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UTILIZING GIS, GPS, REMOTE SENSING,  
AND AI IN THE STUDY OF SOIL CHARACTERISTICS 

 
(Представлено членом редакційної колегії д-ром геол. наук, ст. дослідником О.І. Меньшовим) 
 
B a c k g r o u n d . Modern agriculture faces numerous challenges associated with climate change, economic factors, and 

increasing demands for production efficiency. The implementation of advanced technologies, particularly Geographic Information 
Systems (GIS), Remote Sensing (RS), Global Navigation Satellite Systems (GNSS/GPS), and Artificial Intelligence (AI), allows for 
the optimization of agrotechnical processes and improved productivity in precision farming. 

M e t h o d s . This study examines the application methods of GIS, GPS, RS, and AI in precision agriculture. It employs the 
analysis of satellite and aerial imagery, spatial modelling techniques, geostatistics, and machine learning for yield prediction and 
optimization of management decisions. Additionally, the use of sensor systems for field data collection and their integration into 
digital agricultural platforms is analysed. 

R e s u l t s . The study implemented a comprehensive model for assessing soil characteristics by combining GIS, GPS, remote 
sensing, and artificial intelligence methods. The results confirmed the effectiveness of using digital maps and satellite images for spatial 
interpolation of soil parameters (such as potassium, moisture, and humus content), yield mapping, and real-time crop monitoring. GPS 
navigation ensured high accuracy in machinery positioning and soil sampling, while machine learning algorithms (particularly LAI-based 
models and Random Forest) demonstrated yield prediction accuracy above 80 %. A crop rotation model built using Python libraries 
enabled the development of an optimal five-year rotation plan, considering soil types, climatic conditions, and potential yield. Variability 
maps and zoning results served as the basis for scenario-based field management at the enterprise level. 

C o n c l u s i o n s . The integration of GIS, GPS, RS, and AI into agricultural practices significantly enhances the accuracy of 
soil analysis and the efficiency of agroprocess management. The developed model enables the automation of decision-making 
processes based on large volumes of spatial and field data, contributing to cost reduction, increased productivity, and preservation 
of soil fertility. The implementation experience in the Kyiv region has demonstrated its practical applicability and potential for 
scaling within the framework of modern precision agriculture. 

 
K e y w o r d s : geographic information systems (GIS), remote sensing (RS), global navigation satellite systems (GNSS/GPS), 

artificial intelligence (AI), precision agriculture (PA), geoinformation technologies (GIT), APSIM (Agricultural Production Systems 
Simulator), DSSAT (Decision Support System for Agrotechnology Transfer). 

 
Background 
In the current context of global climate change, soil 

degradation, and the growing need to intensify agricultural 
production while adhering to principles of sustainable 
development, the use of high-precision technologies in soil 
cover research is gaining relevance. One of the most effective 
approaches is the integration of Geographic Information 
Systems (GIS), GPS navigation, Remote Sensing (RS), and 
Artificial Intelligence (AI) into the comprehensive study of the 
spatial variability of soil characteristics. 

Recent studies confirm that the integration of these 
technologies significantly improves the accuracy of 
agroecosystem monitoring and management. In particular, 
the use of high-resolution satellite imagery and deep 
learning has proven highly effective in modeling soil 
moisture under various climatic conditions (Hassan-

Esfahani et al., 2021). The combination of GIS with GPS and 
RS data enables the creation of highly accurate maps of 
fertility, moisture levels, pH, and other soil indicators, which 
are critical for planning agrotechnical operations. The 
integration of satellite data and machine learning has 
achieved up to 92 % accuracy in predicting the spatial 
variability of soil organic matter (Ahmad, Khan, & Ali, 2022). 

Additionally, AI algorithms-especially deep neural 
networks-allow the analysis of large volumes of agricultural 
data, revealing patterns and forecasting changes in soil 
conditions over time and space. Integrating AI into 
agricultural models is a key stage in the digital 
transformation of agriculture (Wang et al., 2023). 

In the Ukrainian context, the urgency of applying such 
technologies is rising against the backdrop of declining soil 
fertility, increasing climate risks, and the need to optimize 
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resource use. As highlighted in literature, the integration of 
digital technologies into agriculture forms the basis for 
making effective decisions in the management of soil and 
agricultural resources (Burliai, & Okhrymenko, 2021). 

Moreover, modern GIS systems not only accumulate 
data on soil properties but also visualize them spatially, 
significantly simplifying the decision-making process at 
various levels. The use of interactive maps combined with 
predictive models enables the evaluation of the agricultural 
potential of land under different climate change scenarios 
(Shrestha, & Pradhanang, 2022). 

