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Background. Modern agriculture faces numerous challenges associated with climate change, economic factors, and
increasing demands for production efficiency. The implementation of advanced technologies, particularly Geographic Information
Systems (GIS), Remote Sensing (RS), Global Navigation Satellite Systems (GNSS/GPS), and Artificial Intelligence (Al), allows for
the optimization of agrotechnical processes and improved productivity in precision farming.

Methods. This study examines the application methods of GIS, GPS, RS, and Al in precision agriculture. It employs the
analysis of satellite and aerial imagery, spatial modelling techniques, geostatistics, and machine learning for yield prediction and
optimization of management decisions. Additionally, the use of sensor systems for field data collection and their integration into
digital agricultural platforms is analysed.

Results. The study implemented a comprehensive model for assessing soil characteristics by combining GIS, GPS, remote
sensing, and artificial intelligence methods. The results confirmed the effectiveness of using digital maps and satellite images for spatial
interpolation of soil parameters (such as potassium, moisture, and humus content), yield mapping, and real-time crop monitoring. GPS
navigation ensured high accuracy in machinery positioning and soil sampling, while machine learning algorithms (particularly LAl-based
models and Random Forest) demonstrated yield prediction accuracy above 80 %. A crop rotation model built using Python libraries
enabled the development of an optimal five-year rotation plan, considering soil types, climatic conditions, and potential yield. Variability
maps and zoning results served as the basis for scenario-based field management at the enterprise level.

Conclusions. The integration of GIS, GPS, RS, and Al into agricultural practices significantly enhances the accuracy of
soil analysis and the efficiency of agroprocess management. The developed model enables the automation of decision-making
processes based on large volumes of spatial and field data, contributing to cost reduction, increased productivity, and preservation
of soil fertility. The implementation experience in the Kyiv region has demonstrated its practical applicability and potential for
scaling within the framework of modern precision agriculture.

Keywords : geographic information systems (GIS), remote sensing (RS), global navigation satellite systems (GNSS/GPS),
artificial intelligence (Al), precision agriculture (PA), geoinformation technologies (GIT), APSIM (Agricultural Production Systems
Simulator), DSSAT (Decision Support System for Agrotechnology Transfer).

Background

In the current context of global climate change, soil
degradation, and the growing need to intensify agricultural
production while adhering to principles of sustainable
development, the use of high-precision technologies in soil
cover research is gaining relevance. One of the most effective
approaches is the integration of Geographic Information
Systems (GIS), GPS navigation, Remote Sensing (RS), and
Avrtificial Intelligence (Al) into the comprehensive study of the
spatial variability of soil characteristics.

Recent studies confirm that the integration of these
technologies significantly improves the accuracy of
agroecosystem monitoring and management. In particular,
the use of high-resolution satellite imagery and deep
learning has proven highly effective in modeling soil
moisture under various climatic conditions (Hassan-

Esfahani et al., 2021). The combination of GIS with GPS and
RS data enables the creation of highly accurate maps of
fertility, moisture levels, pH, and other soil indicators, which
are critical for planning agrotechnical operations. The
integration of satellite data and machine learning has
achieved up to 92 % accuracy in predicting the spatial
variability of soil organic matter (Ahmad, Khan, & Ali, 2022).

Additionally, Al algorithms-especially deep neural
networks-allow the analysis of large volumes of agricultural
data, revealing patterns and forecasting changes in soil
conditions over time and space. Integrating Al into
agricultural models is a key stage in the digital
transformation of agriculture (Wang et al., 2023).

In the Ukrainian context, the urgency of applying such
technologies is rising against the backdrop of declining soil
fertility, increasing climate risks, and the need to optimize
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resource use. As highlighted in literature, the integration of
digital technologies into agriculture forms the basis for
making effective decisions in the management of soil and
agricultural resources (Burliai, & Okhrymenko, 2021).

Moreover, modern GIS systems not only accumulate
data on soil properties but also visualize them spatially,
significantly simplifying the decision-making process at
various levels. The use of interactive maps combined with
predictive models enables the evaluation of the agricultural
potential of land under different climate change scenarios
(Shrestha, & Pradhanang, 2022).

For instance, as of 2024, the average cost of analyzing
a single soil sample in Ukrainian agricultural laboratories
ranged from 1500 to 2500 UAH. For fields larger than 300
hectares, it is typically necessary to analyze between 30 and
80 samples (depending on the sampling grid), amounting to
between 45,000 and 200,000 UAH. Therefore, interpolation
and geostatistical methods enable the estimation of spatial
distribution parameters using fewer field measurements-i.e.,
with larger sampling grids-while maintaining high prediction
accuracy. The application of such methods significantly
improves resource management, reduces costs, and
minimizes environmental impact.

GIS is the core tool for data processing, analysis, and
management used in precision agriculture. It ensures the
effective integration of spatial and digital data, assisting
farmers in optimizing production processes and making well-
grounded management decisions. However, GIS alone does
not guarantee efficient agro-territorial management. It must
be embedded into agronomic platforms that collect, store,
and interpret information from diverse sources, model
scenarios, and provide a solid basis for sound decision-
making. The concept of active information-implying real-time
data updates from multiple sources has already become
standard practice in modern precision farming. This includes
the use of high-resolution satellite images, data from
unmanned aerial vehicles (drones), and information from loT
sensors placed in fields. Agricultural platforms are built on a
modular architecture, where functions such as land bank
management, field mapping, task planning, real-time work
monitoring and analysis, weather tracking, document
automation, logistics, and even product sales are all
integrated into a single digital system. Currently, the most
popular agro-platforms in Ukraine are Agrilab, Soft. Farm,

Fig. 1. Unmann;e-d ﬁérvesfer by Couniry Garden
(China presented the operation of..., n.d.)

