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СТАТИСТИЧНЕ МОДЕЛЮВАННЯ СЕЙСМІЧНОГО ШУМУ  
У ТРИВИМІРНІЙ ОБЛАСТІ ЗМІННИХ ДЛЯ ВИЗНАЧЕННЯ ЧАСТОТНИХ ХАРАКТЕРИСТИК 

ГЕОЛОГІЧНОГО СЕРЕДОВИЩА  

(Рекомендовано членом редакційної колегії д-ром геол. наук, проф. М.Н. Жуковим) 

Розглянуто задачу статистичного моделювання випадкових полів у тривимірній області змінних (однорідних за часом 
та однорідних ізотропних за просторовими координатами на площині) при впровадженні у сейсмологічні дослідження для 
визначення частотних характеристик геологічного середовища. Побудовано модель та сформульовано алгоритм чисель-
ного моделювання реалізацій таких випадкових полів на основі модифікованих інтерполяційних розкладів Котельникова-
Шеннона для генерування адекватних реалізацій шуму сейсмограм. 

Вступ. У статті розглянуто задачу статистичного 
моделювання реалізацій випадкових полів з обмеже-
ним спектром, які залежать від часу та задані на облас-
ті площини, для впровадження в сейсмологічні дослі-
дження з потребами визначення частотних характерис-
тик геологічного середовища під будівельними майдан-
чиками. Побудовано модель та на основі оцінок похи-
бок середньоквадратичного наближення таких випад-
кових полів цією моделлю сформульовано алгоритм 
для чисельного моделювання реалізацій полів, адеква-
тних реалізаціям шуму сейсмограм. 

Реалізації статистичного моделювання таких випад-
кових полів важливо використовувати на практиці для 
виділення сейсмічного шуму від зовнішнього впливу і 
для того, щоб отримати відповідні оцінки частотних 
характеристик геологічного середовища області спо-
стереження на площині. Вказані оцінки необхідно вра-
ховувати при будівництві об'єктів різного призначення з 
метою забезпечення надійності споруд. 

Застосування розкладів одновимірних та багатови-
мірних детермінованих функцій в ряди Фур'є, в ряди 
Фур'є-Бесселя та в ряди по синк-функціям (інтерполя-
ційні формули Котельникова-Шеннона) до просторового 
вивчення сил тяжіння та земного геомагнетизму, спект-
рального вивчення геологічної будови земної кори, до-
слідженню вільних коливань Землі та сфероїдальних 
коливань при збудженні землетрусами використовува-
лось вже давно [1].  

Моделі та алгоритми статистичного моделювання 
випадкових процесів та полів на основі розкладів в ря-
ди широко використовується в геологічних науках порі-
вняно недавно: [14], [11], [8], [12], [10 ] та ін. 

В статті розглянуто приклад застосування побудо-
ваних моделей та алгоритмів статистичного моделю-
вання випадкових процесів та полів до задачі дослі-
дження параметрів сейсмічного шуму для потреб ви-
значення частотних характеристик геологічного сере-
довища під будівельними майданчиками на плоскій 
області спостереження. 

Модель та алоритм. При статистичному моделю-
ванні спостережених шумів сейсмограм використовува-
вся метод, розроблений на основі спектрального роз-
кладу [9] та модифікованої теореми Котельникова-
Шеннона для випадкових полів з обмеженим спектром, 
однорідних за часом та однорідних ізотропних за прос-
торовими координатами на площині. 

Вказано розклад у модифікований ряд Котельнико-
ва-Шеннона для таких випадкових полів та тримано 
оцінки їх середньоквадратичного наближення частко-
вими сумами цього розкладу з використанням резуль-
татів [7] та [2]. 

На основі такого розкладу побудовано модель [3] 
гауссівського однорідного за часом та однорідного ізо-
тропного за просторовими координатами на площині 

випадкового поля ( , , )  t  на RR2 з обмеженим спек-

тром, зосередженим на інтервалі - ,   , у вигляді : 
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процесів, які задовольняють умовам: 
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Причому,  ( , )
mb t s r − послідовність додатньо 

визначених ядер на RR+, які можна обчислити за 

просторово-часовим спектром  , du d  випадкового 

поля ( , , ) t r  та для яких виконується така умова:  
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b t s r . Вони мають наступний вигляд: 
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де  mJ u − функція Бесселя першого роду порядку m . 

Сформульовано алгоритм статистичного моделю-
вання реалізацій гауссівських однорідних за часом та 
однорідних ізотропних за просторовими змінними на 
площині випадкових полів ( , , ) t r  з обмеженим за 

часом t  спектром. 
Алгоритм 
1. Вибираємо, відповідно до необхідної точності 

ε > 0, натуральні числа N та М для моделі (1) за 
допомогою однієї з наступних нерівностей: 
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де r – полярний радіус,  
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2. Моделюємо послідовності гауссівських випадко-
вих величин (r – фіксований полярний радіус) які 
задовольняють умовам (2). 

