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ОБЕРНЕНІ ЛІНІЙНІ ЗАДАЧІ ГРАВІМЕТРІЇ ТА МАГНІТОМЕТРІЇ 
З УТОЧНЮЮЧИМИ ІТЕРАЦІЙНИМИ ПОПРАВКАМИ ВИЩОГО ПОРЯДКУ 

 
(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, І.М. Корчагіним) 
Ціль роботи полягає в створенні методів рішення обернених задач гравіметрії й магнітометрії з ітераційними поправ-

ками вищих порядків для того, щоб одержувати коректні й змістовні геологічні результати інтерпретації фізичних полів. 
Відомі ітераційні методи для рішення лінійних обернених задач гравіметрії на основі комбінації декількох типів ітера-

ційних поправок до параметрів. Обернені задачі гравіметрії й магнітометрії сильно некоректні, зокрема, тому що різні 
критерії оптимізації дають різні рішення, і вони можуть бути істотно різними в деяких областях інтерпретаційної моде-
лі. Деякі методи створені для того, щоб вирішити лінійні обернені задачі гравіметрії й магнітометрії в умовах гаусівського 
розподілу помилок, і це пов'язано зі структурною проблемою в пошуках й розвідці рудних тіл і покладів вуглеводнів. Відомі 
методи, які розвинені для того, щоб вирішувати лінійні обернені задачі гравіметрії й магнітометрії, використовуючи іте-
раційні поправки, і вони використовують весь набір нев'язок між вимірюваними й розрахунковими даними про фізичні по-
ля. Але, негаусівські розподіли погрішностей виміру полів, разом з недоліками існуючих методів рішення обернених задач, 
дають низький відсоток збіжності ітераційного процесу до істинного рішення оберненої задачі. Окрім того, вони створю-
ють труднощі для доступу до закінченого рішення, і, таким чином, зменшують геологічну змістовність рішення оберненої 
задачі. У роботі представлені методи, які збільшують геологічну змістовність рішень обернених задач за допомогою іте-
раційних поправок  більш високих порядків до відомих ітераційних формул і до формул критеріїв оптимізації. При цьому 
поправки розділяються  на два напрямки: по напрямку нев'язок поля та по напрямку поправок до щільності блоків моделі 
геологічного масиву. Кожна поправка по напрямку нев'язок поля формує додаткову уточнюючу поправку на один порядок 
вище по напрямку поправок до щільності та навпаки. Але кожна із цих поправок може використовуватися як самостійно в 
будь-якій ітераційній формулі, так і разом з іншими поправками тільки одного напрямку. Найбільш ефективно відновлю-
ють поле ітераційні формули з трьома поправками разом першого, другого та третього порядку одного напрямку та 
окремо з трьома поправками іншого напрямку разом в одній ітераційній формулі. Кожен критерій оптимізації для такої фо-
рмули має набір усіх поправок на два порядки вище.  
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мізації поправки, порядок  поправки 

 
Постановка проблеми в загальному виді і її зв'язок 

з важливими науковими або практичними задачами. 
Обернені задачі гравіметрії й магнітометрії є некоректни-
ми, зокрема, через те, що з різними критеріями оптимізації 
одержуються різні рішення, а на окремих ділянках інтер-
претаційної моделі вони можуть бути й істотно різними [1]. 

Аналіз останніх досягнень і публікацій, у яких за-
кладене рішення даної проблеми й на які опирається 
автор. Для рішення структурних задач із метою пошуків 
рудної сировини й вуглеводнів розроблені методи рішення 
обернених лінійних задач гравіметрії й магнітометрії на тлі 
гауссовых похибок ітераційними методами умовної й без-
умовної оптимізації [2]. Розроблено стійкі ітераційні мето-
ди рішення обернених лінійних і нелінійних задач гравіме-
трії й магнітометрії із застосуванням ітераційних поправок 
[3], у тому числі й уточнюючих [4], що містять весь масив 
нев'язок поля  попередньої ітерації для коректування рі-
шення на наступній ітерації. 

Виділення невирішених раніше частин загальної 
проблеми, яким присвячена дана стаття. При нега-
уссовых похибках обернені задачі, що вирішуються з 
використанням тільки одного ітераційного коефіцієнта 
для параметрів одного типу всіх геологічних блоків [5], 
мають обмежену гнучкість методу для досягнення од-
нозначного рішення. Крім того, недоліками існуючих 
методів є низька швидкість збіжності ітераційного про-
цесу до будь-якого рішення оберненої задачі, і, більше 
того, труднощі з виходом на кінцеве рішення. Це обу-
мовлено більше швидкою появою еквівалентного рі-
шення для блоків з високою аномальною щільністю. 
Через такі недоліки знижується геологічна змістовність 
рішення оберненої задачі. Спроба поліпшити рішення 
оберненої задачі, за допомогою виведення уточненої 
формули основної ітераційної поправки [4], вихід на 
більш точне рішення оберненої задачі не забезпечує. 

