
ISSN 1728–2713 ГЕОЛОГІЯ. 4(63)/2013 ~ 81 ~ 

 

 

П. Перейра, д-р наук, Paulo@mruni.eu, 
Центр Менеджмента Окружающей Среды, 
Университет Миколаса Ромериса, 
Атейтис, 20, LT-08303 Вильнюс, Литва, 
М. Олива, д-р наук, Moliva@campus.ul.pt, 
Институт Географии и Территориального Планирования, 
Университет Лиссабона, 
Аламеда де Универсидад, 1600-214 – Лиссабон, Португалия 

 

МОДЕЛИРОВАНИЕ ГИДРОФОБНЫХ СВОЙСТВ ПОЧВ  
В УСЛОВИЯХ НЕОБРАБАТЫВАЕМЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗЕМЕЛЬ 

Гидрофобность почв является естественным свойством, которое связано с влиянием эрозионных процессов, инфильтрации 
воды, поверхностных и подземных гидрогеологических процессов, питательных веществ, выщелачивание и роста растений. 

Цель: Исследование пространственного распределения и определение наиболее точных методов интерполяции для оценки гидро-
фобности почв в пределах необрабатываемых сельскохозяйственных земель. 

Методика: Был избран участок площадью 21 м2 (7x3 м). Внутри этого участка гидрофобность почв определялась с шагом 50 см. С 
целью определения наиболее надежной карты были протестированы несколько методов интерполяции – обычный кригинг, обратнае 
расстояние к весу с силой 1, 2, 3, 4 и 5, Радиальная: базисная функция (Обратная, мультиквадратическая, мультилогарифмическая, 
натуральный кубический сплайн и тонкой пластины, сплайн), Локальный полином с силой 1 и 2. 

Результаты: Полученные результаты показывают, что гидрофобность почв очень неоднородна, даже на небольших расстояни-
ях. Последнее свидетельствует, что гидрологические свойства почвы могут меняться очень быстро в пространстве. Сферическая 
модель стала лучшим предвестником гидрофобности почв. Кроме того, наиболее точным методом интерполяции стал Мультило-
гарифмический метод, а наиболее обоснованный метод – кубического сплайна . 

Новизна: Исследование нескольких методов интерполяции пространственного распределения гидрофобности почв изучалось 
ранее, а следовательно приведенные материалы несут новую информацию в данной сфере исследований. 

Практическое значение: Более точная интерполяция гидрофобности почв и других показателей поможет глубже понять тонкие 
процессы в рамках больших площадей. Картирование с высокой точностью улучшит модели и сделает весомый вклад в прогнозиро-
вание эрозии почв. 
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The problem of granites holds a special place in geology. Research of the granite formation problem leads to a number of partial 
problems, among those the question of depth of the granite generation and mechanisms of provision of space for large granitoid solids 
are distinguished. In the problem of space the geomechanical constituent is of primary importance. The major factors forming the 
stress-strain state in the system of the granite formation are permanently acting mass gravitation forces, tectonic forces of inter-slabs 
interaction, pseudo-mass forces, forces of volumetric thermoelastic effects, phase transitions in processes of metamorphism, 
metasomatism, partial and complete fusion. In existing investigations of stress-strain state of crust systems the geological mediums are 
supposed to be quasi-homogeneous. The objective of this work is to develop the general approach to computer modeling of the 
behavior of geological and mechanical systems of mega-blocks range, in context of space problem during the granite formation, taking 
into account structure anisotropy of the system.  

While the possibilities of full-size modeling of complex multifactorial magmatogene systems are limited, the possibilities of 
mathematical modeling are more appropriate, especially in view of the mechanical systems modeling. Verification of geological 
hypotheses and empirical data by constructing simple models with its further complication by means of transition to more and more 
complex combinations of force factors, rheological states, boundary conditions, and other factors is the most optimal. In the article the 
problem of stress-strain assessment of geological and mechanical system of mega-blocks range is analyzed. Assuming that the 
temperature of medium is known, there were obtained governing relations describing the behavior of geological and mechanical system 
at combined action of the gravity, non-homogeneous temperature field and power and kinematic influences imposed on the boundaries 
of considered system. The algorithm for solving of elastic problem is developed by means of the modified boundary element method. 

