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Досліджено проблему та встановлено межі надійного обчислення похідних дискретно заданого поля. Розроблено 
відповідні методичні прийоми, теоретичні методи та практичні рекомендації, що поліпшують якість розв'язку обер-
нених задач гравіметрії і магнітометрії, у тому числі, з використанням кінцево-різницевих формул для вимірюваного 
та теоретичного поля.  

The problem is considered and borders of reliable calculation of derivatives of discretely set field are established. Corresponding 
methodical receptions, theoretical methods and practical recommendations which improve quality of the decision of return problems 
gravimetr and magnetic, including, with use certainly-different formulas for the measured and theoretical field are developed. 

Постановка проблеми. Розв'язок обернених задач 
(ОЗ) гравіметрії і магнітометрії ускладнюється відсутні-
стю методів точного визначення постійного фону для 
поля сили тяжіння та напруженості магнітного поля. 
Але лінійний фон для них визначається доволі точно. І 

тому важливим напрямком досліджень є використання 
для розв'язку ОЗ горизонтальних похідних поля. 

Аналіз останніх досліджень. Ідея використання 
горизонтальних похідних поля для розв'язку ОЗ відома 
давно. Проте досі немає методів точного визначення 
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горизонтальних похідних дискретно заданого поля. По-
хибки часто досягають сотень відсотків (див. табл. 1), 
причому, у різних точках профілю вони суттєво відріз-
няються, що не може забезпечити стійкий розв'язок ОЗ. 
Разом із тим, при деяких параметрах збурюючих тіл, 
кроку визначення похідної та точності вимірювання по-
ля результати розв'язку ОЗ є точними, стійкими та гео-
логічно змістовними. 

Виділення не вирішених раніше частин проблеми. 
Як відомо, задача обчислення других похідних Vxz , Vzz  

гравітаційного потенціалу V  по дискретно вимірюваним із 

кроком b значенням його першої похідної Vz  є некорект-

ною [1; 4]. Це обумовлено тим, що різниця значень поля у 
двох точках dV ( ) V ( ) V ( )   z j z j z jX X b X b  дорівнює 

x2bV ( )z jX  лише в деяких точках jX  на профілі. В інших 

точках ми маємо в загальному вигляді нерівність 
dV ( ) V ( ) V ( )      z j j z j z jX X b X b

x x2bV ( ) 2bV ( ),   z j j z jX X (1) 

де j  – невідомі величини.  

Ця розбіжність часто приводить до великих помилок 
обчислення похідних та неправильного розв'язку ОЗ, 
що є недоліком методу, як для гравіметрії, так і для 
магнітометрії. 

Формулювання цілей роботи. Установлення меж 
надійного обчислення похідних дискретно заданого 
поля й розробка відповідних методичних прийомів, тео-
ретичних методів і практичних рекомендацій, що поліп-
шують якість розв'язку ОЗ гравіметрії і магнітометрії. 

Виклад основного матеріалу. Утворимо відносну 
різницю правої й лівої частин рівняння (1) при j 0  , 

підставивши в нього рішення прямої задачі для напів-
нескінченного стрижня,  

dV ( ) / V ( ) z j z jX X

x(V ( ) V ( ) 2bV ( )) / V ( );    z j z j z j z jX b X b X X   (2) 

де  

kV ( ) ;
z j

ij

S
X

R
2 2 1/ 2( , h) (( ) h ) ;   ij j i j iR X X X X   (3) 

k – гравітаційна постійна;   і S – аномальна щільність 

і площа перетину стрижня; ( ,0, h)iX  – координати точ-

ки верхнього торця стрижня.  
Остаточно, з (2) одержимо:  
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Розділивши (4) на 2b , обчислимо інтервали зміни 
модулів відносних погрішностей визначення похідної 
Vxz  на профілі уздовж осі Х при різному співвідношенні 

b/h (див. табл. 1). З табл. 1 видно, що тільки за рахунок 
кроку дискретизації b похідна Vxz  обчислюється по аб-

солютно точних вимірах поля з дуже великими помил-
ками в різних точках профілю спостережень. На цій 
підставі розглянута задача вважається некоректною. 

Якщо в поле ще додати погрішності його виміру 1j  

в милігалах (мгл), то максимальні помилки зростуть на 
300 1j  /(kb/h) %. При точності зйомки 0,1 мгл для пара-

метрів табл. 1, відповідно, одержимо добавки до погрі-
шностей  : 1,5; 2,3; 4,5; 9; 18 %. 

