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MOOENUPOBAHUE NMAPO®OBHbLIX CBOUCTB NOYB
B YCNOBUAX HEOBPABATbIBAEMbIX CENbCKOXO3AWCTBEHHbLIX 3EMEJb

ludpogho6HOCMB 048 sI8/SIEMCSI €CMECMBEHHBLIM C80UICMBOM, KOMOPOe CB853aHO C 8/IUSIHUEM 3PO3UOHHBLIX MPOUECccos, UHGuUNbLMpayuu
800hbl, M08EPXHOCMHbIX U MOO3eMHbIX 2uOPO2€e0s102UYeCKUX MPOYECCOo8, ML NbHbIX 8ewjecms, eblujesiayueaHue u pocma pacmeHud.

Yenb: UccnedoeaHue npocmpaHcmeeHHO20 pacrnpedesieHusi u onpedesieHue Haubosiee MOYHbIX MeMOO08 UHMePoNsiyuu Ossi OyeHKU 2udpo-
g¢po6HOCMU noye e npedesiax HeobpabambieaeMbIX Ce/lIbCKOX0351icMEEeHHbIX 3eMeJlb.

Memoduka: Bbin uzbpaH yyacmok nnouwjadsto 21 m? (7x3 mM). BHympu amozo yyacmka 2udpogho6Hocme noye onpedensnack ¢ wazom 50 cm. C
yesnbro onpedenieHusi Haubosee HadexXHOU Kapmbl Gbislu MPOMecMuUpPo8aHbl HECKOJILKO Memodo8 UHMepnosisiyuu — o6bIYHbIU KpU2uHe, obpamHae
paccmosiHue k eecy c¢ cunoli 1, 2, 3, 4 u 5, PaduanbHas: 6a3ucHasi ¢pyHkyusi (O6pamHasi, Mysnbmukeadpamuyeckasl, MyJibmusio2apugmuyeckasl,
HamypanbHbIl Ky6u4yeckul cnnaliH U MOHKOU niacmuHsbl, cnnaliH), JlokanbHbil nonuHom ¢ cunol 1 u 2.

Pe3ynbmamei: lMonyyeHHble pe3ysibmamabl Noka3biearom, 4Ymo 2uépogob6Hocmb nNo4ye o4yeHb HeOOHOPOOHa, Oaxe Ha He6OoIbWUX PacCMOsIHU-
sx. lNocnedHee ceudemenbcmeyem, 4Ymo audposiozudeckue ceolicmea no4ebl Mo2ym MeHsIMbCs1 04eHb 6bicmpo e npocmpaHcmee. Cehepuyeckas
modesnib cmana nay4wum npedeecmHukom 2udpogobHocmu no4e. Kpome mozo, Hau6onee mo4yHbiM Memodom uHmepnonsiyuu cman Mynbmuirio-
2apugmudeckuli Memod, a Haubosiee 060CHoB8aHHbIlU Memod — Kybuyeckozo crnnaliHa .

HoeusHa: UccnedoeaHue HecKonbKux Memodoe UHMepnossAyuUu NpocmpaHcmeeHHo20 pacnpedenieHusi 2udpoghob6HOCMU MoyYe u3y4asnoch
paHee, a criedoeamesibHO npueedeHHble Mamepuasbi Hecym Hosyto uHghopmayuro 8 daHHoU cghepe uccredosaHull.

lMpakmuyeckoe 3HayeHue: Bonee moyHasi uHmepnonayusi 2uépoghobHocmu noyve u Apyaux nokasamerseii MTOMoxem 2sy6xxe MOHSIMb MOHKUE
npoyeccbl 8 pamkax 6onbwux nnouwjadeli. KapmupoeaHue ¢ 8bICOKOU MOYHOCMbIO ynyHuwium mModenu u clenaem eecombil 8knad 8 NPo2HO3UpPo-
eaHue 3po3uu rno4s.
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The problem of granites holds a special place in geology. Research of the granite formation problem leads to a number of partial
problems, among those the question of depth of the granite generation and mechanisms of provision of space for large granitoid solids
are distinguished. In the problem of space the geomechanical constituent is of primary importance. The major factors forming the
stress-strain state in the system of the granite formation are permanently acting mass gravitation forces, tectonic forces of inter-slabs
interaction, pseudo-mass forces, forces of volumetric thermoelastic effects, phase transitions in processes of metamorphism,
metasomatism, partial and complete fusion. In existing investigations of stress-strain state of crust systems the geological mediums are
supposed to be quasi-homogeneous. The objective of this work is to develop the general approach to computer modeling of the
behavior of geological and mechanical systems of mega-blocks range, in context of space problem during the granite formation, taking
into account structure anisotropy of the system.