Формулювання цілей статті. Метою цієї роботи є 
створення ітераційного методу з більш високою швидкі-
стю збіжності за рахунок уточнюючих поправок більш 

високого порядку до відомих ітераційних поправок і  
підвищення на цій основі геологічної змістовності рі-
шення оберненої задачі. 

Виклад основного матеріалу дослідження з по-
вним обґрунтуванням отриманих наукових резуль-
татів. Поставлена мета досягається тим, що на кожної 
наступній (n+1-ій) ітерації у відомих ітераційних мето-
дах  рішення оберненої задачі в ітераційній формулі  

     , 1 , 1 , , ;i n i n n i p nB  (1) 

 1n , , ,i p nB  – ітераційний коефіцієнт і загальна ітераційна 

поправка, що обчислюються після кожної попередньої ( n -
ої) ітерації з урахуванням наближеного значення невідомого 
параметра  , ( 1, )i n i M  кожного i-того блоку з М блоків 

сіткової моделі середовища, отриманого на n -ій ітерації, 
використовують апроксимацію  другого доданка з (1) лі-
нійними багаточленами першого порядку (хоча можливо 
його розкладання в ряди й по інших функціях): 

    1 , , , , , 1( , ); 1 ;n i p n i m n m nB M m ,h                (2) 

де , ,i m nM  – поправки першого й більш високих порядків 

 1,m p , одержувані послідовно з формул, починаючи з 

(1) при  p=1;  , 1m n  – ітераційний коефіцієнт для кожної 

ітераційної поправки 
  ,1, ,1, , ,( / , )i n i n i j i j nB M a r ;                    (3) 

– поправка 1-го порядку для щільності 
       2 ;  ; 0;i ij j j ij ij

j i

a a a                (4) 

       2 ;   ; ( , );i ij j j ij ij
j i

a a a R i j            (5) 

,i ja  – елементи матриці рішень прямої задачі гравімет-

рії  (або магнітометрії) для прямокутного паралелепіпе-

да при одиничній аномальній щільності  ,i n  (або інтен-

сивності намагнічування ,i nJ ) гірських порід, що пред-
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ставляють собою елементи зв'язку в системі лінійних 
алгебраїчних рівнянь між кожною j-тою точкою з N то-
чок карти вимірюваного поля g ( 1, )j j N  й аномальною 

щільністю (АЩ) кожного i-того блоку сіткової моделі 
середовища при рішенні оберненої лінійної задачі; 

  , , ,( , ) gj n i j i n jr a                              (6) 

– нев'язка поля на попередній ітерації; Множачи скаля-
рно (1) на ,i ja  й віднімаючи з лівої й правої частин g j , з 

урахуванням (6) одержимо ітераційну формулу для 
нев'язки поля на наступній ітерації: 

   , 1 , 1 , ;j n j n n j,р nr r Z                            (7) 

де  

   1 , 1 , ,( , )n j,р n ij n i p nZ a B                          (8) 

– ітераційна поправка 1-го порядку для нев'язки поля на 
следуючій ітерації. При p=1 одержимо 

   , 1 , 1 1, ;j n j n n j, nr r Z 1, ,1,( , );j, n ij i nZ a B            (9) 

Множачи скалярно (9) на  , /i j ia , маємо ітераційну 

формулу для поправки 1-го порядку до  ,i n
: 

   ,1, 1 ,1, 1 ,1, ;i n i n n i nB B C                          (10) 

де  
1, ,1,( ,Z )i, n ij j nС a                                 (11) 

– ітераційна поправка1-го порядку до поправки ,1,i nB  або 

2-го порядку  до щільності   ,i n на наступній ітерації. 

Множачи скалярно (10) на ,i ja  одержимо ітераційну 

формулу для поправки 1-го порядку до нев'язки поля на 
наступній ітерації: 

   ,1, 1 ,1, 1 1,Z ;j n j n n j, nZ D                        (12) 

де  
1, ,1,( , )j, n ij i nD a C                              (13) 

– ітераційна поправка1-го порядку до поправки ,1,j nZ  

або 2-го порядку до нев'язки ,j nr  на наступній ітерації.  