The Stout Smart Cultivator uses machine vision and
artificial intelligence to mechanically cultivate and weed fields
with precision blades (Smart Cultivator Stout, n.d.). Blue River
Technology has developed the See & Spray system, which
leverages computer vision and Al to detect weeds and apply
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Forland, and OneSaoil (Fig. 3) (Precision Farming and Agro
IT Solutions, n.d.). Recent research also emphasizes the
role of precise soil modeling in adapting to climate change.
For instance, the combination of remote sensing, deep
learning, and big data analytics is the foundation of effective
soil mapping in regions with high spatial variability (Morales,
Zhang, & Wang, 2023).

Special attention should be given to machine learning
tools that enable the creation of automated systems for real-
time soil condition assessment. Classification algorithms can
be used to identify soil types and predict their erosion
susceptibility with an accuracy exceeding 90 % (Singh,
Sharma, & Kumar, 2021).

It is worth noting that digital tools not only enhance
agricultural productivity but also play a vital role in
environmental protection. Reducing ecological pressure,
optimizing the use of fertilizers and pesticides, and
preserving biodiversity are all made possible through
precision agricultural technologies. The use of GIS and Al

enables the integration of soil research into a
comprehensive sustainable land use strategy.
Modern precision agriculture actively integrates

innovative technologies for crop and soil monitoring-form,
ground-based sensors and drones to satellite systems. By
employing LiDAR, fluorescence spectroscopy, thermal
imaging, and Al, farmers gain accurate data for optimizing
fertilization, irrigation, and yield prediction. This promotes
increased agricultural efficiency, reduced costs, and
minimized environmental impact.

A successful example of Al integration in agriculture is
John Deere, whose farming equipment is equipped with Al
systems that autonomously determine the appropriate
quantity of seeds and fertilizers, as well as the techniques
for their application in soil. Companies such as John Deere
and CNH Industrial are developing tractors and combines
harvesters with Al components, including autopilot systems
and precision control for field operations. These
technologies are successfully implemented in many

countries, including the USA, Germany, and Australia. The
world's first unmanned grain harvester (Fig.1) and
autonomous tractor developed for precision farming were
introduced in China in 2021 by the Chinese company
Country Garden (Fig. 2).

R M Sy
BN T S RESF - -3
Fig. 2. Autonomous tractor developed for the needs of

precision agriculture in China

(China presented the operation of..., n.d.)

herbicides with pinpoint accuracy, significantly reducing
chemical usage (Blue River Technology, n.d.). CropX offers a
solution for real-time soil moisture monitoring using sensors
and Al algorithms, allowing for optimized irrigation
management (Agronomic Farm Management System, n.d.).
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Al integration enables drones to autonomously plan flight
paths while avoiding obstacles, enhancing both safety and
operational efficiency. The application of swarm technology
makes it possible for multiple spraying drones to work
collaboratively in an automated manner. Additionally, Al
enhances target identification, allowing drones to more
accurately recognize and classify objects, thereby improving
the precision of monitoring and resource application (Zhang,
& Kovacs, 2020).

Artificial intelligence (Al) is rapidly being integrated into
various sectors, and agriculture is no exception. In the
context of precision farming, Al offers innovative solutions to
increase efficiency, productivity, and sustainability in
agricultural production. It is projected that the global Al in
agriculture market will grow from USD 2.08 billion in 2024 to
USD 5.76 billion by 2029, reflecting a compound annual
growth rate (CAGR) of 22.55 % over the period 2024-2029
(Filippov, 2024).

Thus, studying the specific applications of GIS, GPS, RS,
and Al in soil characteristic analysis holds significant
theoretical and practical value for the development of
precision agriculture, crop rotation forecasting, yield
improvement, and environmental conservation. The
integrated use of spatial analysis, digital mapping, satellite
technologies, and machine learning models opens new
frontiers for the efficient management of land resources.

Methods

One of the main objectives of precision agriculture
addressed through GIS is the identification of zones with
varying productivity potential within a single field. This
enables the application of site-specific management
strategies, allowing farmers to optimize resource use,
minimize costs, and increase yields through a differentiated
approach to fertilization, irrigation, soil treatment, and other
agronomic practices (Brovarets, 2018).
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Fig. 3. Ukrainian agro-platform OneSoil (OneSoil, n.d.) '

The Global Positioning System (GPS) is a U.S.-based
radio navigation satellite system used to determine the
location of stationary and mobile objects in three global
coordinates: longitude, latitude, and altitude, with an
accuracy of several tens of meters (Tsyhanenko, 2015). In
addition to GPS, there exist other Global Navigation Satellite
Systems (GNSS), such as Galileo (EU), BeiDou (China),
and QZSS (Japan). GNSS receivers do not rely on electronic
components that may change their parameters over time,
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which ensures consistently accurate positioning without the
need for frequent calibration.