Таблиця  1  

Інтервали зміни модулів відносних погрішностей обчислення Vxz  за дискретним значенням поля сили тяжіння

Відношення параметрів b/h Модуль погрішності   
для моделі стрижня, у % 

Модуль погрішності   
для моделі сфери, у % 

3 10 – 272 50 – 570 
2 10 – 156 40 – 340 
1 1,0 – 42 5 –100 

0,5 0,5 – 7,5 1 – 18 
0,25 0,1 – 1,0 0,1 – 2,6 

Отже, при великому кроці дискретизації b, підви-
щенням точності зйомки або усередненням вимірюва-
них значень поля, істотно зменшити некоректність за-
дачі обчислення похідної Vxz  неможливо. При малому 

кроці b ця задача вирішується добре, а при середньому 
– задовільно. Тому має сенс використовувати усеред-
нення поля або кусочну апроксимацію поля поліномом
4-го порядку, наприклад, на ділянці з 7 точок профілю.
У цьому випадку постійний і лінійний члени полінома в 
кожній точці jX  мають вигляд: 

, ja (7 ) / 21; o j jm n 1,a (397 49 ) / (1512b); j j jt p   (5) 

де 
i 3

j i
i -3

g ;





 jm   

j 1 1 2t 2(    j j jg g g 2 3 3) 3( );    j j jg g g

j 1 1 2n 4(    j j jg g g 2 3 3) 9( );    j j jg g g  

j 1 1 2p 8(    j j jg g g 2 3 3) 27( );    j j jg g g  

Аналогічно, для 5 точок профілю одержимо 

,a (3, 4 ) / 7; o j j jm n 1,a (13 3, 4 ) / (14,4 ); j j jt p b   (6) 

де  
i 2

j i
i -2

g ;





 jm  

j 1 1t   j jg g  2 22( );  j jg g  

j 1 1 2 2n 4( );      j j j jg g g g  

j 1 1 2 2p 8( );      j j j jg g g g  

Отримані по формулах (5)-(6) апроксимації можна 
повторити, наприклад, по формулах 

, j,2a (7 ) / 21; o j jm n  1, ,2a (13 3, 4 ) / (14,4 ); j j jt p b  (7) 

де 
i 2

j i
i -2

a ;





 jm

j 1 1 2 2t 2( );      j j j ja a a a  

j 1 1 2 2n 4( );      j j j ja a a a  

j 1 1 2 2p 8( );      j j j ja a a a  
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Для малих і середніх кроків дискретизації величина 

1, ,2a j  являє собою досить точне значення похідної Vxz

(із помилкою до 3 %). 
При великих параметрах b/h методи (5)-(7) неприда-

тні. Однак, у цьому немає необхідності, оскільки, при 
малому впливі на Vxz  погрішностей поля, у розв'язку 

ОЗ можна використовувати кінцево-різницеву формулу 
dV ( ) g( ) g( )   z j j jX X b X

i( , ( ) ( )),   ij j ij ja X d a X   (8) 

де i – аномальна щільність (АЩ) блоків інтерпрета-

ційної моделі (ІМ); ( )ij ja X – геометричні коефіцієнти 

розв'язку прямих задач гравіметрії. 
Аналогічно розв'язується обернена задача для вер-

тикального приросту поля  

jdV ( , Z ) g( , ) g( , )   z j j j j jX X Z X Z H

i( , ( , ) ( , , )),   ij j j ij j ja X Z a X Z H (9) 

де g( , )j jX Z H  – поле сили тяжіння, перераховане 

нагору на висоту H.  
У багатьох звітах, переданих іншим організаціям, 

замість карт поля сили тяжіння й каталогів пунктів вимі-
ру поля, наведені карти середнього вертикального гра-

дієнта поля (9) або карти трансформацій Саксова-
Ніггарда, різницева формула для яких має вигляд: 

j 2g( , Y ) g( , ) j j jX X Y 1 2g( , ) g( , )   j j j jX Y X Y  

1 2g( , ) g( , )   j j j jX Y X Y

1 2 1g( , ) g( , ) g( , )     j j j j j jX Y X Y X Y  

i 2( , ( , )  ij j ja X Y

1 2 1( , ) ( , ) ( , )     ij j j ij j j ij j ja X Y a X Y a X Y 2( , ) ij j ja X Y  

1 2 1( , ) ( , ) ( , )).    ij j j ij j j ij j ja X Y a X Y a X Y  (10) 

Обчислені по формулах (9)-(10) трансформанти по-
ля мають високу розв'язувальну здатність при розв'язку 
ОЗ гравіметрії. По таких же схемах розв'язуються й ОЗ 
магнітометрії.  