While the possibilities of full-size modeling of complex multifactorial magmatogene systems are limited, the possibilities of
mathematical modeling are more appropriate, especially in view of the mechanical systems modeling. Verification of geological
hypotheses and empirical data by constructing simple models with its further complication by means of transition to more and more
complex combinations of force factors, rheological states, boundary conditions, and other factors is the most optimal. In the article the
problem of stress-strain assessment of geological and mechanical system of mega-blocks range is analyzed. Assuming that the
temperature of medium is known, there were obtained governing relations describing the behavior of geological and mechanical system
at combined action of the gravity, non-homogeneous temperature field and power and kinematic influences imposed on the boundaries
of considered system. The algorithm for solving of elastic problem is developed by means of the modified boundary element method.

The governing relations of the considered problem are obtained as well as the numerical and analytical algorithm of stress-
strain assessment of the considered geological and mechanical system is developed.

Mathematical model and corresponding algorithm of the numerical calculation of stress-strain state of the considered system
allow analyzing the stress-strain state of geological and mechanical system at combined action of gravity, non-homogeneous
temperature field and imposed on the boundaries of considered system power and kinematic influences, taking into account
structure anisotropy of the system.

Thus the method proposed herein allows investigating the nature of stresses fields, and hence to forecast geometry of potential
zones of relative decompression and tension, which are the most auspicious for granite formation.

The problem of granites holds a special place in geology.
From question of origin of rock of certain composition it
transformed into complex problem wherein the petrological
aspect is connected with structural and tectonic (dynamic and
kinematic, geomechanical) and other aspects [1, 3].

Research of the granite formation problem leads to a
number of partial problems, among those the question of depth
of the granite formation and mechanisms of provision of space
for large granitoid solids are distinguished. The question of
space, occupied by the large granitoid rocks, in its tumn, is
connected with the tectonic position of granitoid complexes and
geodynamic conditions of mass granite formation [5, 12].

In the problem of space the geomechanical constituent is
of primary importance. Dimensional parameters of large
granitoid solids, direct connection of the granite formation
with orogeny of crystallization and deformation processes,
as well as the character of structural anisotropy of granitoids
indicate the complex hierarchical pattern of stress-strain
state and the influence of many power factors of different
origin on the cumulative stress-strain states.

Modeling of magmatogene processes and structures is
a powerful tool of studies. While the possibilities of full-size
modeling of complex multifactorial magmatogene systems
are limited, the possibilities of mathematical modeling are
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more appropriate, especially in view of the mechanical
systems modeling. The mathematical modeling techniques
can be different, but the most optimal one is the verification
of geological hypotheses and empirical data by
constructing the simple models with its further complication
by means of transition to more and more complicated
combinations of force factors, rheological states, boundary
conditions, from one-dimensional through two-dimensional
toward three-dimensional etc.

The major factors causing the stress-strain state in the
system of the granite formation are permanently acting mass
gravitation forces, tectonic forces of inter-slabs (inter-blocks)
interaction, pseudo-mass forces, forces of volumetric
thermoelastic effects, phase transitions during metamorphism,
metasomatism, partial and complete fusion.

Among the above mentioned factors that form the
stress-strain state in the system of the granite formation,
one of the most important is, undoubtfully, an anomalous
heat-mass flux with key role of fluid-convective heat-mass
transfer. It was ascertained that, first, fluid heat transfer
provides relatively fast stabilization of heat anomalies in
upper crust even without additional heat emission due to
chemical transformations in fluid [4], and, second,
progressive stage of development of heat anomalies is
necessarily accompanied by forming of inversive stress
fields (by redesignation of the principal normal stress axis)
with subvertical orientation of minimal compression
(expansion) axis facilitating the subvertical crust breaking
within thermofluid anomaly and lifting of the daylight
surface free from stresses [8, 9, 10, 11]. However, in this
research of stress-strain state of crust systems there is
generally accepted simplification that consists in
assumption of structural isotropy of geological medium that
is supposed to be quasi-homogeneous.