The governing relations of the considered problem are obtained as well as the numerical and analytical algorithm of stress-
strain assessment of the considered geological and mechanical system is developed. 

Mathematical model and corresponding algorithm of the numerical calculation of stress-strain state of the considered system 
allow analyzing the stress-strain state of geological and mechanical system at combined action of gravity, non-homogeneous 
temperature field and imposed on the boundaries of considered system power and kinematic influences, taking into account 
structure anisotropy of the system. 

Thus the method proposed herein allows investigating the nature of stresses fields, and hence to forecast geometry of potential 
zones of relative decompression and tension, which are the most auspicious for granite formation. 

 
The problem of granites holds a special place in geology. 

From question of origin of rock of certain composition it 
transformed into complex problem wherein the petrological 
aspect is connected with structural and tectonic (dynamic and 
kinematic, geomechanical) and other aspects [1, 3]. 

Research of the granite formation problem leads to a 
number of partial problems, among those the question of depth 
of the granite formation and mechanisms of provision of space 
for large granitoid solids are distinguished. The question of 
space, occupied by the large granitoid rocks, in its turn, is 
connected with the tectonic position of granitoid complexes and 
geodynamic conditions of mass granite formation [5, 12].  

In the problem of space the geomechanical constituent is 
of primary importance. Dimensional parameters of large 
granitoid solids, direct connection of the granite formation 
with orogeny of crystallization and deformation processes, 
as well as the character of structural anisotropy of granitoids 
indicate the complex hierarchical pattern of stress-strain 
state and the influence of many power factors of different 
origin on the cumulative stress-strain states. 

Modeling of magmatogene processes and structures is 
a powerful tool of studies. While the possibilities of full-size 
modeling of complex multifactorial magmatogene systems 
are limited, the possibilities of mathematical modeling are 
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more appropriate, especially in view of the mechanical 
systems modeling. The mathematical modeling techniques 
can be different, but the most optimal one is the verification 
of geological hypotheses and empirical data by 
constructing the simple models with its further complication 
by means of transition to more and more complicated 
combinations of force factors, rheological states, boundary 
conditions, from one-dimensional through two-dimensional 
toward three-dimensional etc. 

The major factors causing the stress-strain state in the 
system of the granite formation are permanently acting mass 
gravitation forces, tectonic forces of inter-slabs (inter-blocks) 
interaction, pseudo-mass forces, forces of volumetric 
thermoelastic effects, phase transitions during metamorphism, 
metasomatism, partial and complete fusion. 

Among the above mentioned factors that form the 
stress-strain state in the system of the granite formation, 
one of the most important is, undoubtfully, an anomalous 
heat-mass flux with key role of fluid-convective heat-mass 
transfer. It was ascertained that, first, fluid heat transfer 
provides relatively fast stabilization of heat anomalies in 
upper crust even without additional heat emission due to 
chemical transformations in fluid [4], and, second, 
progressive stage of development of heat anomalies is 
necessarily accompanied by forming of inversive stress 
fields (by redesignation of the principal normal stress axis) 
with subvertical orientation of minimal compression 
(expansion) axis facilitating the subvertical crust breaking 
within thermofluid anomaly and lifting of the daylight 
surface free from stresses [8, 9, 10, 11]. However, in this 
research of stress-strain state of crust systems there is 
generally accepted simplification that consists in 
assumption of structural isotropy of geological medium that 
is supposed to be quasi-homogeneous. 

Let's consider more detailed physical model of 
geological and mechanical system of mega-blocks rank. 
While developing the model we rely upon models of 
mechanics of deformable bodies.  