For instance, as of 2024, the average cost of analyzing 
a single soil sample in Ukrainian agricultural laboratories 
ranged from 1500 to 2500 UAH. For fields larger than 300 
hectares, it is typically necessary to analyze between 30 and 
80 samples (depending on the sampling grid), amounting to 
between 45,000 and 200,000 UAH. Therefore, interpolation 
and geostatistical methods enable the estimation of spatial 
distribution parameters using fewer field measurements-i.e., 
with larger sampling grids-while maintaining high prediction 
accuracy. The application of such methods significantly 
improves resource management, reduces costs, and 
minimizes environmental impact. 

GIS is the core tool for data processing, analysis, and 
management used in precision agriculture. It ensures the 
effective integration of spatial and digital data, assisting 
farmers in optimizing production processes and making well-
grounded management decisions. However, GIS alone does 
not guarantee efficient agro-territorial management. It must 
be embedded into agronomic platforms that collect, store, 
and interpret information from diverse sources, model 
scenarios, and provide a solid basis for sound decision-
making. The concept of active information-implying real-time 
data updates from multiple sources has already become 
standard practice in modern precision farming. This includes 
the use of high-resolution satellite images, data from 
unmanned aerial vehicles (drones), and information from IoT 
sensors placed in fields. Agricultural platforms are built on a 
modular architecture, where functions such as land bank 
management, field mapping, task planning, real-time work 
monitoring and analysis, weather tracking, document 
automation, logistics, and even product sales are all 
integrated into a single digital system. Currently, the most 
popular agro-platforms in Ukraine are Agrilab, Soft. Farm, 

Forland, and OneSoil (Fig. 3) (Precision Farming and Agro 
IT Solutions, n.d.). Recent research also emphasizes the 
role of precise soil modeling in adapting to climate change. 
For instance, the combination of remote sensing, deep 
learning, and big data analytics is the foundation of effective 
soil mapping in regions with high spatial variability (Morales, 
Zhang, & Wang, 2023). 

Special attention should be given to machine learning 
tools that enable the creation of automated systems for real-
time soil condition assessment. Classification algorithms can 
be used to identify soil types and predict their erosion 
susceptibility with an accuracy exceeding 90 % (Singh, 
Sharma, & Kumar, 2021). 

It is worth noting that digital tools not only enhance 
agricultural productivity but also play a vital role in 
environmental protection. Reducing ecological pressure, 
optimizing the use of fertilizers and pesticides, and 
preserving biodiversity are all made possible through 
precision agricultural technologies. The use of GIS and AI 
enables the integration of soil research into a 
comprehensive sustainable land use strategy. 

Modern precision agriculture actively integrates 
innovative technologies for crop and soil monitoring-form, 
ground-based sensors and drones to satellite systems. By 
employing LiDAR, fluorescence spectroscopy, thermal 
imaging, and AI, farmers gain accurate data for optimizing 
fertilization, irrigation, and yield prediction. This promotes 
increased agricultural efficiency, reduced costs, and 
minimized environmental impact. 

A successful example of AI integration in agriculture is 
John Deere, whose farming equipment is equipped with AI 
systems that autonomously determine the appropriate 
quantity of seeds and fertilizers, as well as the techniques 
for their application in soil. Companies such as John Deere 
and CNH Industrial are developing tractors and combines 
harvesters with AI components, including autopilot systems 
and precision control for field operations. These 
technologies are successfully implemented in many 
countries, including the USA, Germany, and Australia. The 
world's first unmanned grain harvester (Fig. 1) and 
autonomous tractor developed for precision farming were 
introduced in China in 2021 by the Chinese company 
Country Garden (Fig. 2). 

 

  
Fig. 1. Unmanned harvester by Country Garden 

(China presented the operation of…, n.d.) 
Fig. 2. Autonomous tractor developed for the needs of 

precision agriculture in China 
(China presented the operation of…, n.d.) 

 
The Stout Smart Cultivator uses machine vision and 

artificial intelligence to mechanically cultivate and weed fields 
with precision blades (Smart Cultivator Stout, n.d.). Blue River 
Technology has developed the See & Spray system, which 
leverages computer vision and AI to detect weeds and apply 

herbicides with pinpoint accuracy, significantly reducing 
chemical usage (Blue River Technology, n.d.). CropX offers a 
solution for real-time soil moisture monitoring using sensors 
and AI algorithms, allowing for optimized irrigation 
management (Agronomic Farm Management System, n.d.). 
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AI integration enables drones to autonomously plan flight 
paths while avoiding obstacles, enhancing both safety and 
operational efficiency. The application of swarm technology 
makes it possible for multiple spraying drones to work 
collaboratively in an automated manner. Additionally, AI 
enhances target identification, allowing drones to more 
accurately recognize and classify objects, thereby improving 
the precision of monitoring and resource application (Zhang, 
& Kovacs, 2020). 