Let's consider more detailed physical model of
geological and mechanical system of mega-blocks rank.
While developing the model we rely upon models of
mechanics of deformable bodies.

Let's consider the problem of determination of stress-
strain state of such geological and mechanical system.
Assume the medium temperature is the known function of the
coordinates. Let's develop the governing relations those
describe the behavior of geological and mechanical system at
combined action of the gravity, non-homogeneous
temperature field and power and kinematic influences
imposed on the boundaries of considered system.

Let's consider the section of the depth rock mass,
which elastic properties depends on temperature, that is
supposed to be known function of coordinates (that can be
described analytically or numerically in every point of the
considered body). So, after solving the temperature

problem we obtain the distribution of temperature in the
considered body. Supposing that the small change of
temperature induces the small changes of elastic
properties of material, present the considered body as
zonal-homogeneous matrix with multilayered inclusion,
where the boundary of each layer is isotherm, and
temperature in every point of this layer differs slightly from
averaged value of temperature for this layer. Carrying out
the averaging over all the points of the selected layer, we

obtain avera i <C'l'7 ><ﬂp>

ged elastic parameters of layer —\™ix i/,
related to mean temperature of layer. Temperature is
changed from layer to layer according to the law that is
known from solution of the temperature problem, and
elastic parameters of every layer are constant and equal to

averaged values<cifkl>’<ﬂi/p> . Then we can pose the elastic

problem, where temperature as known function of
coordinates is contained in equilibrium equations as
volume forces and in boundary conditions on the edge of
matrix and in the conditions of mechanical contact on the
edge between adjacent layers of matrix. Duhamel-
Neumann's relations
e :Ci/'klgkl _ﬁijT ki, j=12

in case of orthotropic thermosensitive elastic material for
the general plane stress state in Oxy plane have the
following form:
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orthotropic material.
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Conditions of ideal mechanical contact on the edge of
matrix and every inclusion, are as follows:

o’n’ " k, ij=12 p=1..N
Multiplying both parts of each equation (2), (3) on the
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correspondent fundamental solutions U[k(o) and U;km,

r=L...N and integrating over domains of considered
body, and each of its layers, integrating (5)-(8) by parts,
making use of Ostrogradskii-Gauss formulas, we obtain
Somigliano relation for matrix:
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Here g/”(&x)and g/ (&,x) — fundamental forces for

matrix and every inclusion ( p =1,..., N ). Let's divide each of
p layers on m, additional layers. Suppose, that on the

edge of each intermediate layer the temperature is con-
stant, namely for ; - th sublayer of p - th layer the follow-

ing relations hold:

Then surface integral containing temperature, taking
into account that temperature of every layer (zone with
constant mechanical characteristics) is constant, can be
written in the form
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Let's discretize boundaries of inclusion and layers using
segments as elements of discretization and work in on these
segments local coordinates system. Using boundary
properties of potentials of single and double layer we get the
system of integral equations for defining displacements in
zonal-homogeneous body. Let's carry out passage in integral
representations, and direct (for every equation) the
observation point step-by-step to the center of every segment
of discretization. Thus we obtain the system of boundary
integral equations for matrix, for every layer, and for internal
inclusion. Further, unknown densities of potentials of double
layer on the boundaries of inclusions can be represented as
functions of two unknowns along the segments of
discretization. After solving the system of boundary integral
equations it allows defining all the components of
displacements and stresses on all the contacting boundaries.

In the case of linear approximation the components of
displacements on every segment of discretization can be
written as follows:
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Using Cauchy relations and Duhamel-Neumann's law
for isotropic elastic body, we obtain correspondent relations
for stresses on every segment of discretization:
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Note that in the case of linear approximation stress
tensor components are constant on every segment of
integration. Since we consider multiply-connected domain,
we have to add conditions of contact interaction on the
edge of each of subdomains to above conditions. In the
case of ideal mechanical contact on the edge of contacting
zones, these conditions, taking into account approximation

(4), can be written down as follows:
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Thus, we obtain the system of linear algebraic
equations, which is to be made closed by adding to system

the equations of continuity of displacements on every
segment of discretization.
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Using Somigliano identity we can obtain components of
displacements in internal points of considered body from
obtained system of linear algebraic equations.
Differentiating Somigliano identity we obtain correspondent
integral representations for all the components of stress
tensor in internal points:

o, (&)= J'Ezjk (&%) py (x)dTo (x) -

(5)
Here E;(¢&,x) and T4 (&,x) — strains and stresses in an
arbitrary point x accordingly, caused by unit concentrated
force, applied in point &, and directed along k -th axis.

