and the detection 
of zones with potential geodynamic anomalies (Fig. 1). 

The image processing workflow within the developed 
plugin begins with its launch in the QGIS environment. Prior 
to this, the plugin must be installed following the official QGIS 
guidelines (QGIS Project, 2024). Subsequently, the user 
selects the raster image to be processed and adjusts the 
sensitivity parameters to configure anomaly detection 
settings. As the user modifies the sensitivity threshold, 
corresponding changes are dynamically visualized on the 
map, allowing threshold values to be fine-tuned through 
iterative selection to enhance the accuracy of anomaly 
detection. The final output is generated in the form of vector 
data, which is well-suited for further spatial analysis. 
 

 
Fig. 1. Schematic representation of the sequence of user-side operations 

 
The proposed QGIS plugin algorithm, grounded in 

statistical analysis and geoinformation approaches, 
facilitates the effective identification of anomalies in raster 
data by employing threshold-based and statistical 
techniques for the automated detection of anomalous 
regions in satellite imagery, followed by automatic 
vectorization of the results. The core principle of the 
algorithm is the assumption that anomalous values can be 
identified as deviations from the average statistical level, 
defined within a specified threshold coefficient. 

Threshold analysis is based on determining a value 
beyond which the data are considered anomalous (Folini, 
Lenzi, & Biraghi, 2022). The threshold can be set manually 
or computed adaptively depending on the data distribution. 
Although this method is relatively straightforward to 
implement, it requires appropriate threshold selection to 
avoid false positives. The main stages of the threshold 
analysis include: 

• noise removal and interpolation of missing values; 
• determination of the threshold value – which can be 

specified by the user or automatically calculated (e.g., as a 
percentage of the maximum deviation or based on a 
histogram of data distribution); 

• application of the threshold criterion – comparing each 
pixel to the threshold and highlighting zones exceeding this 
level, followed by contour smoothing; 

• filtering of spurious regions. 
Statistical analysis is employed to identify areas that 

significantly deviate from the average level of values. One 
common approach involves the use of standard deviation to 
detect anomalies: 

𝑥𝑥 | 𝑥𝑥 > μ + 𝑘𝑘 σ,  (1) 
where 𝜇𝜇 denotes the mean value, 𝜎𝜎 the standard deviation, 
and 𝑘𝑘 a coefficient defining the anomaly level. 

This method accounts for statistical properties of the data 
distribution, thereby improving detection accuracy (Folini, 
Lenzi, & Biraghi, 2022). 

Numerous statistical methods for anomaly detection are 
based on conventional statistical thresholds, classifying 
anomalies into weak (approximately 5 %) and strong 
(approximately 0.3 %) categories. These classifications rely 
on standard deviation metrics and the assumption of normal 
distribution (Cleveland, 1993; Zhukov, 2008; Meng et al., 
2017), and form the basis for data classification. These 
principles underpin the proposed plugin algorithm for 
detecting anomalous zones in satellite imagery. 

The algorithm is implemented in the QGIS plugin using 
several Python libraries: 

• NumPy – for efficient statistical computations and array 
processing; 

• SciPy – for mathematical analysis and spatial filtering 
techniques; 

• GDAL – for handling geospatial data and raster image 
processing. 

In addition to these statistical analysis libraries, the 
developed plugin also utilizes a number of other Python 
packages to ensure full functionality and seamless 
integration with QGIS. Notably, components from the PyQt 
library are imported to construct the graphical user interface 
for parameter configuration (QSettings), translations 
(QTranslator), core functionality (QCoreApplication), icon 
management (QIcon), and dialog windows (QAction). 

For spatial data handling, the plugin uses QGIS libraries such 
as QgsProject, QgsRasterLayer, and QgsVectorLayer for 
managing projects and layers, QgsRasterBandStats for 
computing statistics, and QgsMessageLog for message logging. 
Additionally, the GDAL, OGR, and OSR libraries support the 
manipulation of raster and vector data, while NumPy provides the 
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computational backend. The plugin also integrates resources 
from an external file (resources.py) and implements a dialog 
window to facilitate user interaction (Fig. 2). 