Artificial intelligence (AI) is rapidly being integrated into 
various sectors, and agriculture is no exception. In the 
context of precision farming, AI offers innovative solutions to 
increase efficiency, productivity, and sustainability in 
agricultural production. It is projected that the global AI in 
agriculture market will grow from USD 2.08 billion in 2024 to 
USD 5.76 billion by 2029, reflecting a compound annual 
growth rate (CAGR) of 22.55 % over the period 2024–2029 
(Filippov, 2024). 

Thus, studying the specific applications of GIS, GPS, RS, 
and AI in soil characteristic analysis holds significant 
theoretical and practical value for the development of 
precision agriculture, crop rotation forecasting, yield 
improvement, and environmental conservation. The 
integrated use of spatial analysis, digital mapping, satellite 
technologies, and machine learning models opens new 
frontiers for the efficient management of land resources. 

Methods 
One of the main objectives of precision agriculture 

addressed through GIS is the identification of zones with 
varying productivity potential within a single field. This 
enables the application of site-specific management 
strategies, allowing farmers to optimize resource use, 
minimize costs, and increase yields through a differentiated 
approach to fertilization, irrigation, soil treatment, and other 
agronomic practices (Brovarets, 2018). 

 

 
Fig. 3. Ukrainian agro-platform OneSoil (OneSoil, n.d.) 

 
The Global Positioning System (GPS) is a U.S.-based 

radio navigation satellite system used to determine the 
location of stationary and mobile objects in three global 
coordinates: longitude, latitude, and altitude, with an 
accuracy of several tens of meters (Tsyhanenko, 2015). In 
addition to GPS, there exist other Global Navigation Satellite 
Systems (GNSS), such as Galileo (EU), BeiDou (China), 
and QZSS (Japan). GNSS receivers do not rely on electronic 
components that may change their parameters over time, 

which ensures consistently accurate positioning without the 
need for frequent calibration. 

Remote Sensing (RS) plays a crucial role in the 
development of precision agriculture by providing timely 
spatiotemporal information on the condition of agricultural 
land. Thanks to modern satellite and aerial imagery, farmers 
gain access to detailed data on crops, soil characteristics, 
and climatic conditions, enhancing the efficiency of 
agricultural process management (Fig. 4). 

 

  
a) b) 

Fig. 4. Brightness of soils of typical low-humus and degraded light loamy chernozems (a) (author's own development); 
spectral brightness curves of main soil types:  

1 – sierozem; 2 – sod-podzolic; 3 – dark chestnut; 4 – dark gray forest; 5 – chernozem (b) (Zatserkovnyi, 2018) 
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Unlike vegetation, bare soil reflects radiation based on 
its physical and chemical properties. The key factors 
determining the spectral characteristics of soil include the 
provided below (Zatserkovnyi, 2018). 

In most agricultural fields, both bare soil and vegetation 
are present simultaneously. This creates mixed spectral 
signals, which can complicate the accurate interpretation of 
data, as the reflected light contains information from both the 
plants and the soil. To isolate the information specific to 
vegetation cover, specialized mathematical and algorithmic 
methods are used (Zatserkovnyi, 2018). 

Modern remote sensing (RS) technologies have 
significantly expanded the range of parameters that can be 
analysed to improve the efficiency of precision agriculture. In 
addition to traditional indicators, such as biomass, plant stress 
(detecting signs of disease, pests, or nutrient deficiency), and 
growth rate modern RS methods allow for the assessment of: 

• soil and air moisture (via microwave scanning – radio 
waves with wavelengths from 1 cm to 1 m); 

• surface temperature (using thermal infrared and 
microwave radiation); 

• ozone concentration in the atmosphere (which 
influences the photosynthetic activity of plants); 

• chlorophyll levels (visa hyperspectral scanning). 
• Soil electrical conductivity (sensor equipment 

evaluates soil structure and moisture content). 
Application of AI in Precision Agriculture (Colback, 2025): 
• crop monitoring: The use of high-resolution drones and 

satellite imagery enables real-time imaging of fields. Computer 

vision systems powered by artificial intelligence can detect early 
signs of disease, pests, or other stress factors in plants, allowing 
for prompt intervention and control. 

• yield prediction: AI models can forecast crop yields 
based on historical data, weather conditions, and other 
influencing factors. This helps farmers plan harvest logistics 
and marketing strategies. 

• resource optimization: AI analyses data on soil 
moisture, weather forecasts, and crop health to determine 
optimal timing and dosage for irrigation, fertilization, and 
pesticide application. 