Expressions in the right part of (5) do not contain
unknown values, and thus, in order to obtain expressions
for displacements and stresses, it is only necessary to
calculate right parts of the above expressions.

Thereby approach that was proposed in [2] and proceeded
with [6], [7], can be extended to problems of the stress-strain
state assessment of core systems, provided that correspondent
fundamental solutions for problems of plane elasticity of
anisotropic zonal-homogeneous bodies are known.

J.Z,’k (f,x)uk (x)dFo +J.E/k (§,x)Xk (x)dS0
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MOAOENOBAHHA HAMPYXXEHO-JE®OPMOBAHOIO CTAHY KOPOBUX CUCTEM
B KOHTEKCTI NPOBJIEMUM NPOCTOPY NI YAC IrPAHITOYTBOPEHHA

B zeonoeii ocobnuee micye 3alimae npobnema epaHimie. Po32nsd 3adayi 2paHimoymeopeHHs1 npu3eodums Ao psidy yacmkoeux 3aday, ceped
SKUX 8UPI3HSIIOMbLCSI MUMaHHA 2iIU6UHHOCMI 2paHimoymeopeHHs1 ma MexaHi3mie 3abe3nevyeHHs1 MpPocmopy Onsl KPynHUX epaHimonodi6Hux min. B
npo6nemi npocmopy 2eoMexaHiyHa cksiadoea Mae nepuoyep2oey eaxsiugicmb. [0/108HI YUHHUKU, WO ¢hopMyromb HarnpyxeHo-0eghopmoeaHuli
cmaH e cucmemi 2paHimoymeopeHHs1 —nocmiliHo dito4i macoei epasimayiliHi cunu, mekmoHiyHi cunu mixxnnumHoi e3aemodii, nceedomacoei cunu
06'eMHUX mepMonpyXHux eghekmis, ghazosux nepemeopeHb 8 npoyecax opghiamy, 0 03y, YacmKoeo2o i Mo8HO20 nassieHHs. B
icHyro4ux AocnidxeHHsIX HanpyxeHo-0eghopMo8aHO20 CmMaHy Kopoeux cucmem 2eos102i4Hi cepedosuusa esaxarombcsi keazioOHopidHumu. Memoto
pobomu € nobydoea 3azasbHO20 nioxody 0o KOMM'tomepHO20 MoOeso8aHHs NoeediHKU 2e0/1020-MexaHiYHUX cucmem paHay Mme2abriokie e
KOHmMekKkcmi npobneMu npocmopy nid Yyac 2paHimoymeopeHHsl, 3 epaxyeaHHsIM CMPyKmMypHoi aHisomponii cucmemu.

OckKinbKu Mo)nueocmi HamypHo20 MOOesI08aHHS CKadHuUX 6. 1) DPHUX 02€HHUX cucmemM € obmexeHumu, 6inbw doyinsHUM
€ Mamemamu4He Modesll08aHHsl, 0CO6/IUBO 8 ceHCi Modeslro8aHHsI MexaHi4HuUx cucmem. Halibinbw onmumanbHUM € nepeegipka 2eo0s102iYHUX
2inome3s i eMnipu4yHUX OaHUX WIISIXOM CMEOPEHHS npocmux mModesell 3 NodanbWuM iX ycknaGHeHHsIM 3a paxyHokK nepexody Ao ece 6inbw cknad-
Hux Kom6iHauili cunosux ¢ghakmopie, peosio2iyHUX cmaHie, 2paHU4HUX yMoe i m.0. B cmammi po3ansidaembcs 3adavya eu3Ha4eHHs1 HarnpyxXeHo-
deghopMoeaHO20 cmaHy 2eosl020-MexaHi4HOl cucmemu paHey Mezabrokie. Beaxaro4u memnepamypy cepedosuwja eidomMoro, odepxaHoO
8U3HavanbHi cnieeiOHoweHHs Onsi onucaHHs MNoeediHKU 2e051020-MexaHiYHOI cucmemu npu cymicHil Oif Ha Hei epasimayii, HeoOHOpiOHO20 mem-
nepamypHo20 noJsi i 3adaHux Ha 2paHUysiXx cucmemu cusioeux i KiHemamuyHux ennueis. [nsi no6ydoeu anzopummy po3e'sizaHHs1 NpyxHoil 3adayi
sukopucmosyemscsi ModudpikosaHuli Memod epaHUYHUX esleMeHmis.