3. Обчислюємо вираз (1) у заданій точці  

    2 2 2, , , , ,t r T T A A R      підставляючи в нього 

обчислені за попередніми пунктами 1 та 2 величини N 
та М і послідовності значень гауссівських випадкових 
величин. 

4. Перевіряємо згенеровану за п. 3 реалізацію 

випадкового поля  , , t r  у точках сітки в області 

спостереження на адекватність даним цього 
випадкового поля шляхом порівняння відповідних 
статистичних характеристик. 

1. Приклад чисельного моделювання 
В цьому прикладі розглянуто практичне використан-

ня розробленого алгоритму та моделі (1) для чисельно-
го моделювання реалізацій дійснозначних однорідних 
за часом, однорідних ізотропних за змінними , , r  на  

2R R  випадкових полів  , , t r  з обмеженим спек-

тром із просторово-часовою кореляційною функцією 

 , zB . При моделюванні випадкових полів із такою 

кореляцією можна скористатись підходом [5], який 
розділяє просторову та часову компоненти за правилом 
добутку-суми: 

         1 2 3, ,z x t x tB k B B k B k B             (4) 

де 1 2 3,  ,  k k k  – коефіцієнти, які можна визначити із на-

ступних співвідношень: 
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Просторову кореляційну функцію  xB   підібрано, 

відповідно до побудованої просторової варіограми 

  ,x   у вигляді функції типу Коші при значеннях па-

раметрів а=1 та ν=1, яка задана формулою: 

 
2

21 ,  0, 0.
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Графічне зображення просторової варіограми  ,x   

(емпіричної та теоретичної) для згенерованої реалізації 
випадкового поля ( , , ) t r  за моделлю (1) при значенні 

часу t = 0 на сітці точок площини 

2[0.0,0.1,..., 1], 0, , ..., 2
10
     

 наведено на рис. 2а. 

Часова кореляційна функція  tB  була підібрана, 

відповідно до побудованої часової варіограми   , t  у 

вигляді функції бесселевого типу при значеннях пара-
метрів а=1 та ν=0,55, тобто із сімейства функцій: 

 
 

2 ( )
( 1) 2 , 0, 0, 




       


t
J a

B a
a

 (6) 

де ( ) x  − гамма- функція, а ( )J u  − функція Бесселя 

першого роду порядку  . 

Графіки гросторової кореляційної функції  xB   

типу Коші при а = 1 та ν = 1 та часової кореляційної 

функції  tB  бесселевого типу при значеннях 

параметрів а = 1 та ν = 0,55 зображено на рис. 1а та 1б 
відповідно. 

Побудовано часову варіограму   t  результатів 

моделювання реалізації випадкового процесу ( , , ) t r  

за моделлю (1) у точці простору ( , )r = (0,0), коли час t 

змінюється в межах 0≤ t ≤Т, Т=20,01 секунди при ∆t = 
1/ω =Т/N, ∆t=0,01 секунди, ω =100 (N – кількість точок 
спостережень за часом, N=2001). Графічне зображення 
такої часової варіограми (емпіричної та теоретичної) 
наведено на рис.2 б. 



ISSN 1728–2713 ГЕОЛОГІЯ. 1(60)/2013 ~ 71 ~ 

 

 

  
a)      б)  

Рис. 1. Кореляційні функції:  

a) просторова функція  xB   типу Коші при а = 1 та ν = 1; б) часова функція  tB  бесселевого типу при а = 1 та ν = 0,55 

 

    
а)                                                                                              б) 

Рис. 2. Емпіричні (хрестики) та теоретичні (крива) варіограми: 

 a) просторова варіограма ( ) x  – для усереднення по 20 реалізаціям випадкового поля (0, , ) r  із кореляційною функцією типу 

Коші при ν = 1; б) часова варіограма ( ) t  − для усереднення по 15 реалізаціям випадкового поля ( ,0,0) t   

із кореляційною функцією бесселевого типу при а = 1 та ν = 0,55 
 
Якщо для прикладу випадкового поля ( , , ) t r  на  

2R R вибрати просторову кореляційну функцію  xB   

у вигляді формули (5) та часову кореляційну функцію 

 tB  із сімейства функцій (6) із вказаними вище зна-

ченнями констант а та ν , то модель просторово-

часової кореляційної функції  , zB  такого випадко-

вого поля можна задати виразом: 

     

   

0,055 0,055
1 0,0552

0,055 0,055
2 3 0,0552
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

     


   (7) 

де коефіцієнти 1 0,433745,k  2 0,999985,k  

3 0,862067.k  

Для графічної інтерпретації змодельованих реаліза-
цій випадкового поля ( , , ) t r  із такою просторово-

часовою кореляційною функцією  , zB  побудовано 

графік реалізації випадкового процесу ( ,0,0) t , в точ-

ках 0,01; kt k  1, ;  2001 k N N  за час спостере-

ження t від 0 до 20 секунд (рисунок 3 а), причому r  та 
  – фіксовані та рівні нулю), та, з використанням про-

грами Surfer, каркасну поверхню реалізації випадкового 
поля  (0, , ) r ( t  − фіксоване та рівне нулю) на сітці 

точок площини   20.0, 0.1, ...,1.0 , 0, , ..., 2
10
      

r , яка 

зображена на рис. 3б. 
Відповідна просторово-часовій кореляційній функції 

 , zB  вигляду (7) випадкового поля ( , , ) t r  модель 

просторово-часової варіограми  , z t  цього поля 

буде задана виразом: 

           
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t k B k B t J t

k B k B k B

B t J t
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де  0 0,138xB  − дисперсія просторових проб, 

  50 3,48 10 tB  − дисперсія часових проб, а коефі-

цієнти 1 2 3,  ,  k k k  – ті самі, що і для просторово-часової 

кореляційної функції  , zB  у формулі (7). 