 Let's consider the problem of determination of stress-
strain state of such geological and mechanical system. 
Assume the medium temperature is the known function of the 
coordinates. Let's develop the governing relations those 
describe the behavior of geological and mechanical system at 
combined action of the gravity, non-homogeneous 
temperature field and power and kinematic influences 
imposed on the boundaries of considered system. 

Let's consider the section of the depth rock mass, 
which elastic properties depends on temperature, that is 
supposed to be known function of coordinates (that can be 
described analytically or numerically in every point of the 
considered body). So, after solving the temperature 

problem we obtain the distribution of temperature in the 
considered body. Supposing that the small change of 
temperature induces the small changes of elastic 
properties of material, present the considered body as 
zonal-homogeneous matrix with multilayered inclusion, 
where the boundary of each layer is isotherm, and 
temperature in every point of this layer differs slightly from 
averaged value of temperature for this layer. Carrying out 
the averaging over all the points of the selected layer, we 

obtain averaged elastic parameters of layer – ,p p
ijkl ijC  , 

related to mean temperature of layer. Temperature is 
changed from layer to layer according to the law that is 
known from solution of the temperature problem, and 
elastic parameters of every layer are constant and equal to 

averaged values ,p p
ijkl ijC  . Then we can pose the elastic 

problem, where temperature as known function of 
coordinates is contained in equilibrium equations as 
volume forces and in boundary conditions on the edge of 
matrix and in the conditions of mechanical contact on the 
edge between adjacent layers of matrix. Duhamel-
Neumann's relations 

ij ijkl kl ijC T    , , , , 1,2k l i j  , 
in case of orthotropic thermosensitive elastic material for 
the general plane stress state in Oxy plane have the 
following form: 
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where 1  and 2  – coefficients of linear expansion of 
orthotropic material. 

Introduce the following denotations: 
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Then relations (1) can be represented as: 
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Elastic equilibrium equations can be reduced to the 
form: 
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for matrix and 
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for every inclusion. 
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Here  
2 12 1 22
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and 2X  are components of gravitation forces. 

Boundary conditions on the edge of matrix can be 
written as follows: 

0 0 |
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e
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Conditions of ideal mechanical contact on the edge of 
matrix and every inclusion, are as follows: 

1 1| |
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p p

p p
i iu u 
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Multiplying both parts of each equation (2), (3) on the 

correspondent fundamental solutions 
 0k

iU  and 
 k p

iU , 
1,...,p N  and integrating over domains of considered 

body, and each of its layers, integrating (5)-(8) by parts, 
making use of Ostrogradskii-Gauss formulas, we obtain 
Somigliano relation for matrix: 
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and for every inclusion: 
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Here  (0) ,k
ig x and  ( ) ,k p

ig x  – fundamental forces for 

matrix and every inclusion ( 1,...,p N ). Let's divide each of 

p  layers on pm  additional layers. Suppose, that on the 
edge of each intermediate layer the temperature is con-
stant, namely for j - th sublayer of p - th layer the follow-

ing relations hold:  

1

, 0
,

j
p p
j
p p p

T T j

T T j m

  
   . 

Then surface integral containing temperature, taking 
into account that temperature of every layer (zone with 
constant mechanical characteristics) is constant, can be 
written in the form 
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Let's discretize boundaries of inclusion and layers using 
segments as elements of discretization and work in on these 
segments local coordinates system. Using boundary 
properties of potentials of single and double layer we get the 
system of integral equations for defining displacements in 
zonal-homogeneous body. Let's carry out passage in integral 
representations, and direct (for every equation) the 
observation point step-by-step to the center of every segment 
of discretization. Thus we obtain the system of boundary 
integral equations for matrix, for every layer, and for internal 
inclusion. Further, unknown densities of potentials of double 
layer on the boundaries of inclusions can be represented as 
functions of two unknowns along the segments of 
discretization. After solving the system of boundary integral 
equations it allows defining all the components of 
displacements and stresses on all the contacting boundaries. 