Remote Sensing (RS) plays a crucial role in the
development of precision agriculture by providing timely
spatiotemporal information on the condition of agricultural
land. Thanks to modern satellite and aerial imagery, farmers
gain access to detailed data on crops, soil characteristics,
and climatic conditions, enhancing the efficiency of
agricultural process management (Fig. 4).
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Fig. 4. Brightness of soils of typical low-humus and degraded light loamy chernozems (a) (author's own development);
spectral brightness curves of main soil types:
1 — sierozem; 2 — sod-podzolic; 3 — dark chestnut; 4 — dark gray forest; 5 — chernozem (b) (Zatserkovnyi, 2018)
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Unlike vegetation, bare soil reflects radiation based on
its physical and chemical properties. The key factors
determining the spectral characteristics of soil include the
provided below (Zatserkovnyi, 2018).

In most agricultural fields, both bare soil and vegetation
are present simultaneously. This creates mixed spectral
signals, which can complicate the accurate interpretation of
data, as the reflected light contains information from both the
plants and the soil. To isolate the information specific to
vegetation cover, specialized mathematical and algorithmic
methods are used (Zatserkovnyi, 2018).

Modern remote sensing (RS) technologies have
significantly expanded the range of parameters that can be
analysed to improve the efficiency of precision agriculture. In
addition to traditional indicators, such as biomass, plant stress
(detecting signs of disease, pests, or nutrient deficiency), and
growth rate modern RS methods allow for the assessment of:

¢ soil and air moisture (via microwave scanning — radio
waves with wavelengths from 1 cm to 1 m);

e surface temperature (using thermal infrared and
microwave radiation);

e ozone concentration in the atmosphere (which
influences the photosynthetic activity of plants);

o chlorophyll levels (visa hyperspectral scanning).

e Soil electrical conductivity (sensor equipment
evaluates soil structure and moisture content).

Application of Al in Precision Agriculture (Colback, 2025):

e crop monitoring: The use of high-resolution drones and
satellite imagery enables real-time imaging of fields. Computer

vision systems powered by artificial intelligence can detect early
signs of disease, pests, or other stress factors in plants, allowing
for prompt intervention and control.

e yield prediction: Al models can forecast crop yields
based on historical data, weather conditions, and other
influencing factors. This helps farmers plan harvest logistics
and marketing strategies.

e resource optimization: Al analyses data on soll
moisture, weather forecasts, and crop health to determine
optimal timing and dosage for irrigation, fertilization, and
pesticide application.

e autonomous machinery: The development of
autonomous tractors and robotic systems controlled by Al
allows for the automation of tasks such as sowing, spraying,
and harvesting, reducing the need for manual labour and
increasing operational accuracy (Colback, 2025).

A team of scientists and engineers at EOS Data
Analytics (EOSDA) has developed effective methods for
crop yield estimation using remote sensing and machine
learning models, particularly LAl assimilation. The company
conducted a vyield prediction for a large Ukrainian
agroholding, achieving over 80 % accuracy in the green-
labelled areas (EOS Data Analytics, n.d.).

The same algorithm was applied in 2020 to estimate crop
yields for a Canadian agricultural company, with the data
presented in Tab. 1.

These specialists worked on implementing a hybrid
approach that combines biophysical and statistical models
to achieve high-precision yield forecasting.

Table 1

Crop yield estimates for a Canadian agricultural company in 2020

(EOS Data Analytics, n.d.)

Crop Modelled yield, tons per field Actual yield, tons per field
Canola 40.19 39.00
Corn 119.14 110.00
Oats 125.03 125.00
Winter rye 64.39 75.00
Confectionery sunflower 2063.60 1800.00
Annual sunflower 1834.19 1800.00
Wheat 61.73 65.00

Within the scope of the study, an integrated methodology
was applied to develop an optimal crop rotation plan by
combining machine learning capabilities with the principles of
physiological modelling of crop growth. The foundation of this
methodology was based on principles like those used in APSIM
(Agricultural Production Systems Simulator) and DSSAT
(Decision Support System for Agrotechnology Transfer)-
agronomic simulators capable of modelling crop growth
dynamics while accounting for climatic conditions, soil
properties, and agricultural practices (Confalonieri et al., 2010).

The machine learning logic embedded in the algorithm
follows key agronomic crop rotation rules:

o the possibility of growing the same crop on the same
plot for two consecutive years is excluded to prevent soil
exhaustion.

e crops with higher potential yield are prioritized in the
initial years of planning — this reflects the adaptive strategies
embedded in DSSAT-based models.

¢ local soil and climatic conditions, such as temperature
regimes, precipitation levels, and soil characteristics are
incorporated into the calculations.

Based on these principles, the model automatically
generates a five-year crop rotation plan, selecting optimal
crop combinations to ensure stable yields and maintain soil
fertility. An important component of the model is the
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assimilation of the Leaf Area Index (LAI) — a biophysical
indicator of crop condition, which can also be calculated from
remote sensing data (e.g., Sentinel-2). LAl is integrated into
the forecasting system to refine yield predictions. For this,
data assimilation algorithms are applied, particularly the
Ensemble Kalman Filter (EnKF). This algorithm continuously
updates its system state estimates by combining model
predictions with newly obtained observations, reducing the
influence of noise. It fuses LAl observations with internal
model variables, thereby improving model accuracy
(Hassan-Esfahani et al., 2021).