Далі, множачи скалярно (12) на , /i j ia , одержимо 

ітераційну формулу для поправки 1-го порядку до по-
правки ,1,i nB  або для поправки 2-го порядку до  ,i n  : 

   ,1, 1 ,1, 1 ,1, ;i n i n n i nС С E                         (14) 

де  
 1, ,1,( / , )i, n ij i j nE a D                            (15) 

– ітераційна поправка1-го порядку до поправки ,1,i nC  

або 3-го порядку  до щільності  ,i n на наступній ітерації. 

Множачи скалярно (14) на ,i ja , одержимо поправку 

1-го порядку до поправки ,1,j nZ  або 2-го порядку до не-

в'язки поля на наступній ітерації: 

   , 1 , 1 1, ;j n j n n j, nD D F                          (16) 

де  
1, ,1,( , )j, n ij i nF a E                              (17) 

– ітераційна поправка1-го порядку до поправки ,1,j nD  

або 3-го порядку до нев'язки ,j nr  на наступній ітерації.  

Далі, множачи скалярно (16) на , /i j ia , одержимо 

ітераційну формулу для поправки 1-го порядку до по-

правки ,1,i nC  або для поправки 3-го порядки до  ,i n
: 

   ,1, 1 ,1, 1 ,1, ;i n i n n i nE E K                        (18) 

де  
 1, ,1,( / , )i, n ij i j nK a F                         (19) 

– ітераційна поправка1-го порядку до поправки ,1,i nE  

або 4-го порядку до щільності  ,i n на наступній ітерації. 

Набір поправок можна продовжити, утворюючи пари 
поправок ( ,1,j nP  , ,1,i nS ) і т.д. 

Критерій безумовної оптимізації виберемо як по не-
в'язці поля, так і по поправках до параметрів [4]. Утво-
римо формули нев'язок і поправок до щільності на n+1-
ій ітерації для методу (1)-(11): 

      , 1 , , 1 , ,( , ) ( ,j n i j i n j i j i nr a g a





  , 1 , ,
1

) ;
m p

m n m n i j
m

M g   (20) 

   , 1, , 1 ,( , / )m n i j n i j iM r a  

 ,( / ,i j ia   , ,( ,i j i na





  , 1 , ,
1

) );
m p

m n m n i j
m

M g        (21) 

Складемо критерії оптимізації 

  2
, 1 min;r j n

j

F r     2
, , min;M i m n

i

F M       (22) 

Візьмемо частковы похідні від (22) по кожному іте-
раційному коефіцієнту, прирівняємо їх нулю й одержи-
мо системи рівнянь у загальному вигляді для обчис-
лення всіх  , 1m n .  

   , 1 , ,( ) ( ,(
m nr i j i n

j

F a





   , 1 , ,
1

)
m p

m n i m n
m

M  , , ,)( , ) 0;j i j i m ng a M  

  
, 1

( )
m nMF    , , ,( / ,( ,(i j i i j i n

i

a a  






   , 1 , ,
1

) ))
m p

m n i m n j
m

M g   , , , ,( , ) / 0;i j i m n i j ia M a     (23) 

На практиці зручніше користуватися позначеннями 
поправок, наведеними в (7)-(19), де літери B,C,E,K,S і, 
аналогічно, Z,D,F,P,V відповідають номерам порядку m 
=1,2,3,4,5 у загальному позначенні , ,i m nM . Приведемо 

кілька прикладів оптимізації рішення обернених задач, 
у яких для простоти частину індексів опустимо: 

  1, 1( , ) ( - nB B B C     2
2, 1 3, 1 ) min;n nE K      (24) 

     2
1, 1 2, 1( , ) ( - ) min;n nB B B C E               (25) 

        2
1, 1 2, 1 3, 1( , ) ( - ) min;n n nC C C E K S      (26) 

     2
1, 1 2, 1( , ) ( - ) min;n nC C C E K               (27) 

      2
2, 1 3, 1( , ) ( ) min;n nE E E K S              (28) 

   2
2, 1( , ) ( ) min;nE E E K  і  т.д.              (29) 

Для останнього критерію одержимо ітераційний ко-
ефіцієнт 

 2, 1 , , , ,( , ) / ( , );n i n i n i n i nE K K K                     (30) 

Для інших формул з (24) ітераційні коефіцієнти  
отримані рішенням систем двох або трьох лінійних ал-
гебраїчних рівнянь. Програмна реалізація методів (23)-
(30) та інших виконана при різних m для магнітного по-
ля ,a jZ  і гравітаційного поля jg , вимірюваних у межах 

