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Запропоновано загальний підхід до комп'ютерного моделювання поведінки природно-техногенних систем, зокрема 
прогнозування їх зсувонебезпеки, шляхом розрахунку напружено-деформованого стану зволоженого грунтового схилу 
під дією сил гравітації. Одержано визначальні співвідношення розглядуваної задачі, побудовано ітераційний метод 
визначення напружено-деформованого стану зсувного масиву, який дозволяє на кожному кроці розглядати плоску 
задачу теорії пружності. Для розв'язання пружної задачі використовується модифікований метод граничних елемен-
тів, який дозволяє одночасно визначати одразу всі компоненти напружено-деформованого стану на границі розгля-
дуваного тіла. Запропонований метод дозволяє також для заданих навантажень та характеру зволоженості схилу 
визначати можливі зони пластичної течії в масиві. 

Механічна поведінка вологонасиченого схилу під дією 
сил гравітації визначається розвитком в ній механічних 
напружень і виражається в виді взаємообумовлених і по-
слідовно діючих процесів і явищ, таких як пружне і пласти-
чне деформування масиву, та його зсув. Для оцінки реа-
льної зсувонебезпеки масиву грунту необхідне математи-
чне моделювання поведінки такого об'єкту з одержанням 
значень полів напружень та деформацій в масиві в широ-
кому діапазоні граничних умов та геологічних і механічних 
параметрів розглядуваного середовища. Значення таких 
розрахунків особливо велике в районах з можливим роз-
витком зсувонебезпечних процесів, наприклад в Україні до 
таких районів відноситься Карпатський регіон. 

Зазвичай, при розрахунках стійкості схилів викорис-
товують різноманітні методи – від застосування елеме-
нтарних розв'язків, статистичного та експерименталь-
ного підходів (стійкість відкосів в ідеально сипучих грун-
тах, стійкість вертикального відкосу в ідеально зв'язних 
грунтах тощо) [4, 5, 8, 9] до інженерних та чисельних 
методів (наприклад, метод круглоциліндричних повер-
хонь ковзання, метод "стійкого відкосу" тощо) [2, 7]. 

Використання моделей механіки суцільного середо-
вища при комп'ютерному моделюванні поведінки при-
родно-техногенних систем [2, 3], зокрема при прогнозу-
ванні їх зсувонебезпеки дозволяє повністю визначати 
напружено-деформований стан схилів та відкосів, а 
отже й оцінити стійкість схилу заданої крутизни чи, на-
впаки, визначити оптимальну крутизну схилу чи відкосу 
при заданому коефіцієнті запасу стійкості схилу.  

З точки зору механіки суцільних середовищ задачі 
оцінки стійкості схилів зводяться до розгляду плоскої 
задачі теорії пружності (плоскої деформації). 

Одним з важливих факторів, що впливає на стійкість 
схилу є його вологонасиченість. Розглянемо вологона-
сичений схил (рис. 1), пружні властивості якого зале-
жать від консистенції породи (вологонасиченості), яка 
вважається заданою (аналітично чи чисельно в кожній 
точці розглядуваного тіла) функцією координат. 

Будемо вважати, що від точки до точки змінними є 
модуль Юнга та коефіцієнт зволоженості розглядувано-
го тіла, в той час як коефіцієнт Пуассона є незмінним: 

0  const  ,  E E h ,  1 2,h h x x . (1) 

Рис. 1. Схема зсувонебезпечного  
вологонасиченого масиву грунту 

Нехай 0 0,E   – пружні характеристики тіла в почат-

ковому, не зволоженому стані, маємо: 
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Вважаємо, що напруження та деформації в тілі по-
в'язані співвідношеннями наступного вигляду: 

     2ij ij ijh h h ah        

 3 .ij ijs K h ah    (2) 

де    
 3 1 2
E h

K h
v




, a  – коефіцієнт зміни вологості, а h

– консистенція породи.
Залежність ( )E E h  одержується на основі експе-

риментальних даних. 
Продиференціювавши співвідношення (2), одержи-

мо рівняння рівноваги в переміщеннях 

         , , , ,,
3 0    l l ij i j j i iij

h u h u u K h ah g      (3) 

Домножимо обидві частини (3) на 0E , одержимо: 
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Згідно (1), маємо: 

     
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Виконуючи диференціювання (4) частинами, одер-
жимо: 

       0 0 , 0 0 , 0 , ,

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  0 0,
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Поділимо обидві частини (5) на  E h , одержимо: 
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де  0
0 , 0 , ,  ij l l ij i j j is u u u   . 

Далі будуємо метод послідовних наближень за на-
ступною схемою. На першому кроці маємо наступну 
систему рівнянь: 
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разом з граничними умовами на вільній від наванта-
жень границі розглядуваного тіла 

      0 , 0 , , 3  l li ij i j j i j iE h u u u n K h ahn   . 

На наступному кроці до масових сил додається до-

данок 0 
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ij
j

E h
s

h x
, де 0 ij  – напруження, визначені на по-

передньому кроці, а крайова задача для цього кроку 
запишеться у вигляді: 
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      0 , 0 , , 3  l li ij i j j i j iE h u u u n K h ahn   .  (7) 

Розв'язуючи одержану систему рівнянь (6), (7) таким 
же чином, як і на попередньому ітераційному кроці, одер-
жимо значення напружень в центрах елементів дискрети-
зації 1ijs . Отже, на k -му ітераційному кроці матимемо: 
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Одержану систему диференційних рівнянь в частинних 
похідних (8), (9) зведемо до системи гранично-контактних 
рівнянь, скориставшись співвідношеннями Сомільяно. 
Остаточно одержимо наступну систему гранично-
контактних рівнянь для першого ітераційного кроку: 
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для k -го ітераційного кроку: 
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Таким чином, на кожному кроці маємо задачу плос-
кої деформації однорідного тіла, де неоднорідність ме-
ханічних властивостей тіла та вплив вологонасиченості 
враховані в поверхневому інтегралі в (10), (12) та в гра-
ничних умовах (11), (13). 