All raster and vector data processed within the system 
adhere to a unified coordinate reference system, which is 
essential for accurate integration and geospatial analysis. To 
ensure consistency, the plugin retrieves the coordinate 
system and projection information of the selected raster 

layer. Initially, the active raster layer is identified via the map 
layer control element (mMapLayerComboBox). The data 
source path of the selected layer is then obtained, and the 
corresponding raster file is opened using the GDAL library. 
The GetProjection() method is employed to extract the 
layer's projection description in Well-Known Text (WKT) 
format, which enables precise identification of the spatial 
parameters and coordinate system of the data. 

 

 
Fig. 2. User interaction dialog in the developed plugin 

 
A detailed breakdown of the AutoContour plugin's 

functionality is provided to elucidate its underlying principles 
by separating it into distinct logical modules. 

Plugin Initialization 
The initialization process of the AutoContour plugin 

involves the import of essential libraries, including PyQt, the 
QGIS API, GDAL, OGR, and NumPy. At this stage, a 
reference to the QGIS interface is stored, enabling access 
to data and the ability to manage map layers. The plugin 
directory is also defined, and localization is configured based 
on the user's system settings. Variables are declared to 
store the paths of temporary raster and vector files that are 
generated and processed throughout the algorithm's 
execution. This design enhances the plugin's modularity and 
performance within the QGIS environment, while also 
preventing unnecessary file accumulation. 

Graphical Interface and QGIS Integration 
The integration of the plugin with the QGIS graphical 

interface is achieved through its registration in the software 
menu and the addition of the corresponding tools to the 
toolbar. This process is implemented using the initGui() 
method, which creates control elements such as buttons and 
menus, providing the user with access to the plugin's 
functionalities. The main element is the action (QAction), 
which is added to the toolbar and the 'Raster' menu, enabling 
the execution of the automatic contouring algorithm from the 
graphical interface. The plugin also supports the dynamic 
loading of localized resources, ensuring the correct display of 
interface elements according to the user's language settings. 

For proper management of the plugin's operation, a 
mechanism for unloading is provided through the unload() 
method, which is responsible for clearing the interface and 
removing the corresponding menu items and buttons from 
the toolbar. User interaction with the algorithm is facilitated 
through the AutocountourDialog window, which allows the 
user to set processing parameters, such as the 
segmentation threshold. The window supports interactive 
adjustment of parameters, enabling real-time control over 
the analysis results. Thus, the developed architecture 
ensures flexible integration of the plugin into the QGIS 
environment and facilitates its use for spatial data analysis. 

Raster Data Processing 
The algorithm for processing raster data is based on their 

mathematical representation as a discrete two-dimensional 
function (Kotsiubivska, & Tymoshenko, 2019): 

𝑅𝑅: 𝑍𝑍2 → 𝑅𝑅,   𝑅𝑅(𝑖𝑖, 𝑗𝑗) = 𝑟𝑟𝑖𝑖𝑖𝑖,  (2) 
where R (i.j) is the pixel value at position (i.j), ri,j is the pixel 
intensity (e.g., reflectance, spectral brightness in a certain 
wavelength range, or another parameter). 

The statistical analysis of the raster image begins with 
the calculation of its key characteristics, such as the average 
brightness value. The average brightness value for the entire 
raster image is calculated using the formula: 

μ = 1
𝑁𝑁

∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1 ,  (3) 

where M and N correspond to the dimensions of the raster 
image (rows and columns, respectively), and the product 
𝑀𝑀×𝑁𝑁 defines the total number of pixels in the image. 

The average value defines the background of the image, 
enabling the identification of local deviations. 

The standard deviation is determined using the formula: 

σ = �1
𝑁𝑁

∑ (𝐼𝐼𝑖𝑖
𝑁𝑁
𝑖𝑖=1 − μ)2.  (4) 

This parameter indicates the variability of brightness and is 
critical for the subsequent identification of anomalous zones. 

Anomalous zones are identified using a statistical 
criterion based on deviations from the mean value to detect 
anomalous values in the case of a normal distribution of a 
random variable. This approach is widely used in the 
processing of satellite images and geospatial data analysis 
(Gavade, & Rajpurohit, 2021). According to this approach, 
values of the random variable that fall outside the range 

μ ± kσ,  (5) 
where μ is the expected value, σ is the standard deviation, 
and k is the anomaly coefficient, are considered potentially 
anomalous. 