• autonomous machinery: The development of 
autonomous tractors and robotic systems controlled by AI 
allows for the automation of tasks such as sowing, spraying, 
and harvesting, reducing the need for manual labour and 
increasing operational accuracy (Colback, 2025). 

A team of scientists and engineers at EOS Data 
Analytics (EOSDA) has developed effective methods for 
crop yield estimation using remote sensing and machine 
learning models, particularly LAI assimilation. The company 
conducted a yield prediction for a large Ukrainian 
agroholding, achieving over 80 % accuracy in the green-
labelled areas (EOS Data Analytics, n.d.). 

The same algorithm was applied in 2020 to estimate crop 
yields for a Canadian agricultural company, with the data 
presented in Tab. 1. 

These specialists worked on implementing a hybrid 
approach that combines biophysical and statistical models 
to achieve high-precision yield forecasting. 

 
Table 1  

Crop yield estimates for a Canadian agricultural company in 2020 
(EOS Data Analytics, n.d.) 

Crop Modelled yield, tons per field Actual yield, tons per field 
Canola 40.19 39.00 
Corn 119.14 110.00 
Oats 125.03 125.00 
Winter rye 64.39 75.00 
Confectionery sunflower 2063.60 1800.00 
Annual sunflower 1834.19 1800.00 
Wheat 61.73 65.00 

 
Within the scope of the study, an integrated methodology 

was applied to develop an optimal crop rotation plan by 
combining machine learning capabilities with the principles of 
physiological modelling of crop growth. The foundation of this 
methodology was based on principles like those used in APSIM 
(Agricultural Production Systems Simulator) and DSSAT 
(Decision Support System for Agrotechnology Transfer)-
agronomic simulators capable of modelling crop growth 
dynamics while accounting for climatic conditions, soil 
properties, and agricultural practices (Confalonieri et al., 2010). 

Тhe machine learning logic embedded in the algorithm 
follows key agronomic crop rotation rules: 

• the possibility of growing the same crop on the same 
plot for two consecutive years is excluded to prevent soil 
exhaustion. 

• crops with higher potential yield are prioritized in the 
initial years of planning – this reflects the adaptive strategies 
embedded in DSSAT-based models. 

• local soil and climatic conditions, such as temperature 
regimes, precipitation levels, and soil characteristics are 
incorporated into the calculations. 

Based on these principles, the model automatically 
generates a five-year crop rotation plan, selecting optimal 
crop combinations to ensure stable yields and maintain soil 
fertility. An important component of the model is the 

assimilation of the Leaf Area Index (LAI) – a biophysical 
indicator of crop condition, which can also be calculated from 
remote sensing data (e.g., Sentinel-2). LAI is integrated into 
the forecasting system to refine yield predictions. For this, 
data assimilation algorithms are applied, particularly the 
Ensemble Kalman Filter (EnKF). This algorithm continuously 
updates its system state estimates by combining model 
predictions with newly obtained observations, reducing the 
influence of noise. It fuses LAI observations with internal 
model variables, thereby improving model accuracy 
(Hassan-Esfahani et al., 2021). 

This approach ensures flexibility and adaptability of the 
system to spatial and temporal changes in growing 
conditions, allowing agricultural producers to optimize the 
planning of agronomic operations, increase productivity, and 
simultaneously maintain ecological balance in soil systems. 

The application of these methods to a large Ukrainian 
agroholding has demonstrated their effectiveness and 
practical value in the agribusiness sector. 

Results 
One of the key tools in precision agriculture is the use of 

GPS technology, whose core applications include: 
• farm planning: Information gathered from various 

satellite sources and georeferenced via GPS can be 
integrated to develop field management strategies, including 
fertilizer application, soil treatment, and harvesting. 
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• field mapping. 
• soil sampling: GPS enables the precise identification of 

soil sampling locations, ensuring more accurate analysis of 
soil fertility and condition (Fig. 5). 

• navigation of agricultural machinery: GPS guidance 
allows tractors, harvesters, and other equipment to operate 
in the field with high precision, minimizing overlaps and skips 
during operations, thereby reducing fuel consumption. 

• crop monitoring: With GPS, it is possible to track crop 
development in different areas of a field, enabling timely detection 
of problem zones and implementation of corrective measures. 

• variable-rate application of fertilizers and pesticides: 
Integration of GPS with variable-rate technology allows 
precise dosing of fertilizers and pesticides based on the 

needs of specific field zones, reducing input costs and 
environmental impact. 