OdepxaHO eu3Ha4anbHi cnieeiOHoweHHs1 po3ansidyeaHol 3adayi, Mo6ydoeaHO YuceslbHO-aHaNiMuYyHuUll asl20pUMM BU3Ha4YeHHs HanpyXeHo-
deghopmosaHO20 cmaHy po3asnsidyeaHoi 2e0/1020-MexaHiYHOi cucmemu.

MamemamuyHa modesnib ma eidnoeidHull an2opumm 4YuceslbHO20 PO3PaxyHKy HamnpyxeHo-0eghopMoeaHO20 cmaHy po3assidyeaHoi cucmemu Ao3-
eos1sIIoMb aHaslizyeamu HanpyeHo-0eghopMosaHuli cmaH 2e0s1020-MexaHiYHOI cucmemu npu cymicHitl dii Ha Hei epasimauyjii, HeOOHOpPiIOHO20 memne-
pamypHo20 nosis i 3a0aHuUX Ha 2paHUUsIX cuCmeMu cusioeux i KiHeMamuyHuUX ernsueie, 3 epaxyeaHHsIM CMPYKMYypPHOI aHizomponiro cucmemu.

Takum 4uHOM, 3anpornoHosaHuli Memod do3eoJsisic OocJlidKyeamu xapakmep [oJlie HanpyXeHb, a OMXe, MPo2HOo3ysamu 2eomMempiro
nomeHuyitiHux o6nacmeli iGHocHoi dekomnpecii ma po3amszay, siki € Halibinbw cnpusimnauei 0551 2paHiMOyMeopPeHHs.

Knro4voei crioea: epaHimoymeopeHHs1, cmpykmypHa aHi3omponisi, mepMornpyxHicms.
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MOOENMPOBAHUE HANPAXEHHO-OE®OPMUPOBAHHOIO COCTOAHUA KOPOBbLIX CUCTEM
B KOHTEKCTE NMPOBJIEMbI MPOCTPAHCTBA BO BPEMA NTPAHUTOOBPA30BAHUA

B 2eonozuu oco6oe mecmo 3aHumaem npo6nema epaHumos. PaccmompeHue 3ada4yu epaHumoo6bpa3oeaHusi npueodum K psidy YacMmHbIX 3a-
0day, cpedu KOmopbIX 8bIGesSAIMCS 80MNPOChI 2/1y6UHHOCMU 2paHUMoo6pa3oeaHusi U MexaHU3Moe obecrnevyeHusi NpocmpaHcmea Onsi KpYnHbIX
2paHuUmMoudHbIx mes. B npo6rneme npocmpaHcmea 2eoMexaHuyeckasl cocmaessiroujasi umeem repeocmereHHyr eaXHocmb. [agHble ghakmopesl,
opmupyroujue HanpsixeHHo-deghopMayUOHHOE COCMOsIHUE 8 cucmemMe 2paHUMoo6pa3oeaHusi — MOCMOSIHHO delicmeyroujue Maccosble 2pasu-
MmayuoHHbIe Cuslbl, MeKMOHUYeCKUe CUsbl MEXM/IUMHo20 e3aumodelicmeusi, nceedomaccoenie cusbl 06beMHbIX 3¢hghekmoe mepmoynpyaocmu,
¢hasoebix npeobpasosaHuli 8 npoyeccax pghusma, oMamo3a, YaCmu4yHOo20 U MOJIHo20 nnasneHus. B cyuiecmeyrowux uccnedosa-
HUsIX HanpsHkeHHO-0eghopMUPOB8aHHO20 COCMOSIHUSI KOPOBbIX CUCMEM 2eosio2uveckue cpedbl cHUMaromcesi Kea3uoOHopPoOdHbIMu. Ljenb pa6ombi —
K KOMMbIOMepHOMYy MOOenupo8aHuto nosedeHuUsi 2e0/1020-MexXaHiYHUX cucmeM paHaa Me2abs/ioKkoe 8 KOHmeKcme npobrieMbl MPocmpaHcmea eo
epeMsi 2paumoo6bpa3oeaHusi, C y4emom CMpPyKmMypHoU aHU3o0mponuu cucmemal.