In the case of linear approximation the components of 
displacements on every segment of discretization can be 
written as follows: 
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   (4) 

Using Cauchy relations and Duhamel-Neumann's law 
for isotropic elastic body, we obtain correspondent relations 
for stresses on every segment of discretization: 
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Note that in the case of linear approximation stress 
tensor components are constant on every segment of 
integration. Since we consider multiply-connected domain, 
we have to add conditions of contact interaction on the 
edge of each of subdomains to above conditions. In the 
case of ideal mechanical contact on the edge of contacting 
zones, these conditions, taking into account approximation 
(4), can be written down as follows: 
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s s s s
a a T

s s s s s s s s s

      
 

        

          
        

, 

0, 1.p N   
Thus, we obtain the system of linear algebraic 

equations, which is to be made closed by adding to system 
the equations of continuity of displacements on every 
segment of discretization. 
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Using Somigliano identity we can obtain components of 
displacements in internal points of considered body from 
obtained system of linear algebraic equations. 
Differentiating Somigliano identity we obtain correspondent 
integral representations for all the components of stress 
tensor in internal points: 

       
0

0,j
ij ik kx p x d x  



   
 

       
0

0 0, ,j j
ik k ik k

S

x u x d x X x dS 


    
         

(5) 

Here  ,j
ik x  and  ,j

ik x  – strains and stresses in an 

arbitrary point x  accordingly, caused by unit concentrated 
force, applied in point  , and directed along k -th axis. 

Expressions in the right part of (5) do not contain 
unknown values, and thus, in order to obtain expressions 
for displacements and stresses, it is only necessary to 
calculate right parts of the above expressions. 

Thereby approach that was proposed in [2] and proceeded 
with [6], [7], can be extended to problems of the stress-strain 
state assessment of core systems, provided that correspondent 
fundamental solutions for problems of plane elasticity of 
anisotropic zonal-homogeneous bodies are known. 
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МОДЕЛЮВАННЯ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ КОРОВИХ СИСТЕМ  
В КОНТЕКСТІ ПРОБЛЕМИ ПРОСТОРУ ПІД ЧАС ГРАНІТОУТВОРЕННЯ 

В геології особливе місце займає проблема гранітів. Розгляд задачі гранітоутворення призводить до ряду часткових задач, серед 
яких вирізняються питання глибинності гранітоутворення та механізмів забезпечення простору для крупних гранітоподібних тіл. В 
проблемі простору геомеханічна складова має першочергову важливість. Головні чинники, що формують напружено-деформований 
стан в системі гранітоутворення –постійно діючі масові гравітаційні сили, тектонічні сили міжплитної взаємодії, псевдомасові сили 
об'ємних термопружних ефектів, фазових перетворень в процесах метаморфізму, метасоматозу, часткового і повного плавлення. В 
існуючих дослідженнях напружено-деформованого стану корових систем геологічні середовища вважаються квазіоднорідними. Метою 
роботи є побудова загального підходу до комп'ютерного моделювання поведінки геолого-механічних систем рангу мегаблоків в 
контексті проблеми простору під час гранітоутворення, з врахуванням структурної анізотропії системи. 

Оскільки можливості натурного моделювання складних багатофакторних магматогенних систем є обмеженими, більш доцільним 
є математичне моделювання, особливо в сенсі моделювання механічних систем. Найбільш оптимальним є перевірка геологічних 
гіпотез і емпіричних даних шляхом створення простих моделей з подальшим їх ускладненням за рахунок переходу до все більш склад-
них комбінацій силових факторів, реологічних станів, граничних умов і т.д. В статті розглядається задача визначення напружено-
деформованого стану геолого-механічної системи рангу мегаблоків. Вважаючи температуру середовища відомою, одержано 
визначальні співвідношення для описання поведінки геолого-механічної системи при сумісній дії на неї гравітації, неоднорідного тем-
пературного поля і заданих на границях системи силових і кінематичних впливів. Для побудови алгоритму розв'язання пружної задачі 
використовується модифікований метод граничних елементів. 