• yield mapping: During harvest, GPS-enabled functions in 
combine harvesters allow for the creation of yield maps, 
visualizing the productivity of different field areas. This helps 
identify causes of yield variability and supports the development 
of strategies to improve future efficiency (Fig. 6). 

• operation under low visibility: GPS navigation ensures 
accurate machinery operation even under challenging 
weather conditions or at night, expanding the window for 
fieldwork and increasing productivity. 

 

  
Fig. 5. Locations and routes of soil sampling  

with GPS referencing 
Fig. 6. Yield map (cartogram) of the field 

The yield data were obtained from a combine harvester 
owned by the agricultural enterprise "Kernel", located near 
the village of Beryzka, within the Varva Territorial 
Community of Pryluky District, Chernihiv Region. The 
machinery was equipped with a yield monitoring system and 
GPS navigation, which allowed for recording the yield at 
each point of the field during harvesting. Based on these 
spatially referenced point values, a yield map was created 
using spatial interpolation methods in a GIS environment 
(Fig. 6). The map shows the spatial distribution of corn grain 
yield for a 309.6 hectare field in 2020.The highest yield 
values, reaching 11.3–14.4 tons per hectare (dark green 
areas), are observed locally in the central part of the field, 
likely near zones with better water availability due to terrain 
depressions or higher soil fertility. Most of the field is covered 
by areas with average yield (7.8–11.2 t/ha), indicating stable 
agri-production conditions without major constraints. 
Meanwhile, the lowest yields (2.89–6.14 t/ha), shown in red 
and dark orange, are mostly concentrated along the field's 
perimeter, particularly in the north and east. This may 
indicate the presence of adverse factors such as soil 
compaction, erosion, moisture or nutrient deficiency, or 
inconsistent machinery operation. Thanks to digital 
technologies and big data analysis, farmers can make well-
informed decisions about optimizing tillage, fertilization, crop 
protection, and irrigation. 

The visualization of data in map format greatly enhances 
the understanding of spatial patterns, particularly the 
relationships between natural factors and crop performance. 
In Figure 7, the left image shows the grid of soil sampling 
points with indicated levels of available potassium in each 
cell. The right image illustrates the spatial modelling result of 
potassium content, generated using the Inverse Distance 
Weighting (IDW) interpolation method, which creates a 
continuous surface from discrete measurements. The IDW 
interpolation method assumes that values at any unknown 
location depend on nearby known values, with closer points 

exerting a stronger influence than distant ones. In this 
method, the unknown value is calculated as a weighted 
average of neighbouring points, where weights are inversely 
proportional to the distance. This approach enables the 
construction of a continuous surface from a limited number 
of spatial samples, as shown in the map. An analysis of the 
available potassium distribution in the soil for 2020 reveals 
significant spatial heterogeneity. Most of the field area is 
characterized by elevated (81–120 mg/kg) and high (121–
150 mg/kg) potassium content. Zones with very high levels 
(>181 mg/kg) are localized in the northeastern part of the 
field (marked in purple). In contrast, the lowest values (less 
than 100 mg/kg) are recorded in the southeastern sector and 
in some central areas, indicating the need for localized 
potassium fertilization adjustment. The obtained data can be 
used to create task maps for variable-rate potassium 
fertilizer application (Zatserkovnyi, & Vorokh, 2024). 

However, graphical interpretation alone is not sufficient, as 
it does not allow determining whether the observed 
relationships are statistically significant or merely due to random 
factors or measurement errors. When using classical 
interpolation methods, such as Inverse Distance 
Weighting (IDW), it is assumed that the predicted value at an 
unknown point is determined solely by the values at known 
points, with distance being the primary influence factor. 
However, this approach may lack accuracy, as the spatial 
distribution of measured characteristics may depend not only 
on distance but also on other factors. For example, soil moisture 
content may vary not just with proximity but also due to terrain, 
soil type, or hydrological conditions. Furthermore, some 
parameters may exhibit a distinct spatial trend, such as a 
gradual increase or decrease in nutrient concentration 
(e.g., nitrogen) in a certain direction across the field. 

Accounting for such patterns is only possible using 
geostatistical analysis methods, particularly kriging, which 
evaluates spatial autocorrelation and builds more accurate 
models of spatial variability. 
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Fig. 7. Cartogram of available potassium distribution in soil, created using the IDW interpolation method 

 
Thanks to accurate monitoring and management 

powered by AI, farmers will be able to achieve higher crop 
yields from their fields. AI-driven optimization of fertilizer, 
water, and pesticide use will help reduce costs and minimize 
negative environmental impact. Big data analysis performed 
by artificial intelligence will enable farmers to make informed 
decisions based on real-time indicators and AI-generated 
recommendations. 