Здійснимо дискретизацію границі розглядуваного ма-
сиву (рис. 1), вибираючи елементами дискретизації від-
різки ламаних, на які заміняємо границю масиву. Введе-
мо на цих відрізках локальну систему координат. Неві-
домі щільності потенціалів подвійного шару на границях 
включень можуть бути представлені на кожному відрізку 
дискретизації як функції двох змінних. На відміну від ста-
ндартного методу граничних інтегральних рівнянь таке 
представлення дозволяє після розв'язання системи гра-
ничних інтегральних рівнянь визначити всі компоненти 
переміщень та напружень на всіх границях контакту. 

У випадку лінійної апроксимації компоненти перемі-
щень на i -му відрізку дискретизації можуть бути запи-
сані наступним чином: 

 1 1 1 2 2 3
i

i i iu x a x a x a     

 2 4 1 5 2 6
i

t i iu x a x a x a      , 1,...,i M (14)

Використовуючи співвідношення Коші та реологіч-
ний закон (2) для ізотропного пружного тіла, одержимо 
відповідні вирази для напружень на кожному відрізку 
дискретизації для кожного ітераційного кроку: 
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та ijs : 
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Таким чином, після підстановки в граничні інтегра-
льні рівняння, де всі ядра підінтегральних виразів запи-
сані в локальній системі координат, а вирази для пере-
міщень та напружень замінено на їх представлення 
(14)-(16) через введені невідомі в локальних координа-
тах, та обчисливши відповідні інтеграли, одержимо сис-
тему лінійних алгебраїчних рівнянь. 

Для її замикання у випадку лінійної апроксимації 
складових вектора переміщень (14) додаються умови 
неперервності переміщень у вузлах ламаної: 

   1 3 4 60.5 cos 0.5 sini i i i i i i ia d a a d a    

   1 1 1 3 1 1 4 1 1 6 1 10.5 cos 0.5 sini i i i i i i ia d a a d a             
, 
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Таким чином, після розв'язання системи лінійних ал-
гебраїчних рівнянь для k -го кроку ітерації, знайдемо 
значення напружень на границі тіла. Для знаходження 
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значень напружень у внутрішніх точках розглядуваного 
тіла скористаємось формулами, одержаними із формул 
Сомільяно за допомогою їх диференціювання та скла-
дання з них виразів для напружень для 1-го кроку: 
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а  1 k
ij  – напруження з попереднього кроку. 

Таким чином, одержимо значення всіх компонент 
напружень у центрі кожного елементу дискретизації. 
Ітераційний процес триває доти, доки виконується умо-

ва    1max 


 k k

ij ij
x V

   . 

Після закінчення ітераційного процесу із значень 

ij  обчислюємо вирази для інтенсивності дотичних 

напружень: 

     1
2

 
 

ij ijh S h S h , 

  1
3

 


ij ij kk ijS h    , 

і порівнюємо їх в середині кожного із елементів дискрети-
зації із значеннями   y h . Сукупність елементів, де 

 yT T  утворюють потенційні зони пластичності з можли-

вим розвитком пластичних деформацій. Таким чином, 
підхід, запропонований в [1] та продовжений в роботах [2], 
[3], [6] можна поширити на задачі визначення напружено-
деформованого стану вологонасичених схилів. 
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НАПРЯЖЕННО-ДЕФОРМОВАННОЕ СОСТОЯНИЕ ВЛАГОНАСЫЩЕННОГО МАССИВА  
ПОД ВОЗДЕЙСТВИЕМ ГРАВИТАЦИИ  

Предложено общий подход к компьютерному моделированию поведения природно-техногенных систем, в частности, прогнози-
рования их сдвигоопасности, посредством расчета напряженно-деформированного состояния влагонасыщенного грунтового склона 
под воздействием сил гравитации. Получены определяющие соотношения рассмативаемой задачи, построен итерационный метод 
определения напряженно-деформированного состояния оползневого массива, позволяющий на каждом шаге рассматривать плоскую 
задачу теории упругости. Для решения упругой задачи используется модифицированный метод граничных элементов, позволяющий 
одновременно определять сразу все компоненты напряженно-деформованного состояния на границе рассматриваемого тела. Пред-
ложенный метод также позволяет для заданных нагрузок и характера увлажненности склона определять возможные зоны пластиче-
ского течения в массиве. 

М. Lavrenyuk, Cand. Sci. (Phys.-Math.) 
Taras Shevchenko National University of Kyiv, Kyiv 

STRESS-STRAIN STATE OF SATURATED LANDSLIDE SUBJECTED TO GRAVITATION FORCES 
The general approach to computer simulation of behavior of natural and technogeneous systems, in particular forecast of its sliding safety, by 

calculating the stress-strain state of saturated ground slope subjected to gravitation forces is proposed. The governing relations for considered 
problem was obtained, and iteration method of stress-strain state assessment of landsliding area, that allows to solve on every step planar 
elasticity problem was constructed. For solving the elastic problem the modified boundary element method is used; it allows to find simultaneously 
all the components of stress-strain state on the boundary of examined body. The method proposed allows for prescribed external loadings and 
saturation of landslide to determine possible zones of plasticity within the landsliding area. 