Апробація методів вирішення задачі виконана на 
прикладі рішення ОЗ гравіметрії по карті кінцево-
різницевих трансформацій поля сили тяжіння (рис. 1) 
Олександрівської ділянки Великого Кривбассу, обчис-
лених по лівій частині формули (10). 

На рис. 2 наведене рішення лінійної ОЗ по щільності 
блоків ІМ, відповідно до правої частини різницевої фо-
рмули (10). 

Рис. 1. Карта трансформанти вимірюваного поля сили тяжіння (у мгл) 

Рис. 2. Результати рішення лінійної оберненої задачі гравіметрії:  
карта ізоліній аномальної щільності блоків 2-го шару ІМ (у г/см3) 
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На рис. 3 і 4 наведені рішення нелінійної ОЗ по по 
глибинах до блоків ІМ, відповідно до правої частини тієї 
ж різницевої формули (10). Лінійна й нелінійна ОЗ ви-
конані екстремальним методом спільного пошуку для 
кожного блоку ІМ на кожній ітерації АЩ і глибин розта-
шування горизонтальних границь розділу блоків із най-
більшим стрибком щільності [3, 4]. На карті поля 
(рис. 1), у її західній і центральній частині, перебувають 
дві інтенсивні позитивні аномалії з максимумами більше 
1 мгл. Між позитивними аномаліями розташована нега-
тивна аномалія з мінімумом -0,6 мгл. Загальна область 
усіх трьох аномалій облямована, відповідно до власти-
востей розподілу поля трансформанти, мінімумом -
0,2 мгл. Поле східної частини карти представлено мо-
заїкою локальних аномалій із екстремумами від -0,4 до 

0,2 мгл. Інтерпретуючи поле якісно, можна припустити 
наявність блоків із високою позитивною й негативною 
аномальною щільністю. Однак, за результатами кількі-
сної інтерпретації (рис. 2 і 3) установлено, що західна й 
центральна аномалії з максимумами більше 1 мгл зде-
більшого створені виступами на 20 м корінних гірських 
порід кристалічного фундаменту, хоча вони мають 
більш високу АЩ – від 0,04 до 0,11 г/см3. Між виступа-
ми знаходиться западина з гірськими породами більш 
низької АЩ від -0,04 до -0,06 г/см3. Більше того, глиби-
на западини досягає 215-265 м (рис. 4). Але АЩ гірсь-
ких порід тут практично не зміняються із глибиною, хоча 
під виступом вона помітно зростає до 0,14 – 0,16 г/см3 
на глибині 265 м (карта щільності третього шару в стат-
ті не наведена). 

Рис. 3. Результати рішення нелінійної оберненої задачі гравіметрії:  
карта ізоліній глибин верхньої поверхні 2-го шару ІМ (у м) 

Центральний виступ зі сходу облямований запади-
ною глибиною 165-215 м (рис. 3 і 4) із майже нульовою 
АЩ (рис. 2). По краях карти виявлено декілька вузько-
локальних западин глибиною від 165 до 315 м з АЩ від -
0,04 до -0,12 г/см3. Таким чином, використання кінцево-
різницевих трансформацій поля (9)-(10), звільнених від 

впливу постійного фону, дозволяє більш точно виконати 
розв'язки обернених задач відомими методами. Однак, 
робиться це за рахунок збільшення від 2 до 8 разів ви-
трат часу на обчислення. Для наведених обернених за-
дач користь від підвищення якості їхніх розв'язків істотно 
вище, ніж від економії витрат комп'ютерного часу. 

Рис. 4. Результати рішення нелінійної оберненої задачі гравіметрії: 
карта ізоліній глибин верхньої поверхні 3-го шару ІМ (у м) 
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Висновки. 1. Обернені задачі гравімагнітометрії не-

обхідно вирішувати по кінцево-різницевих формулах із 
використанням вимірюваних значень поля. 

2. Обернені задачі гравімагнітометрії варто вирі-
шувати екстремальними методами одночасного пошу-
ку на одній і тій же ітерації глибин і найбільших стриб-
ків фізичного параметра на границях блоків інтерпре-
таційної моделі. 

Перспективи подальших розвідок. Варто розши-
рити пошуки нових кінцево-різницевих трансформацій 

поля, більш ефективних по витратах комп'ютерного 
часу, але таких, які не знижують якості рішення ОЗ. 
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