IMocKonbKy 803MOXHOCMU HaMypPHO20 MOOAe/TUPO8aHUSI C/IOXKHbLIX MHO20haKMOPHbLIX MazMamoz2eHHbIX cUCMeM O2paHuYeHbl, 6osee yesneco-
o6pa3HbIM npedcmassisiemcss MameMamu4eckoe ModeslupogaHue,0C06eHHO 8 CMbicsie ModenuposaHusi MexaHu4yeckux cucmem. Haubonee on-
mumasbHoU siesisiemcsi NpoeepKa 2eos102U4ecKUx a2unomes U aMnupuvyeckux 0aHHbIX nymem co3daHusi MpPocmbix Modesnel ¢ nocnedyrouumM ux
yCNoXHeHUeM 3a c4em nepexoda ko ece 6osiee ClI0KHbIM KOMGUHAUUSIM CUO8bIX (haKmopoes, Peosio2UuYecKUX COCMOSIHUL, 2paHU4YHbIX ycroaul,
u m.@. B c e pacci Jol 51 3ad0a4a onpedesieHUs1 HanpsKeHHO-0eghopMUPOBAHHO20 COCMOSIHUSI 2€0/1020-MexaHuU4ecKol cucmemabl
paHea Mez2abnokos. C4umasi memnepamypy cpedbl U3eecmHoU, Nosy4eHbl onpedensoujue COOMHOWeEHUs Ol onucaHusi NoeedeHuUsi 2e0J1020-
MexaHuU4ecKoli cucmembl NPpu CO8MeCMHOM eo3delicmeuu Ha Hee 2pasumayuu, HeOOHOPOOHO20 MeMrepPamypHoO20 Mosisi U 3adaHHbIX Ha 2paHu-
yax cucmembl cusioebIX U KUHeMamu4eckux eo3delicmeul. [ nocmpoeHus aslzopumma peuleHusi ynpyaoul 3adayu ucnosb3yemcsi Moouguyu-
poeaHHbIli Memo0 2paHUYHbIX eIeMeHMos.

IMonyyeHbl onpedensiroujue COOMHOWEeEHUsT paccMampueaemol 3adayu, MOCMpPOoeH YucrieHHO-aHanumuyeckuli Memod onpedesnieHuUsi Hanpsi-
JKeHHO-0eghopMUPOBaHHO20 COCMOSIHUS paccMampueaeMoli 2e0J1020-MeXaHU4eCKol cucmemsl.

MocmpoeHHass Mamemamuyeckasi Modesib U coomeemcmeyrouwulli an2opumm 4YUuclIeHHO20 pacyema HanpsiKeHHo-0eghopMuUpPO8aHHO20 CO-
CMosiHUsI paccMampueaeMoli cucmeMbl 10360J1siem aHa/lu3uposame HanpskeHHo-0eghopMuUpPOBaHHOE COCMOsIHUE 2€0J/1020-MeXaHU4ecKol cuc-
memblI coeMecmHoM eo3delicmeuu Ha Hee 2pasumayuu, HeOOHOPOOHO20 memMrepamypHO20 M0oJIs1 U 3a0aHHbIX Ha 2paHUyax cucmeMbl CUIo8bIX U
KuHeMamuyeckux eo3delicmeuli, ¢ y4emom cmpyKkmypHoOU aHuU30mponuu cucmemal.

Takum ob6pa3om, npednoxeHHbIU Memod no3eosisiem uccsedoeams xapakmep nosieli HanpsixeHul, a criedoeamesibHO, MPO2HO3UPO8aMb 2€0-
Mempuro nomeHuyuanbHbIX obnacmeii omHocumesnbHol OeKoMpeccuu U pacmsiXeHus:, siensiroujuecss Haubosnee 651a20MPUMHbIMU Onsl 2paHu-
moo6pa3oeaHusi.

Kntodesnbie cnosa: epaHumoo6pa3osaHue, CmpyKmypHasi aHu30mpornusi, mepmMoynpy20cma.