This approach ensures flexibility and adaptability of the
system to spatial and temporal changes in growing
conditions, allowing agricultural producers to optimize the
planning of agronomic operations, increase productivity, and
simultaneously maintain ecological balance in soil systems.

The application of these methods to a large Ukrainian
agroholding has demonstrated their effectiveness and
practical value in the agribusiness sector.

Results

One of the key tools in precision agriculture is the use of
GPS technology, whose core applications include:

e farm planning: Information gathered from various
satellite sources and georeferenced via GPS can be
integrated to develop field management strategies, including
fertilizer application, soil treatment, and harvesting.
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o field mapping.

¢ soil sampling: GPS enables the precise identification of
soil sampling locations, ensuring more accurate analysis of
soil fertility and condition (Fig. 5).

e navigation of agricultural machinery: GPS guidance
allows tractors, harvesters, and other equipment to operate
in the field with high precision, minimizing overlaps and skips
during operations, thereby reducing fuel consumption.

e crop monitoring: With GPS, it is possible to track crop
development in different areas of a field, enabling timely detection
of problem zones and implementation of corrective measures.

e variable-rate application of fertilizers and pesticides:
Integration of GPS with variable-rate technology allows
precise dosing of fertilizers and pesticides based on the

Fig. 5. Locations and routes of soil sampling
with GPS referencing

The yield data were obtained from a combine harvester
owned by the agricultural enterprise "Kernel", located near
the village of Beryzka, within the Varva Territorial
Community of Pryluky District, Chernihiv Region. The
machinery was equipped with a yield monitoring system and
GPS navigation, which allowed for recording the yield at
each point of the field during harvesting. Based on these
spatially referenced point values, a yield map was created
using spatial interpolation methods in a GIS environment
(Fig. 6). The map shows the spatial distribution of corn grain
yield for a 309.6 hectare field in 2020.The highest yield
values, reaching 11.3—14.4 tons per hectare (dark green
areas), are observed locally in the central part of the field,
likely near zones with better water availability due to terrain
depressions or higher soil fertility. Most of the field is covered
by areas with average yield (7.8—-11.2 t/ha), indicating stable
agri-production conditions without major constraints.
Meanwhile, the lowest yields (2.89-6.14 t/ha), shown in red
and dark orange, are mostly concentrated along the field's
perimeter, particularly in the north and east. This may
indicate the presence of adverse factors such as soil
compaction, erosion, moisture or nutrient deficiency, or
inconsistent machinery operation. Thanks to digital
technologies and big data analysis, farmers can make well-
informed decisions about optimizing tillage, fertilization, crop
protection, and irrigation.

The visualization of data in map format greatly enhances
the understanding of spatial patterns, particularly the
relationships between natural factors and crop performance.
In Figure 7, the left image shows the grid of soil sampling
points with indicated levels of available potassium in each
cell. The right image illustrates the spatial modelling result of
potassium content, generated using the Inverse Distance
Weighting (IDW) interpolation method, which creates a
continuous surface from discrete measurements. The IDW
interpolation method assumes that values at any unknown
location depend on nearby known values, with closer points
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needs of specific field zones, reducing input costs and
environmental impact.

o yield mapping: During harvest, GPS-enabled functions in
combine harvesters allow for the creation of yield maps,
visualizing the productivity of different field areas. This helps
identify causes of yield variability and supports the development
of strategies to improve future efficiency (Fig. 6).

e operation under low visibility: GPS navigation ensures
accurate machinery operation even under challenging
weather conditions or at night, expanding the window for
fieldwork and increasing productivity.

Fig. 6. Yield map (cartogram) of the field

exerting a stronger influence than distant ones. In this
method, the unknown value is calculated as a weighted
average of neighbouring points, where weights are inversely
proportional to the distance. This approach enables the
construction of a continuous surface from a limited number
of spatial samples, as shown in the map. An analysis of the
available potassium distribution in the soil for 2020 reveals
significant spatial heterogeneity. Most of the field area is
characterized by elevated (81-120 mg/kg) and high (121-
150 mg/kg) potassium content. Zones with very high levels
(>181 mg/kg) are localized in the northeastern part of the
field (marked in purple). In contrast, the lowest values (less
than 100 mg/kg) are recorded in the southeastern sector and
in some central areas, indicating the need for localized
potassium fertilization adjustment. The obtained data can be
used to create task maps for variable-rate potassium
fertilizer application (Zatserkovnyi, & Vorokh, 2024).

However, graphical interpretation alone is not sufficient, as
it does not allow determining whether the observed
relationships are statistically significant or merely due to random
factors or measurement errors. When using classical
interpolation  methods, such as Inverse Distance
Weighting (IDW), it is assumed that the predicted value at an
unknown point is determined solely by the values at known
points, with distance being the primary influence factor.
However, this approach may lack accuracy, as the spatial
distribution of measured characteristics may depend not only
on distance but also on other factors. For example, soil moisture
content may vary not just with proximity but also due to terrain,
soil type, or hydrological conditions. Furthermore, some
parameters may exhibit a distinct spatial trend, such as a
gradual increase or decrease in nutrient concentration
(e.g., nitrogen) in a certain direction across the field.