In this context, for raster data processing, this rule allows 
for the identification of areas where the intensity values 
significantly differ from the mean level, which may indicate 
the presence of natural or anthropogenic anomalies (Folini, 
Lenzi, & Biraghi, 2022). This method is based on the 
assumption of a Gaussian distribution of pixel intensity, which 
is typical for many natural phenomena and remote sensing of 
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the Earth (Hytla et al., 2009). Thus, the determination of 
anomalous zones is described by the formula: 

𝐼𝐼𝑖𝑖 = μ + 𝑘𝑘σ.  (6) 
This allows for the identification of regions where the 

values substantially exceed the background level. The 
approach relies on the assumption of a normal distribution 
of pixel intensities, which is typical for natural processes and 
satellite data. 

Raster image binarization involves obtaining a mask 
M(i.j), which is converted into a new raster file, where 
1 corresponds to anomalous zones and 0 to the normal 
background: 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖, 𝑗𝑗) = �255,    if 𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 1,
0, 𝑖𝑖f 𝑀𝑀(𝑖𝑖, 𝑗𝑗) = 0.   (7) 

This mask allows for the visualization of anomalous 
areas and their storage in a standard format, such as 
GeoTIFF. At this stage, the projection and coordinate 
system of the input raster are assigned to the resulting mask. 

Vectorization and Processing of Anomalous Zones 
The process of vectorizing anomalous zones in a raster 

image is based on the gdal.Polygonize() algorithm, a 
function in the GDAL library that converts pixel regions with 
identical values into a set of closed polygons. 
Mathematically, this process can be represented as the 
construction of the set 

Р = {𝐴𝐴𝑖𝑖}𝑖𝑖=1
𝑁𝑁 ,  (8) 

where 𝐴𝐴𝑖𝑖 denotes individual regions formed by connected 
pixels with the same intensity value, and N represents the 
total number of identified anomalous zones.  

Vectorization allows the conversion of a discrete 
representation of spatial data into a more suitable form for 
further analysis, ensuring effective processing and storage 
of information in geospatial vector formats such as Shapefile 
or GeoJSON. 

The vectorization algorithm consists of several key 
stages. The first stage employs a scan-line algorithm, which 
identifies the boundaries of anomalous objects through the 
sequential scanning of the raster image. Next, the connected 
components of each object are determined and grouped into 
closed contours based on the topological properties of pixel 
connections. The final stage involves saving the resulting 
contours in vector form, enabling further spatial analysis, 
such as the calculation of geometric characteristics, the 
determination of the area and perimeter of anomalous 
zones, and integration with other geospatial data. This 
approach ensures high analysis accuracy and enables the 
automation of the anomaly identification process in satellite 
images and other geospatial data. 

Upon completion of the polygonization stage, the 
obtained vector objects undergo filtering to eliminate 

potential artifacts or noise that may have been generated 
during the analysis. The primary criterion for identifying such 
artifacts is the area of the polygon, which is determined using 
Gauss's formula (Gavade, & Rajpurohit, 2021): 

𝑆𝑆𝑖𝑖 = 1
2

| ∑ �𝑥𝑥𝑗𝑗𝑦𝑦𝑗𝑗+1 − 𝑥𝑥𝑗𝑗+1𝑦𝑦𝑗𝑗�𝑛𝑛
𝑗𝑗=1 |,  (9) 

where 𝑆𝑆𝑖𝑖 is the area of the polygon, 𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 are the coordinates 
of its vertices, and n is the number of vertices of the polygon. 

Among all identified anomalous zones, the polygon with 
the largest area is selected, as it is most likely to be an 
artifact or noise formation. If its area significantly exceeds 
the average area of other objects, it is removed from further 
analysis. The remaining polygons are preserved for further 
processing and interpretation, enhancing the accuracy and 
reliability of the geospatial analysis results. 

The final step is to save the resulting vector objects as a 
new layer in Shapefile format. 

Temporary File Management 
During the operation of the plugin, temporary files are 

automatically created and managed, including the generation of 
directories for storing intermediate raster and vector data. This 
process may increase memory load and impact data 
processing performance. To ensure optimal use of system 
resources, all temporary files are automatically deleted either 
after their utilization is complete or upon the closure of QGIS. 
This approach helps prevent the accumulation of redundant 
data, enhances disk space efficiency, and minimizes memory 
usage, which is particularly critical when processing large 
volumes of geospatial data. 