The subject of this study is LLC "FK LTD", an agricultural 
enterprise located in the urban-type settlement of Volodarka, 

Bilotserkivskyi District, Kyiv Region. The company's primary 
activities include the cultivation of grain crops, legumes, and 
oilseed crops. In addition, the enterprise grows corn, wheat, 
sunflower, and soybeans. 

The land plots owned or operated by the company are 
located near Volodarka and in surrounding villages within 
the Volodarka Territorial Community (Fig. 8.). Some of 
the plots are leased, while others are owned directly by 
the enterprise. 

 

 
Fig. 8. Part of the land plots owned by the enterprise on the outskirts of the urban-type settlement of Volodarka 

 
To adapt the digital model to the real operating conditions 

of LLC "FK LTD", a flexible solution was developed based on 
the Python programming language, utilizing specialized 
libraries for handling large volumes of numerical and tabular 
data. This approach enabled the personalization of the model, 
considering the specific features of the company's land bank, 
including soil types, agrochemical characteristics, 
meteorological conditions, and the range of cultivated crops. 
The input data included information on soil types, their 
agrochemical composition, average crop yields, and the 
climatic features of the region. All this information was 
systematized and presented in a tabular format for further 
analysis and integration into the model. 

The next step involved developing an algorithm capable 
of automatically generating a crop rotation plan based on 
predefined constraints and criteria. For this purpose, Python 
was used along with the Pandas and NumPy libraries, 
enabling the processing of large datasets. The model 
incorporated key agronomic rotation rules, among which a 
central principle was the avoidance of growing the same 
crop on the same plot for two consecutive years. It also 
considered the need for alternating crops that have different 
impacts on soil fertility and prioritizing crops with higher yield 
potential at the initial stages of planning. 

After configuring the algorithm, a series of simulations 
were conducted, during which the model generated several 

crop rotation options for a five-year period. Each proposed 
scenario was evaluated based on the balance of crop types, 
compliance with agrotechnical requirements, and forecasted 
yield indicators. The optimal variant was selected-combining 
grain, legume, and oilseed crops-ensuring the alternation of 
depleting and soil-enriching crops. 

In the model, the first year was allocated to corn, a crop with 
high yield potential, laying the foundation for economic 
profitability but requiring careful planning for subsequent crops 
due to its significant impact on soil. The second-year proposed 
wheat, a less demanding crop that helps compensate for soil 
load. The third year included barley, providing additional 
balance to the rotation. The fourth year was designated for 
soybeans, enriching the soil with nitrogen and restoring its 
fertility. The fifth year concluded with sunflowers, completing the 
rotation cycle with different crop types. 

The resulting crop rotation plan was analyzed and 
compared with average yield indicators across Ukraine, 
allowing the evaluation of the model's forecast accuracy. 
The discrepancies between the predicted and actual yields 
were minor, indicating high model accuracy. At the same 
time, alternative scenarios were tested, giving the enterprise 
multiple flexible options for final decision-making. 

Thus, the developed crop rotation modeling scenario not 
only considered local soil and climatic conditions but also 
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enabled the creation of an adaptive rotation strategy aimed at 
increasing yield and maintaining soil fertility in the long term. 

The predominant soil types in the area are typical 
medium-humus and low-humus chernozems on loess 
deposits, occupying about 80 % of the territory. These soils 

contain 3–5 % humus, and the depth of the humus horizon 
exceeds 80 cm. They are most favorable for the cultivation 
of sugar beets, winter wheat, barley, forage, and vegetable 
crops. Generalized soil data are presented in Tab. 2. 

Table 2  
Information on the soil cover of the settlement 

Code of the agro-production 
soil group Name of the agro-production soil group 

19e Sod-podzolic and podzolic-sod soils with surface gleying, medium loamy 
29d Light gray and gray podzolized soils, medium loamy 
52b Typical low humus chernozems (sandy loam) and their complexes with solonetzic variants 
54d Typical medium humus chernozems, light loamy 
54e Typical medium humus chernozems, medium loamy 

 
The average monthly temperatures in winter (January–

February) are around –6 °C, and in summer (July) about 
+19.4 °C. In certain years and months, deviations from the 
average annual and monthly temperatures may occur. The 
absolute minimum recorded in the region was –35 °C, and 
the maximum was +37 °C. 

The annual precipitation amounts to 525 mm, with about 
150 days of precipitation per year. The highest precipitation 
occurs in summer, averaging 205 mm, while the lowest is in 
winter – 90 mm on average. The climograph is shown in Fig. 9. 
 