Accounting for such patterns is only possible using
geostatistical analysis methods, particularly kriging, which
evaluates spatial autocorrelation and builds more accurate
models of spatial variability.
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Fig. 7. Cartogram of available potassium distribution in soil, created using the IDW interpolation method

Thanks to accurate monitoring and management
powered by Al, farmers will be able to achieve higher crop
yields from their fields. Al-driven optimization of fertilizer,
water, and pesticide use will help reduce costs and minimize
negative environmental impact. Big data analysis performed
by artificial intelligence will enable farmers to make informed
decisions based on real-time indicators and Al-generated
recommendations.

The subject of this study is LLC "FK LTD", an agricultural
enterprise located in the urban-type settlement of Volodarka,

Bilotserkivskyi District, Kyiv Region. The company's primary
activities include the cultivation of grain crops, legumes, and
oilseed crops. In addition, the enterprise grows corn, wheat,
sunflower, and soybeans.

The land plots owned or operated by the company are
located near Volodarka and in surrounding villages within
the Volodarka Territorial Community (Fig. 8.). Some of
the plots are leased, while others are owned directly by
the enterprise.

Al

Fig. 8. Part of the land plots owned by the'enterprise on the outskirts of the urban-type settlement of Volodarka

To adapt the digital model to the real operating conditions
of LLC "FKLTD", a flexible solution was developed based on
the Python programming language, utilizing specialized
libraries for handling large volumes of numerical and tabular
data. This approach enabled the personalization of the model,
considering the specific features of the company's land bank,
including  soil  types, agrochemical characteristics,
meteorological conditions, and the range of cultivated crops.
The input data included information on soil types, their
agrochemical composition, average crop yields, and the
climatic features of the region. All this information was
systematized and presented in a tabular format for further
analysis and integration into the model.

The next step involved developing an algorithm capable
of automatically generating a crop rotation plan based on
predefined constraints and criteria. For this purpose, Python
was used along with the Pandas and NumPy libraries,
enabling the processing of large datasets. The model
incorporated key agronomic rotation rules, among which a
central principle was the avoidance of growing the same
crop on the same plot for two consecutive years. It also
considered the need for alternating crops that have different
impacts on soil fertility and prioritizing crops with higher yield
potential at the initial stages of planning.

After configuring the algorithm, a series of simulations
were conducted, during which the model generated several
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crop rotation options for a five-year period. Each proposed
scenario was evaluated based on the balance of crop types,
compliance with agrotechnical requirements, and forecasted
yield indicators. The optimal variant was selected-combining
grain, legume, and oilseed crops-ensuring the alternation of
depleting and soil-enriching crops.

In the model, the first year was allocated to corn, a crop with
high vyield potential, laying the foundation for economic
profitability but requiring careful planning for subsequent crops
due to its significant impact on soil. The second-year proposed
wheat, a less demanding crop that helps compensate for soil
load. The third year included barley, providing additional
balance to the rotation. The fourth year was designated for
soybeans, enriching the soil with nitrogen and restoring its
fertility. The fifth year concluded with sunflowers, completing the
rotation cycle with different crop types.

The resulting crop rotation plan was analyzed and
compared with average yield indicators across Ukraine,
allowing the evaluation of the model's forecast accuracy.
The discrepancies between the predicted and actual yields
were minor, indicating high model accuracy. At the same
time, alternative scenarios were tested, giving the enterprise
multiple flexible options for final decision-making.

Thus, the developed crop rotation modeling scenario not
only considered local soil and climatic conditions but also
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enabled the creation of an adaptive rotation strategy aimed at
increasing yield and maintaining soil fertility in the long term.
The predominant soil types in the area are typical
medium-humus and low-humus chernozems on loess
deposits, occupying about 80 % of the territory. These soils

contain 3-5 % humus, and the depth of the humus horizon
exceeds 80 cm. They are most favorable for the cultivation
of sugar beets, winter wheat, barley, forage, and vegetable
crops. Generalized soil data are presented in Tab. 2.

Table 2

Information on the soil cover of the settlement

Code of the_agro-productlon Name of the agro-production soil group
soil group
19e Sod-podzolic and podzolic-sod soils with surface gleying, medium loamy
29d Light gray and gray podzolized soils, medium loamy
52b Typical low humus chernozems (sandy loam) and their complexes with solonetzic variants
54d Typical medium humus chernozems, light loamy
54e Typical medium humus chernozems, medium loamy

The average monthly temperatures in winter (January—
February) are around —6 °C, and in summer (July) about
+19.4 °C. In certain years and months, deviations from the
average annual and monthly temperatures may occur. The
absolute minimum recorded in the region was —-35 °C, and
the maximum was +37 °C.

The annual precipitation amounts to 525 mm, with about
150 days of precipitation per year. The highest precipitation
occurs in summer, averaging 205 mm, while the lowest is in
winter — 90 mm on average. The climograph is shown in Fig. 9.
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Fig. 9. Climograph of the Volodarka Territorial Community

The terrain is mostly flat, with minor elevation differences
across the area. There are exposures of crystalline rocks,
particularly granite. The surface slope trends from west to
east. The company cultivates the following crops: wheat,
barley, corn, sunflower, and soybeans.

The goal of crop rotation is to increase yields. Based on
soil data, climate conditions, and the types of cultivated
crops, it is possible to plan a five-year rotation to improve
productivity and maintain soil fertility.

The model was developed in the Python environment
using the Pandas and NumPly libraries, which are commonly
used in Al model training. Pandas enable manipulation of
tabular data-for example, the content of chemical
components and humus in soils can be represented in table
format. NumPy is used to process large data arrays.