The aforementioned data processing sequence on the 
system side relies on active modules for raster and vector 
data that are executed each time user-defined parameters 
are modified (Fig. 3). These parameters include the 
selection of the raster layer and the specification of a 
sensitivity threshold (Jain, Duin, & Mao, 2000). The defined 
sensitivity threshold determines the subset of data that 
satisfies the following expression: 

�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−μ 
σ

� > θ,  (10) 
where the expression considers only positive values, as the 
modulus (interpreted by the system as the abs function) 
denotes the absolute value function. Here, rasterarray refers 
to the data matrix, μ is the mean of the matrix, σ is the 
standard deviation, and θ is the sensitivity coefficient 
(threshold). The computed results are immediately made 
available to the user in the form of polygons representing 
anomalous values within the data array. 

Thus, each change in user parameters triggers a 
processing cycle of raster and vector modules in sequence, 
enabling the visual evaluation of anomalous values based 
on the specified threshold. 

 

 
Fig. 3. Schematic representation of the sequence of processes executed on the system side 

User Block
• Plugin Initialization
• Raster Selection
• Sensitivity Adjustment

Raster Block
• Input Raster Reading
• Mask Creation Based on the Specified Threshold
• Raster File Generation

Vector Block
• Polygonization
• Vector File Generation
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Results 
The results produced by the developed plugin (Fig. 4) 

were analyzed based on three types of satellite imagery: 
InSAR images for detecting vertical surface displacements, 
thermal infrared (TIR) images for determining land surface 
temperature (LST), and multispectral images in the green 
and near-infrared (NIR) spectral bands used to calculate the 

Normalized Difference Water Index (NDWI). The automated 
analysis of these imagery types using the plugin significantly 
simplifies the interpretation of spatial data, thereby 
enhancing research efficiency and supporting timely 
decision-making in the fields of environmental monitoring 
and land management. 

 

 
Fig. 4. General view of the developed plugin in QGIS software 

 
Case 1: InSAR Imagery Analysis 
The modern development of engineering infrastructure and 

urban areas is accompanied by substantial anthropogenic 
pressure on the Earth's surface. Construction of bridges, dams, 
underground utilities, and high-rise structures disturbs the 
natural equilibrium, potentially leading to vertical displacements 
of the Earth's crust, localized deformations, or even 
catastrophic failures (Kril, 2017). Accordingly, monitoring such 
processes is critically important for ensuring infrastructure 
safety and sustainable development. 

The analysis of Sentinel-1 satellite imagery using the 
Differential Interferometric Synthetic Aperture Radar (D-
InSAR) method serves as a powerful tool for detecting 
vertical surface displacements, particularly in urbanized 
environments (Minh, Hanssen, & Rocca, 2020). This method 
enables the detection of even minor topographic changes 
with high precision, making it indispensable for assessing 
geodynamic processes, risk forecasting, and informed 
decision-making in urban planning and engineering geology. 
The application of D-InSAR is especially relevant in zones of 
active construction, seismically hazardous areas, regions of 
underground resource extraction, and locations prone to 
subsidence or landslides (Kruglov, Hudak, & Kruhlov, 2025). 
The use of Sentinel-1 radar imagery facilitates the 
observation of displacement dynamics over time and the 
identification of long-term deformation trends. 

In this case, the plugin was supplied with an InSAR 
satellite image of the city of Kharkiv (Fig. 5a), processed 
using the D-InSAR technique. After processing, the plugin 
automatically identified anomalous values indicating the 
presence of surface changes within the study area. These 
anomalies may correspond to vertical crustal deformations 
caused by either natural or anthropogenic factors. The 
resulting output provides a visualization of elevation 

changes, enabling detailed examination of geodynamic 
processes in the region and further analysis of zones 
exhibiting anomalous displacements (Fig. 5b). The 
statistical characteristics derived from the processed InSAR 
imagery demonstrate significant variability in surface 
displacement values (Table 1). The largest anomalous area 
(polygon ID 193) shows a minimum displacement of –
0.11 m, a maximum of –0.05 m, and an average of –0.07 m. 
Such negative values may indicate ground subsidence. 
Other significant polygons, such as ID 205 and ID 400, 
exhibit similar average values, pointing to the existence of 
subsiding areas in the region. The range of values in most 
cases does not exceed 0.03 m, indicating the localized 
nature of the detected changes. 