 
Fig. 9. Climograph of the Volodarka Territorial Community 

 
The terrain is mostly flat, with minor elevation differences 

across the area. There are exposures of crystalline rocks, 
particularly granite. The surface slope trends from west to 
east. The company cultivates the following crops: wheat, 
barley, corn, sunflower, and soybeans. 

The goal of crop rotation is to increase yields. Based on 
soil data, climate conditions, and the types of cultivated 
crops, it is possible to plan a five-year rotation to improve 
productivity and maintain soil fertility. 

The model was developed in the Python environment 
using the Pandas and NumPy libraries, which are commonly 
used in AI model training. Pandas enable manipulation of 
tabular data-for example, the content of chemical 
components and humus in soils can be represented in table 
format. NumPy is used to process large data arrays. 

We start by importing the libraries. As a first step, we 
define the list of crops and enter estimated yield values in 
conditional units, since real data was not available (Fig. 10). 

The "plan rotation" function allows the creation of a crop 
rotation plan, with the duration set to five years (Fig. 11). 
Additionally, several rules are introduced for training the 
model, for example, crops must not repeat for two 
consecutive years, and crops with the highest expected yield 
are given priority in the initial years. 

At the end of the code, the return function is set to output 
the crop rotation plan. The results of the model are then 
analyzed. We run the model and receive the following crop 
rotation recommendation (Fig. 12.). 

The expected yield results closely match the average 
yield indicators of these crops in Ukraine (Tab. 3). However, 
it should be noted that the accuracy and volume of input data 
can be improved, which would further enhance the precision 
of the model. 

Overall, the model performed well, except for wheat in 
year 4. It would have been better to include soybean instead. 
To avoid this, the rule prioritizing high-yield crops could be 
improved. Returning the model can generate alternative 
crop rotations (Fig. 13). 

Analysis of crop rotations based on commonly accepted 
crop rotation rules Tab. 4. 

 

 
Fig. 10. Code snippet with input data 
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Fig. 11. Code snippet with rules for training the dataset 

 

 
Fig. 12. Model testing and validation 

 
Table 3  

Comparison of yield indicators 
Crop Expected yield at LLC "FK LTD", t/ha Average yield in Ukraine, t/ha 

Corn 6.5 7.0 
Wheat 4.0 4.0 
Barley 3.8 3.5 
Sunflower 2.8 2.3 
Soybean 2.5 2.2 
 

  
Fig. 13. Alternative crop rotation plans 

 
Table  4  

Commonly accepted crop rotation rules (crop rotation) 
Crop characteristics in rotation Year of rotation / crop 

A high-yield crop that depletes the soil. The selection is based on the model rule  
of prioritizing high-yield crops in the initial years  
Does not deplete the soil and is a good choice to follow corn  
A satisfactory option after wheat, if nitrogen levels remain adequate  
Growing cereals for several consecutive years may lead to soil depletion  
Loosens the soil and creates a break in the cereal crop cycle  

 

Year 1: Corn 

Year 2: Wheat 
Year 3 Barley 
Year 4: Wheat 

Year 5: Sunflower  
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Thus, the proposed crop rotation forecasting model has 
demonstrated strong results and can be used by the 
enterprise to optimize costs, increase yields, and preserve 
nutrients in the soil. 

Despite its clear advantages, the implementation of AI in 
agriculture faces several challenges: 

• high implementation costs: AI technologies and related 
equipment can be expensive, making them inaccessible for 
small farms. 

• lack of technical training: Farmers often lack the 
knowledge and skills needed to operate new technologies. 

• infrastructure issues: In remote areas, there may be no 
access to high-speed internet, which is essential for 
processing large datasets. 

• incomplete or inaccurate data: AI systems require high-
quality data to function effectively; poor or incomplete data 
may lead to incorrect results. 

• integration complexity: Implementing AI often requires 
adaptation or replacement of existing equipment and 
software systems. 

In the future, further integration of AI with other 
technologies, such as the Internet of Things (IoT), blockchain, 
and quantum computing is expected to create fully automated 
farms. Key directions for development include: 

• expansion of IoT-based farm management systems: 
Integrating AI into soil sensors, weather stations, and 
automated irrigation and fertilization systems will not only 
provide a continuous flow of data but also allow for real-time 
adaptation of agronomic decisions. 

• use of blockchain technologies will ensure transparent 
documentation, which is especially important for quality 
control and supply chain traceability of agricultural products. 

• Intelligent software platforms will be capable of making 
independent decisions on fieldwork, optimizing processes, 
and even autonomously operating agricultural machinery. 

Discussion and conclusions 
The research conducted confirmed that the synergistic 

application of GIS, GPS, remote sensing (RS), and artificial 
intelligence (AI) provides a new level of precision in 
analyzing soil characteristics and making agrotechnical 
decisions within precision agriculture systems. The 
implemented model enabled not only the integration of large 
volumes of spatial and field data, but also the automation of 
agricultural management processes. 