We start by importing the libraries. As a first step, we
define the list of crops and enter estimated yield values in
conditional units, since real data was not available (Fig. 10).

The "plan rotation" function allows the creation of a crop
rotation plan, with the duration set to five years (Fig. 11).
Additionally, several rules are introduced for training the
model, for example, crops must not repeat for two
consecutive years, and crops with the highest expected yield
are given priority in the initial years.

At the end of the code, the return function is set to output
the crop rotation plan. The results of the model are then
analyzed. We run the model and receive the following crop
rotation recommendation (Fig. 12.).

The expected yield results closely match the average
yield indicators of these crops in Ukraine (Tab. 3). However,
it should be noted that the accuracy and volume of input data
can be improved, which would further enhance the precision
of the model.

Overall, the model performed well, except for wheat in
year 4. It would have been better to include soybean instead.
To avoid this, the rule prioritizing high-yield crops could be
improved. Returning the model can generate alternative
crop rotations (Fig. 13).

Analysis of crop rotations based on commonly accepted
crop rotation rules Tab. 4.

'3y ONLINE PYTHON BETA

&= B O C

mainpy |+
1 import pandas as pd
2 import numpy as np
3

¢ o &

4 # flani npo BpoxaiHicTb KynbTyp (B YMOBHMX OAMHMUAX, HA OCHOBL ICTOPHUHMX AanmMX)

5+ crop_data = {

'KyneTypa': ['Coa', "Muewwua’, 'Kykypyaza', 'fAumine’, 'Cowaweuk'],
‘BpowaduicTs': [2.5, 4.0, 6.5, 3.8, 2.8], # cepeani noxazuuku BpoxainocTi

}
18
11 # Creopensn DataFrame
12 df = pd.DataFrame(crop_data)

6

7

8 ‘36aravenHna rpywty (asor)': [1, @, -1, 8, -2] # yMoBHMA BNAME H3 FPYHT (1 - NO3WTHEHMA, -1 - BUCHANEHHA)
9

Fig. 10. Code snippet with input data
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# oyHkuiAa onA mMopgenweEaHHA cieosmiHM Ha kineka pokie
def plan_rotation(years=5):
rotation_plan = []

last_crop_index = -1 # IHOMKaTop nonepenHbol KynbTypH

for year in range(years):
# YMOBHWIA BUBip kynbTypu nnA makcumisauii spowaiHocTi 1 poTpumanHAa potauiil
it last crop_index == -1:
chosen_crop = df.iloc[np.argmax(df[ ' BpoxainicTs'])] # ewbip nouaTkoBol KynsTypW = HaABMWOW BpoxaiHicTw
else:
# 3miHa kyAbTYpM, wWob YHUKHYTWM ofHakoBol KynbTypu nocnins
potential crops = df[df.index != last crop_index]
chosen_crop = potential crops.sample(1).iloc[©] # Bunagkoewii Bubip, wob 3abesneunTn poTauiw

Fig. 11. Code snippet with rules for training the dataset

< ONLINE PYTHON BETA

= B8 D C € o =
main,py +

FER else: -
24 # 3MiNa KynbTypu, WoD YHHEHYTH OAHAKOBOI KyALTYpW nocnine

25 potential_crops - df[df.index |- last_crop_index]

26 chosen_crop potential_crops.samplef1).iloc[®] # sunagxosui euwbip, wob zabeancuwtu portauiw

27

28 # flonaBamua Ao nnawy potauii

29 rotation_plan.append(chosen_crop[ "Kynutypa®])

30 last_crop_index df.index[df[ "KynasTypa®] chosen_crop[ "KyneTypa® ]1][@] # owoBacHan ingexcy

11

32 print(f"Pix {year + 1}: {chosen_crop[ KynbTypa ]} (Ouikysana epoxainicTe: {chosen_crop[ BpomarnicTe’]} T/ra)™)

33

34 return rotation_plan

35

16 # Bunue dyHkuil ana naavybsakia cisoamivu Wa 5 poxis

17 rotation_plan plan_rotation(s)

| o* share | Command Line Arguments

B pix 1: Kysypyadsa (Owixynawa mpoadwicte: 6.5 T/ra) =
A Pix 2: Nuewnuyn (Owixynawa oposafuicTe: 2.0 v/ra)
Pix 3: Ausminve (Ouinysava spomafiuicTe: 3.8 v/ra)
X pioa: (o AuicTn: 4.0 v/ra)
. Pix 5: € (Omi icTe: 2.8 v/ra)
P
** Process exited - Return Code: O **
Pross Enter to exit terminal o
Fig. 12. Model testing and validation
Table 3
Comparison of yield indicators
Crop Expected yield at LLC "FK LTD", t/ha Average yield in Ukraine, t/ha
Corn 6.5 7.0
Wheat 4.0 4.0
Barley 3.8 3.5
Sunflower 2.8 2.3
Soybean 2.5 2.2
L Pik 1: Kyxypyasa (Owixysawa epoxaiwicte: 6.5 7/ra) L] Pik 1: Kykypyasa (Ouikysawa epoxaitnicTe: 6.5 T/ra)
& Pix 2: Mwewnun (Ouikysana spoxaiiHicTe: 4.0 T/ra) & Pix 2: Con (Ouixysana spoxaimicTs: 2.5 T/ra)
o Pik 3: Coa (Ouikyeawa epoxaimicte: 2.5 7/ra) Pik 3: Cowsuwnmk (Ouikyeawa spoxaitwicte: 2.8 1/ra)
Pik 4: Aumine (Ouikysawa epoxaiiwicTe: 3.8 v/ra) & Pik 4: flumins (Ovikysana epoxaiiicTe: 3.8 T/ra)
>~ Pix 5: NMuewnun (Owikysawa epoxadinicte: 4.0 1/ra) >_ Pik 5: Coa (Ovikyeawa epoxaiimicTe: 2.5 1/ra)
P "
** process exited - Return Code: @ ** ** Process exited - Return Code: @ **
Press Enter to exit terminal Press Enter to exit terminal
Fig. 13. Alternative crop rotation plans
Table 4