Displacements with positive values (e.g., polygons 
ID 799, 632, and 596) indicate uplift of the Earth's surface. 
For instance, polygon ID 632 demonstrates a minimum 
value of 0.05 m, a maximum of 0.08 m, and a mean value of 
0.05 m. Such values may reflect specific geodynamic 
processes, including ground uplift or deformation driven by 
anthropogenic or natural factors. In all cases, the standard 
deviation remains relatively low (0.01–0.004 m), confirming 
the uniformity of changes within each identified polygon. 
Overall, the resulting characteristics allow for a quantitative 
assessment of the extent of surface changes and facilitate 
the identification of zones requiring continued monitoring. 

Thus, the automation of D-InSAR data analysis within 
QGIS significantly enhances the efficiency of deformation 
monitoring while ensuring a more objective, reproducible, 
and scalable approach to assessing geodynamic processes 
across various territories. This enables timely detection of 
potentially hazardous zones, which is especially important 
for areas undergoing intensive urban development or those 
with complex engineering and geological conditions. 
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a                                                                                    b 

Fig. 5. Input image processed using the D-InSAR method (а); detected anomalous zones of vertical displacement (b) 
 

Table 1  
Polygon ID Area, m2 Min Max Mean Standart deviation Range Sum of squares 

193 1536244 -0,11 -0,05 -0,07 0,01 0,05 1,87 
205 169109 -0,09 -0,05 -0,07 0,01 0,03 0,1 
799 147380 0,05 0,07 0,05 0,01 0,03 0,08 
400 131831 -0,08 -0,05 -0,07 0,01 0,03 0,09 
632 93853 0,05 0,08 0,05 0,01 0,03 0,05 
82 66415 -0,08 -0,05 -0,06 0,01 0,03 0,03 

369 60226 -0,09 -0,05 -0,07 0,01 0,03 0,07 
596 59012 0,05 0,08 0,06 0,01 0,03 0,05 
308 49301 -0,08 -0,05 -0,06 0,004 0,02 0,02 
840 42160 0,05 0,07 0,06 0,01 0,03 0,02 
269 41401 -0,08 -0,05 -0,06 0,004 0,02 0,02 
506 40645 -0,08 -0,05 -0,06 0,004 0,02 0,01 

 
Case 2: Landsat 8/9 (Thermal Infrared Sensor) 
Satellite imagery acquired via the Thermal Infrared 

Sensor (TIRS) onboard Landsat 8/9 satellites serves as a 
critical data source for monitoring temperature variations on 
the Earth's surface. This is particularly relevant in the context 
of climate change, as such data enable the identification of 
warming trends, overheating in urbanized areas, and 
fluctuations in soil moisture (Lischenko, Pazynych, & 
Filipovych, 2017; Filipovych, & Shevchuk, 2018). 

Thermal sensor data, especially from TIRS, are 
employed for the monitoring of geothermal resources, 
detection of elevated temperatures in zones of volcanic 
activity, and analysis of terrain changes related to geological 
displacements and ground deformation. Furthermore, these 
data are valuable for assessing the ecological state of 
landscapes – particularly in areas affected by mining – 
where surface temperature shifts may indicate land 
degradation. Thermal imagery is also instrumental in 
detecting and forecasting exogenous processes such as 
erosion or landslides, as well as in evaluating anthropogenic 
impacts and pollution caused by human activities (Vivaldi 
et al., 2022). Additionally, thermal data contribute to climate 
change modeling and the analysis of urbanization effects, 
especially in detecting urban heat islands. 

The analysis of Land Surface Temperature (LST) using the 
developed plugin includes the application of criteria for 
detecting minor anomalies, comprising no more than 5 % of the 
total dataset. The input image (Fig. 6a) is an atmospherically 
corrected Landsat product representing LST in degrees Celsius 
for the year 2020. The study area is located in the central part 
of Kyiv Oblast and is characterized by extensive agricultural 
land use, which has a notable environmental impact on 

surrounding ecosystems – particularly the Supiy River – and 
features a clearly defined urban heat island in the city of 
Yahotyn, Kyiv Oblast, Ukraine. 

The input thermal image (Fig. 6a) has the following 
characteristics: maximum temperature of 32.79 °C, mean 
temperature of 23.08 °C, minimum temperature of 14.07 °C, 
temperature range of 18.72 °C, and a standard deviation of 
3.37 °C. Based on these metrics, 182 anomalous polygons 
were identified, each containing values that meet the predefined 
anomaly criteria. In total, the number of pixels with anomalous 
values amounts to 21.62 out of 455.60 (4.75 %). 