Графічне зображення просторово-часової варіогра-

ми  , z t  випадкового поля ( , , ) t r  із просторовою 

кореляційною функцією  xB  типу Коші при а = 1 та 

ν = 1 та часовою кореляційною функцією  tB бессе-

левого типу наведено на наступному рис. 4 а). 
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Рис. 3. Зображення: a) графіка зімітованої реалізації випадкового процесу ( ,0,0) t , де час спостереження  

t − від 0 до 20 секунд; b) поверхні зімітованої реалізації поля (0, , ) r  із кореляційною функцією типу Коші при 1v . 

Спектральний аналіз виділеного та згенеровано-
го шуму. Оцінки частотних характеристик геологічного 
середовища області спостереження (наприклад, під  
будівельними майданчиками) були отримані шляхом 
розрахунку та побудови графіків амплітудного та фазо-
вого спектрів шумів в сейсмограмах пунктів спостере-
жень у такій області. Розрахунки проводилися прямим 
способом [1], тобто методом періодограм. Також було 
побудоване спектральне відношення земної кори, яке 
не залежить від спектра падаючих сейсмічних хвиль, а 
визначається виключно будовою геологічного середо-
вища під досліджуваним пунктом. 

На рис. 4б наведено побудований графік розрахо-
ваного амплітудного спектру |S(ω)| по компоненті NS − 
"північ-південь" для прикладу усереднених даних ма-
сивів шуму сейсмограми на пункті спостереження 

BUG3 в місті Одеса. Загальний час запису інформації, 
з якої обиралися реалізації для аналізу, тривав близь-
ко 1,5 годин. Такий спектр відповідає з деяким допус-
тимим наближенням теоретичному спектру випадково-
го процесу ( ,0,0) t , що є звуженням випадкового по-

ля ( , , ) t r  на часову вісь (при цьому змінні r  та   – 

фіксовані та рівні нулю). Часова кореляційна функція 

 tB випадкового процесу ( ,0,0) t  має вигляд функ-

ції Бесселя при значеннях параметрів а = 1 та ν = 0,55 
(рис. 1a)) тобто: 

     0,055 0,055
0,0552 1,055tB J    

а)      б) 

Рис. 4. а) Часово-просторова варіограма ( , ) z t  випадкового поля ( , , ) t r ; б) графік амплітудного спектру |S(ω)|

усереднених даних масивів шуму сейсмограми ( ,0,0) t  на компоненті NS для пункту спостереження BUG3 

Висновки. Розроблено модель та алгоритм статис-
тичного моделювання однорідних за часом, однорідних 
ізотропних за змінними на площині випадкових полів з 
обмеженим спектром, застосування яких проілюстро-
вано на прикладі генерування реалізацій шуму сейсмо-
грам плоскої області спостереження. Такі результати є 
продовженням напрямку досліджень, започаткованим у 
роботах [2], [3], [4] та [6] і є важливим доповненням до 
методів Монте-Карло, які використовуються в геології, 
наприклад, в [9]. 
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СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕЙСМИЧЕСКОГО ШУМА В ТРЕХМЕРНОЙ ОБЛАСТИ ПЕРЕМЕННЫХ 
ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ГЕОЛОГИЧЕСКОЙ СРЕДЫ 

Рассмотрена задача статистического моделирования случайных полей в трёхмерной области переменных (однородных по вре-
мени и однородных  изотропних по пространственным координатам на плоскости) при внедрении в сейсмологические исследования 
для определения частотных характеристик геологической среды. Построена модель и сформулирован алгоритм численного моде-
лирования реализаций таких случайных полей на основании  модифицированных интерполяционных разложений Котельникова-
Шеннона для генерирования адекватных реализаций шума сейсмограмм. 

Z. Vyzhva, Dr. Sci. (Phys.-Math.), Assos. Prof. 
Taras Shevchenko National University of Kyiv, Kyiv 

THE STATISTICAL SIMULATION OF 3-D SEISMIC NOISE FOR FREQUENCY CHARACTERISTICS 
OF GEOLOGY ENVIRONMENT DETERMINATION 

The problem of random fields in 3D space (homogeneous in time as well as homogeneous isotropic in the plane) statistical simulation has been 
considered for the introducing into seismic research into frequency characteristics of geology environment. Statistical model of such random fields 
and numerical simulation algorithm have been developed on the basis of modified Kotelnikov-Shennon interpolation sums for generating of ade-
quate realizations seismic noise. 