Одержано визначальні співвідношення розглядуваної задачі, побудовано чисельно-аналітичний алгоритм визначення напружено-
деформованого стану розглядуваної геолого-механічної системи. 

Математична модель та відповідний алгоритм чисельного розрахунку напружено-деформованого стану розглядуваної системи доз-
воляють аналізувати напружено-деформований стан геолого-механічної системи при сумісній дії на неї гравітації, неоднорідного темпе-
ратурного поля і заданих на границях системи силових і кінематичних впливів, з врахуванням структурної анізотропію системи. 

Таким чином, запропонований метод дозволяє досліджувати характер полів напружень, а отже, прогнозувати геометрію 
потенційних областей відносної декомпресії та розтягу, які є найбільш сприятливі для гранітоутворення. 

Ключові слова: гранітоутворення, структурна анізотропія, термопружність. 
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МОДЕЛИРОВАНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОРОВЫХ СИСТЕМ  
В КОНТЕКСТЕ ПРОБЛЕМЫ ПРОСТРАНСТВА ВО ВРЕМЯ ГРАНИТООБРАЗОВАНИЯ 

В геологии особое место занимает проблема гранитов. Рассмотрение задачи гранитообразования приводит к ряду частных за-
дач, среди которых выделяются вопросы глубинности гранитообразования и механизмов обеспечения пространства для крупных 
гранитоидных тел. В проблеме пространства геомеханическая составляющая имеет первостепенную важность. Главные факторы, 
формирующие напряженно-деформационное состояние в системе гранитообразования – постоянно действующие массовые грави-
тационные силы, тектонические силы межплитного взаимодействия, псевдомассовые силы объемных эффектов термоупругости, 
фазовых преобразований в процессах метаморфизма, метасоматоза, частичного и полного плавления. В существующих исследова-
ниях напряженно-деформированного состояния коровых систем геологические среды считаются квазиоднородными. Цель работы – 
к компьютерному моделированию поведения геолого-механічних систем ранга мегаблоков в контексте проблемы пространства во 
время граитообразования, с учетом структурной анизотропии системы. 

Поскольку возможности натурного моделирования сложных многофакторных магматогенных систем ограничены, более целесо-
образным представляется математическое моделирование,особенно в смысле моделирования механических систем. Наиболее оп-
тимальной является проверка геологических гипотез и эмпирических данных путем создания простых моделей с последующим их 
усложнением за счет перехода ко все более сложным комбинациям силовых факторов, реологических состояний, граничных условий, 
и т.д. В статье рассматривается задача определения напряженно-деформированного состояния геолого-механической системы 
ранга мегаблоков. Считая температуру среды известной, получены определяющие соотношения для описания поведения геолого-
механической системы при совместном воздействии на нее гравитации, неоднородного температурного поля и заданных на грани-
цах системы силовых и кинематических воздействий. Для построения алгоритма решения упругой задачи используется модифици-
рованный метод граничных елементов. 

Получены определяющие соотношения рассматриваемой задачи, построен численно-аналитический метод определения напря-
женно-деформированного состояния рассматриваемой геолого-механической системы. 

Построенная математическая модель и соответствующий алгоритм численного расчета напряженно-деформированного со-
стояния рассматриваемой системы позволяет анализировать напряженно-деформированное состояние геолого-механической сис-
темы совместном воздействии на нее гравитации, неоднородного температурного поля и заданных на границах системы силовых и 
кинематических воздействий, с учетом структурной анизотропии системы. 

Таким образом, предложенный метод позволяет исследовать характер полей напряжений, а следовательно, прогнозировать гео-
метрию потенциальных областей относительной декомпрессии и растяжения, являющиеся наиболее благоприятными для грани-
тообразования. 

Ключевые слова: гранитообразование, структурная анизотропия, термоупругость. 
 