The analyzed image exhibits a distinct spatial 
heterogeneity in thermal conditions, reflecting the complex 
interaction of natural and anthropogenic factors. The 
maximum recorded temperature is 32.79°C, the minimum is 
14.07 °C, and the mean value is 23.08 °C, with a temperature 
range of 18.72 °C and a standard deviation of 3.37 °C 
(Tab. 2). In total, 182 anomalous figures were identified, 
occupying 21.62 pixels out of 455.60, representing 4.75 % of 
the total image area. All anomalous areas were classified into 
two categories: low-temperature anomalies (ranging from 
14.06 °C to 16.33 °C), primarily associated with reservoirs 
and water bodies, and high-temperature anomalies (ranging 
from 29.45 °C to 32.79 °C), typical for dry open surfaces such 
as farmland and urban areas. 

This thermal segmentation is also evident in the 
detailed analysis of selected features: for example, ID 159 
and 88 show average temperatures of 14.81 °C and 
15.37 °C, respectively, characteristic of moist or aquatic 
surfaces, whereas areas such as ID 109, 160, and 139 
display elevated mean values above 30 °C, corresponding 
to dry open territories or urban zones. The variation in 
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standard deviation within the range of 0.27–0.71 °C 
indicates differing levels of temperature uniformity across 
individual geospatial objects. Large spatial structures, such 

as ID 159, exhibit stable temperature gradients, which are 
crucial for the comprehensive analysis of landscape 
thermal conditions (Fig. 6b). 

 

 
a                                                                                    b 

Fig. 6. Input LST image (а); detected anomalous zones of high and low temperature (b) 
 

Table 2  
Polygon ID Area, m2 Min Max Mean Standart deviation Range Sum of squares 

159 7453792 14,07 16,33 14,81 0,4 2,27 1344,38 
88 3057343 14,49 16,33 15,37 0,38 1,85 492,43 
109 1260731 29,83 32,79 30,76 0,65 2,96 581,46 
26 683546 29,83 31,43 30,23 0,33 1,6 83,48 
160 624957 29,83 32,47 30,68 0,71 2,64 345,52 
17 454758 29,83 31,3 30,26 0,28 1,47 40,33 
139 434077 29,83 31,96 30,5 0,44 2,13 93,28 
102 433149 29,83 31,09 30,34 0,32 1,27 48 
126 355727 29,83 31,21 30,25 0,35 1,38 48,54 
79 329596 29,83 31,97 30,56 0,41 2,14 62,27 
51 326010 29,83 31,49 30,24 0,38 1,66 50,99 
113 285461 29,83 31,71 30,73 0,41 1,88 53,64 

The application of the developed plugin significantly 
enhanced the efficiency of detecting geospatial objects with 
anomalous thermal characteristics based on user-defined 
criteria, thereby ensuring higher accuracy and timeliness in 
surface temperature monitoring. The obtained results can 
serve as a robust analytical foundation for forecasting 
climate trends, assessing ecological risks, and planning the 
rational use of land resources. 

Case 3: Normalized Indices from Multispectral Imagery 
As in the previously discussed cases, anomalous values 

help to identify the most affected zones characterized by 
specific index responses. In this instance, the Normalized 
Difference Water Index (NDWI) was used to detect surface 
water bodies (McFeeters, 1996); however, the use of other 
indices – such as NDVI, NDSI, NDDI, among others – can 
be beneficial for a wide range of thematic applications. 

The area under investigation is located near the city of 
Yahotyn in Kyiv Oblast (Fig. 7a), along the Supiy River 
(Ukraine), which is known to experience periodic suffosion-
induced subsidence (Marhes, 2024). The study of such 

physical processes in this region is of high relevance, as they 
are widespread on the left bank of the Dnipro River and exert 
a negative impact on agricultural productivity. NDWI was 
specifically selected due to its sensitivity to moisture 
accumulation in microdepressions formed by subsidence 
(Trofymenko et al., 2024). 