One of the key outcomes was the high effectiveness of 
using satellite imagery and digital maps for spatial analysis 
of soil parameters-particularly potassium, moisture, and 
humus content, which lays the foundation for an adaptive 
approach to agribusiness management. GPS navigation 
significantly improved the accuracy of equipment positioning 
and soil sampling locations, minimizing resource losses and 
ensuring stability in agri-production processes. 

The integration of machine learning, particularly Random 
Forest models and LAI assimilation, made it possible to 
achieve yield prediction accuracy above 80 %, representing 
a major step toward scientifically grounded production 
strategy planning. The crop rotation model, developed using 
Python and the Pandas and NumPy libraries, was 
successfully adapted to the local soil and climatic conditions 
of the agricultural enterprise, demonstrating its flexibility and 
practical value. 

The results confirmed that implementing such digital 
solutions contributes to cost reduction, increased productivity, 
and preservation of soil fertility, which are essential for the 
sustainable development of the agricultural sector. The 
experience of testing the model under conditions in the Kyiv 

region demonstrated the scalability potential of the proposed 
model for other regions and agricultural systems. 

In conclusion, the comprehensive implementation of 
GIS, GPS, RS, and AI creates a foundation for the 
development of automated decision support systems that 
ensure not only high efficiency of agricultural processes but 
also promote the ecological stability of agro-landscapes. 
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ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ГІС, GPS, ДЗЗ ТА ШІ  
В ДОСЛІДЖЕННІ ҐРУНТОВИХ ХАРАКТЕРИСТИК 

 
В с т у п . Сучасне сільське господарство наражається на численні виклики, пов'язані з кліматичними змінами, економічними факто-

рами та зростаючими вимогами до ефективності виробництва. Впровадження передових технологій, зокрема геоінформаційних сис-
тем (ГІС), дистанційного зондування землі (ДЗЗ), глобальних навігаційних супутникових систем (GPS) та штучного інтелекту (ШІ), дає 
змогу оптимізувати агротехнічні процеси та підвищити продуктивність у прецизійному землеробстві. 

М е т о д и . У роботі розглянуто методи застосування ГІС, GPS, ДЗЗ та ШІ у точному землеробстві. Використано аналіз супутни-
кових та аерофотознімків, методи просторового моделювання, геостатистику, машинне навчання для прогнозування врожайності та 
оптимізації управлінських рішень. Також досліджено використання сенсорних систем для збору польових даних та їх інтеграції у цифрові 
платформи агровиробництва. 

Р е з у л ь т а т и . У ході дослідження реалізовано комплексну модель оцінки ґрунтових характеристик на основі поєднання ГІС, GPS, 
дистанційного зондування та методів штучного інтелекту. Результати підтвердили ефективність використання цифрових карт і 
супутникових знімків для просторової інтерполяції параметрів ґрунту (вміст калію, вологи, гумусу), побудови карт врожайності та 
моніторингу посівів у реальному часі. Використання GPS-навігації забезпечило високу точність позиціонування техніки й польового 
відбору проб, а алгоритми машинного навчання (зокрема, моделі на основі LAI та Random Forest) показали точність прогнозу врожайно-
сті понад 80 %. Побудована модель сівозміни із залученням бібліотек Python дала змогу сформувати оптимальний п'ятирічний план 
ротації культур з урахуванням типів ґрунтів, кліматичних умов і потенційної врожайності. Карти варіабельності та результати зону-
вання стали основою для сценарного управління полем на рівні аграрного підприємства. 

В и с н о в к и . Інтеграція ГІС, GPS, ДЗЗ та штучного інтелекту в аграрну практику суттєво підвищує точність аналізу ґрунтових 
характеристик і ефективність управління агропроцесами. Побудована модель дає змогу автоматизувати процеси прийняття рішень 
на основі великого обсягу просторових і польових даних, сприяє зниженню витрат, підвищенню врожайності та збереженню родючості 
ґрунтів. Досвід впровадження моделі в умовах Київської області засвідчив її практичну придатність і потенціал до масштабування в 
рамках сучасного точного землеробства. 

 
К л ю ч о в і  с л о в а :  геоінформаційні системи (ГІС), дистанційне зондування Землі (ДЗЗ), глобальні навігаційні супутникові  

системи (GPS) та штучний інтелект (ШІ), прецизійне землеробство (ПЗ), геоінформаційні технології (ГІТ), APSIM (Agricultural Production 
Systems Simulator), DSSAT (Decision Support System for Agrotechnology Transfer). 
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