Commonly accepted crop rotation rules (crop rotation)

Crop characteristics in rotation Year of rotation / crop
A high-.y.ielld crop thgt depleteg the S(.)ill..The selection is based on the model rule [ Year 1: Corn ]
of prioritizing high-yield crops in the initial years
Does not deplete the soil and is a good choice to follow corn [ Year 2: Wheat ]
A satisfactory option after wheat, if nitrogen levels remain adequate [ Year 3 Barley ]
Growing cereals for several consecutive years may lead to soil depletion [ Year 4: Wheat
Loosens the soil and creates a break in the cereal crop cycle [Year 5: Sunflower
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Thus, the proposed crop rotation forecasting model has
demonstrated strong results and can be used by the
enterprise to optimize costs, increase yields, and preserve
nutrients in the soil.

Despite its clear advantages, the implementation of Al in
agriculture faces several challenges:

* high implementation costs: Al technologies and related
equipment can be expensive, making them inaccessible for
small farms.

e lack of technical training: Farmers often lack the
knowledge and skills needed to operate new technologies.

e infrastructure issues: In remote areas, there may be no
access to high-speed internet, which is essential for
processing large datasets.

e incomplete or inaccurate data: Al systems require high-
quality data to function effectively; poor or incomplete data
may lead to incorrect results.

e integration complexity: Implementing Al often requires
adaptation or replacement of existing equipment and
software systems.

In the future, further integration of Al with other
technologies, such as the Internet of Things (loT), blockchain,
and quantum computing is expected to create fully automated
farms. Key directions for development include:

e expansion of loT-based farm management systems:
Integrating Al into soil sensors, weather stations, and
automated irrigation and fertilization systems will not only
provide a continuous flow of data but also allow for real-time
adaptation of agronomic decisions.

o use of blockchain technologies will ensure transparent
documentation, which is especially important for quality
control and supply chain traceability of agricultural products.

« Intelligent software platforms will be capable of making
independent decisions on fieldwork, optimizing processes,
and even autonomously operating agricultural machinery.

Discussion and conclusions

The research conducted confirmed that the synergistic
application of GIS, GPS, remote sensing (RS), and artificial
intelligence (Al) provides a new level of precision in
analyzing soil characteristics and making agrotechnical
decisions within precision agriculture systems. The
implemented model enabled not only the integration of large
volumes of spatial and field data, but also the automation of
agricultural management processes.

One of the key outcomes was the high effectiveness of
using satellite imagery and digital maps for spatial analysis
of soil parameters-particularly potassium, moisture, and
humus content, which lays the foundation for an adaptive
approach to agribusiness management. GPS navigation
significantly improved the accuracy of equipment positioning
and soil sampling locations, minimizing resource losses and
ensuring stability in agri-production processes.

The integration of machine learning, particularly Random
Forest models and LAI assimilation, made it possible to
achieve yield prediction accuracy above 80 %, representing
a major step toward scientifically grounded production
strategy planning. The crop rotation model, developed using
Python and the Pandas and NumPy libraries, was
successfully adapted to the local soil and climatic conditions
of the agricultural enterprise, demonstrating its flexibility and
practical value.

The results confirmed that implementing such digital
solutions contributes to cost reduction, increased productivity,
and preservation of soil fertility, which are essential for the
sustainable development of the agricultural sector. The
experience of testing the model under conditions in the Kyiv
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region demonstrated the scalability potential of the proposed
model for other regions and agricultural systems.

In conclusion, the comprehensive implementation of
GIS, GPS, RS, and Al creates a foundation for the
development of automated decision support systems that
ensure not only high efficiency of agricultural processes but
also promote the ecological stability of agro-landscapes.

Authors' contribution: Vitalii Zatserkovnyi — conceptualization,
formal analysis, methodology, review and editing; Viktor Vorokh —
conceptualization, methodology; Olga Hloba — formal analysis, data
treating; Tetiana Mironchuk — revision and editing, Liudmyla Plichko —
review of publications, revision and editing.
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1KuiBCbKMI HauioHanbHUI yHiBepcuTeT iMeHi Tapaca LLeBueHka (KuiB, YkpaiHa)

OCOBJIUBOCTI 3ACTOCYBAHHA TIC, GPS, A33 TA LI
B JOCHIOXEHHI FPYHTOBUX XAPAKTEPUCTUK

B ¢ Ty n. CyyacHe cinbcbke 20cnodapcmeo HapaxaembCs Ha YUCJIeHHI 8UK/IUKU, M08 's3aHi 3 KniMamu4YHUMU 3MiHaMu, eKOHOMiYHUMU ¢hakmo-
paMu ma 3pocmar4umu eumoz2amu 3o egpekmueHocmi supobHuymea. BnpoeadxeHHs1 nepedosux mexHosoz2ili, 30kpeMa 2eoiHghopmayiliHux cuc-
mewm (TIC), ducmaHyiliHo2o 30HOyeaHHs1 3emni ([33), anob6anbHux HagieayiliHux cynymHukosux cucmem (GPS) ma wmyyHozo iHmenekmy (L), dae
3Mo2y onmumizyeamu azpomexHi4Hi npoyecu ma nideuuwumu npodyKmueHicms y npeyusiliHomy 3emnepobcmei.