NDWI values were derived from a PlanetScope satellite 
image (Planet Team, 2025), revealing predominantly dry or 
minimally moist areas with only limited evidence of water 
presence. Using the developed plugin, it was possible to 
visualize local terrain depressions – particularly bowl-
shaped formations – where moisture accumulation was 
detected (Fig. 7b). In some instances, weakly expressed 
forms of linear erosion were also observed, further indicating 
irregularities in the surface hydrological regime. NDWI, 
which is responsive to the moisture content of vegetation 
and open water bodies, yielded uniformly negative values 
across the sample, ranging from –0.72 to –0.37. This 
confirms the predominance of dry soils or vegetation lacking 
free surface water. 
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a                                                                                    b 

Fig. 7. Input NDWI image (а); Detected anomalous (critical) zones in the image (b) 
 
Analysis of the statistical data (Table 3) reveals a degree 

of heterogeneity across the studied areas. The largest zone 
is represented by object ID 580, covering 35,057 pixels, with 
an average NDWI value of –0.5 and a relatively narrow 
range (0.2), indicating a relatively homogeneous moisture 
condition. In contrast, object ID 4294 is characterized by the 
highest standard deviation (0.07) and a broader range 

(0.31), likely due to the presence of varying surface types or 
local hydrological contrasts. Other zones, particularly those 
with an area below 2,500 pixels (e.g., ID 6228), display 
stable NDWI values with minimal dispersion, which is typical 
for small, homogeneous micro-landscapes. The dominance 
of negative NDWI values across the dataset further confirms 
the prevalence of arid or low-moisture microenvironments. 

 
Table 3  

Polygon ID Area, m2 Min Max Mean Standart deviation Range Sum of squares 
580 35057 -0,6 -0,41 -0,5 0,02 0,2 1,3 
4294 15426 -0,72 -0,42 -0,54 0,07 0,31 7,47 
7362 4007 -0,43 -0,38 -0,41 0,01 0,05 0,05 
2375 3836 -0,54 -0,43 -0,49 0,01 0,11 0,08 
2636 3710 -0,55 -0,42 -0,49 0,01 0,13 0,06 
6457 3071 -0,64 -0,47 -0,53 0,05 0,17 0,8 
7820 2756 -0,43 -0,39 -0,42 0,01 0,04 0,03 
7170 2630 -0,43 -0,39 -0,42 0,01 0,04 0,02 
8608 2467 -0,43 -0,39 -0,42 0,01 0,04 0,02 
6217 2062 -0,43 -0,38 -0,42 0,01 0,05 0,02 
8962 2044 -0,43 -0,37 -0,41 0,01 0,06 0,03 
6228 2008 -0,48 -0,39 -0,42 0,01 0,09 0,02 

 
The statistical analysis of NDWI values indicates an 

overall low moisture content throughout the entire study 
area. These data may be used to identify drought-prone 
zones, track seasonal fluctuations in moisture regimes, or 
compare with other indices such as NDVI or NDBI. The most 
analytically valuable areas are those exhibiting high 
variability, which may serve as indicators of local 
environmental changes or anthropogenic impacts. 

Discussion and conclusions  
The development of effective methods for analyzing 

satellite imagery represents a key challenge in monitoring 
both natural and anthropogenic environmental changes. The 
proposed approach to automated anomaly detection is 
grounded in the application of statistical methods, enabling 
high accuracy and processing speed. 

Traditional approaches to image analysis typically rely 
on visual interpretation and manual digitization of anomalous 
zones. However, this method is time-consuming, particularly 
when dealing with large datasets containing numerous 
anomalies. Manual identification becomes increasingly 
difficult over extensive or densely built-up areas. Moreover, 

the results of such analysis often depend on the researcher's 
expertise and subjective interpretation, introducing potential 
error. The lack of a standardized algorithm further 
complicates reproducibility, which is critical for long-term 
environmental monitoring. Visual methods also fall short in 
handling large volumes of spatial data and accounting for 
spatial deformation patterns. 

Given these limitations, the development of a plugin for 
QGIS that automates the identification of anomalous 
displacement zones is a timely and relevant solution. 
Automation allows for the standardization of analytical 
procedures, increased anomaly detection accuracy, and 
significant time savings. The integration of machine learning 
algorithms and geostatistical methods within the plugin 
enhances the precision of anomaly recognition and helps 
reduce data noise. Moreover, coupling the plugin with other 
geoinformation modules facilitates comprehensive analysis 
of interactions between surface deformations and 
influencing factors such as hydrogeological conditions or 
anthropogenic pressure. 

The developed QGIS plugin streamlines satellite image 
analysis and greatly simplifies the identification of anomalous 
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zones. Its core functionality includes the use of threshold and 
statistical analysis methods to detect changes in geospatial 
data, contributing to more objective assessments and 
standardized outcomes. In addition, the plugin supports various 
types of satellite imagery – including InSAR, thermal infrared, 
and normalized index data – making it a versatile tool for a 
broad spectrum of researchers. 

The algorithmic implementation is based on Python 
libraries such as NumPy, SciPy, and GDAL, which enable 
complex analytical computations to be seamlessly 
integrated into the QGIS environment. The use of 
thresholding and standard deviation calculations permits 
adaptive parameter tuning for anomaly detection, thereby 
reducing the likelihood of false positives. 

Practical testing of the plugin has demonstrated its 
effectiveness in the context of automated surface change 
monitoring and hydrogeological assessment. Thanks to its 
intuitive graphical interface, users can easily configure 
analysis parameters and obtain results in the form of vector 
data, ready for further processing. 

The testing process also generated ideas for future 
improvements. In particular, it was suggested to implement 
separate processing of positive and negative index or 
displacement values. This approach allows for consideration 
of the differing nature of physical processes or phenomena 
that produce anomalies of opposite signs – for example, 
ground subsidence versus surface uplift caused by 
anthropogenic or natural factors. Segregating these zones 
would enhance the accuracy of interpretation and improve 
decision-making based on the analytical results. 

In summary, the developed plugin is an efficient tool for 
remote sensing research. It reduces the time required for 
satellite image analysis, increases accuracy, and 
standardizes approaches to environmental change 
assessment. Its integration into QGIS opens new avenues 
for geoinformation analysis, representing a promising 
direction for advancing monitoring methods for both natural 
and anthropogenic processes. 
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МЕТОДОЛОГІЯ АВТОМАТИЗОВАНОГО ВИЯВЛЕННЯ АНОМАЛЬНИХ ГЕОПРОСТОРОВИХ ЗОН  

НА СУПУТНИКОВИХ ЗНІМКАХ ІЗ ВИКОРИСТАННЯМ 
СТАТИСТИЧНОГО АНАЛІЗУ ТА СПЕЦІАЛІЗОВАНОГО ПЛАГІНА ДЛЯ QGIS 

 
В с т у п .  Представлено методологію автоматизованого виявлення аномальних геопросторових зон, реалізовану у вигляді плагіна 

для геоінформаційної системи QGIS. Розроблений інструмент підвищує ефективність просторового аналізу та забезпечує швидку іде-
нтифікацію територій з потенційними змінами для моніторингу природних і техногенних процесів. 

М е т о д и .  Запропонований підхід базується на використанні порогового та статистичного аналізу супутникових знімків у сере-
довищі QGIS. Плагін забезпечує інтерактивне налаштування параметрів обробки зображень та автоматично виявляє геодинамічні ано-
малії, які після векторизації надаються користувачу для подальшого аналізу. Алгоритм використовує бібліотеки Python (NumPy, SciPy, 
GDAL, PyQt, QGIS API) для обробки різних типів супутникових даних і застосовує критерії на основі стандартного відхилення для вияв-
лення аномальних ділянок. 

Р е з у л ь т а т и .  Тестування розробленого авторами плагіна підтвердило його ефективність під час обробки супутникових знімків 
типів InSAR, теплових інфрачервоних (TIR) та знімків на основі індексу NDWI. Плагін успішно ідентифікував зони вертикальних зміщень 
земної поверхні, виявив температурні аномалії та окреслив області з дефіцитом вологи. Такий підхід суттєво покращує точність гео-
інформаційного аналізу. 

В и с н о в к и .  Розроблений плагін є ефективним інструментом для автоматизованого моніторингу змін земної поверхні та оцінки 
гідрогеологічних умов. Його інтеграція в середовищі QGIS дає змогу оперативно налаштовувати параметри аналізу та отримувати 
результати у форматі векторних даних. Тестування плагіна підтвердило його практичну цінність і виявило потенційні напрями для 
подальшого вдосконалення, зокрема щодо роздільної обробки додатних і від'ємних значень зміщень для підвищення точності інтерпре-
тації аномалій. 

 
К л ю ч о в і  с л о в а :  автоматизоване виявлення, геопросторові зони, плагін QGIS, супутникові зображення, геодинамічні аномалії, 

просторовий аналіз. 
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