MeToAawn.Y pobomi posansHymo memodu 3acmocysaHHsi I'IC, GPS, ]33 ma LIl y mo4Homy 3emnepob6cmei. BukopucmaHo aHani3z cynymHu-
Kosux ma aepoghomo3Himkie, Memodu npocmoposo20 Modenno8aHHs, 260CMamuUCMuKy, MalluHHe HagYyaHHs OJis1 NPO2HO3y8aHHs epoxaliHocmi ma
onmumi3ayii ynpaeniHcbKux piweHb. Takox docidXeHo 8 UKOPUCMaHHSI CEeHCOPHUX cucmem 05l 36opy nonbosux daHux ma ix iHmezpauii y yugposi
nnamgopmu azposupobHUymea.

Pe3ynbTaTtu.Y xodi docnidxeHHs peanizoeaHO KOMMIEKCHY MOOeIb OYiHKU I'PyHMOo8UX Xxapakmepucmuk Ha ocHogi noedHaHHs 'IC, GPS,
ducmaHuyiiliHo2o 30HdyeaHHs1 ma Memodie wmy4yHo20 iHmenekmy. Pesynsmamu niomeepdunu egpekmueHicmb euKopucmaHHs1 yugpoeux Kkapm i
cynymHukosux 3HiMkKie Onsi npocmopoeoi iHmepnonsyii napamempis rpynmy (emicm kanito, eonoau, 2ymycy), nobydoeu kapm epoxaliHocmi ma
MOHiImopuHay nocieie y peanbHomy 4aci. BukopucmanHs GPS-Haegi2ayii 3a6e3neyuso euCoOKy moyYyHicmb No3uyioHyeaHHsI mexHiku U Mosboeo20
eidbopy npob6, a annzopummu MawUHHO20 Hag4YaHHs (30kpema, Mmodeni Ha ocHoei LAl ma Random Forest) nokasanu moyHicmb npo2Ho3y epoxxaliHo-
cmi noHad 80 %. [To6ydosaHa modesb cig03MiHU i3 3any4yeHHsM 6i6niomek Python dana 3mMoa2y cghopmyeamu onmumanbHUll N'amupidyHUl nnaH
pomauii Kynbmyp 3 ypaxyeaHHsIM murie rpyHmis, KniMamu4Hux ymoe i nomeHyiliHoi epoxailiHocmi. Kapmu eapiabenbHocmi ma pe3ysismamu 30Hy-
8aHHs cmaJu 0CHO80I0 OJ151 CUeHapHO20 ynpasJliHHA rnoJieM Ha pieHi azpapHo20 nidnpueMcmea.

B u c Ho Bk u.IHmeepayis IC, GPS, []33 ma wmy4Ho20 iHmenekmy e azpapHy nNpakKmuKy cymmeeo nideuujye mo4yHicms aHanisy rpyHmoeux
Xapakmepucmuk i egpekmueHicmb ynpassiHHs azponpoyecamu. [To6ydosaHa modesnb 0ae 3M02y aemomMamu3ysamu npoyecu NPuiHAMms piweHb
Ha ocHoei 8esluko20 06csi2y MPocmMopoe8ux i Nosbosux AaHuX, CPUsSIE 3HWKEHHIO sumpam, nideuweHHI0 8poxaliHocmi ma 36epexeHHo podoyocmi
rpyHmis. [Joceio enposadxeHHsi moderni 8 ymosax Kuiecbkoi obnacmi 3aceioqus ii npakmuyHy npudamHicms i nomeHyian do macwmabyeaHHs 8
paMkax cy4acHO20 moYyHo20 3emiaepob6ecmea.

Knio4yoBi cnoBa: 2eoiHgpopmayiliHi cucmemu (IFIC), ducmaHyiiiHe 3oHdyeaHHs1 3emni ([33), anobanbHi HaeizayiliHi cynymuukoei
cucmemu (GPS) ma wmyyHui inmenexkm (LUI), npeyu3sitine 3emnepo6cmeo (I13), 2eoinghopmauitini mexHonozii (FIT), APSIM (Agricultural Production
Systems Simulator), DSSAT (Decision Support System for Agrotechnology Transfer).

ABTOpM 3aaBNSAOTb NPO BiACYTHICTb KOHMNIKTY iHTepeciB. CnoHcopu He Gpanu y4yacTi B po3pobneHHi gocniaxeHHs:; y 36opi, aHanisi un
iHTepnpeTauii AaHWX; y HanMcaHHi pyKonucy; B pilleHHi Npo nybnikauito pesynbTarTis.
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