УКЩ (рис.1-3). 
Рішення ОЗГ, отримане, методом простої ітерації за 

критерієм оптимізації поправок (В,В) з однією поправкою 
1-го порядку В у ітераційній формулі (1), з ефектом 
"спливаючої щільності". Це означає, що рішення ОЗГ для 
карти поля (рис. 1,а), яке близьке до реальних значень 
аномальної щільністі, після 72 ітерацій отримане тільки 
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для 1-го й 2-го шарів (потужністю по 200-300 м) 6-
шарової інтерпретаційної моделі (рис. 1, b, с). Як видно з 
вертикального розрізу (рис. 1,с) , третій шар має тільки 
половину заданої аномальної щільності, а інші три шари 
– майже рівну нулю при середньоквадратичній нев'язці 
поля 0.1075 мГал. У розрізі присутні тільки магматичні й 
метаморфізовані магматичні гірські породи з майже вер-
тикальними контактами, і їхнє виклинення на одній і тій 

же глибині малоймовірно. Крім того, на модельних полях 
ми маємо той же результат програмної машинної інтер-
претації поля. Після рішення ОЗГ методом (24) з додат-
ковими двома поправками 2-го й 3-го порядку (С и Е ), 
рішення ОЗГ отримано у вигляді вертикально-
шаруватого розрізу з деякими вигинами ізоліній щільнос-
ті (рис. 1,d), як це й повинне бути відповідно з геологіч-
ною будовою досліджуваного гірського масиву. 

 

a) b) 

c) d) 
Рис. 1. Карта гравітаційного поля, у мГал; результати розв'язку ОЗ методом простої ітерації: 

a) карта аномальної щільності 2-го шару 6-шарової моделі, тут і далі ізолінії – у г/см3;  
c) вертикальний розріз АЩ по профілю 11,5 (див. рис.1, b); d) результати розв'язку ОЗ методом з двома додатковими  

уточнюючими поправками вищого порядку: вертикальний розріз АЩ по профілю 11,5 
 
По додатковому рішенню з уточнюючими поправ-

ками у всіх шарах моделі ми маємо реальний розподіл 
щільності аномальних тіл (рис. 2), а в інших вертика-
льних розрізах (рис. 3) ми маємо вертикальну шарува-

тість гірських порід, ускладнену в багатьох місцях 
будь-якими вигинами ізоліній і відповідних їм контак-
тів, що відповідає реальній геологічній будові ділянки 
даних досліджень. 
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Рис. 2. Pезультати розв'язку ОЗ методом з двома додатковими уточнюючими поправками 

вищого порядку: карта АЩ 4-го шару 
 

 
Рис. 3. Pезультати розв'язку ОЗ методом з двома додатковими уточнюючими поправками вищого порядку: 

вертикальний розріз  АЩ по профілю 6.5 
 

Висновки з даного дослідження і перспективи 
подальших пошуків у даному напрямку. Запропоно-
вані ітераційні лінійні методи рішення обернених задач 
із використанням додаткових уточнюючих ітераційних 
поправок  вищого порядку дозволяють одержувати 

більш достовірні результати інтерпретації даних граві-
метрії й магнітометрії. 

Необхідно розробляти методи з іншими наборами 
умов оптимізації для порівняння їхньої ефективності із 
запропонованими й більш  ранніми методами. 
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INVERSE PROBLEMS WITH ITERATIVE HIGH-ORDER CORRECTIONS  
IN GRAVITY MEASUREMENTS AND MAGNETOMETRY 

The purpose of the paper is to develop iterative methods of solving inverse problems concerning gravity and magnetic fields with high-order 
corrections to obtain an accurate geological data interpretation of physical fields.  

The iterative method has been previously used to solve linear inverse problems for gravity and magnetic fields on the basis of combining several types 
of parameter corrections. However, gravity and magnetometry inverse problems give inaccurate geological data, with different optimization criteria yielding 
various solutions. Quite often they show essential differences in some of the areas of the geometrical model. There have been developed methods for 
solving gravity and magnetometry linear inverse problems under Gaussian error distribution,  which is connected with structural problems of detecting ore 
and hydrocarbon deposits. Other methods have been developed for obtaining the solution of gravity and  magnetometry linear inverse problems, using 
iterative corrections which  contain a complete set of divergences between the measured physical data and the theoretical calculations.  However, the non-
Gaussian errors, together with the shortcomings of the existing methods, show a low level of convergence of the iterative process and the true solution of 
the inverse problem. Moreover, they cause difficulties in reaching an ultimate solution, thus reducing the geological value of the inverse problem solution.  
New methods are suggested to raise the geological value of the inverse problem solutions with the help of high-order corrections to enhance the well-known 
iterative formulae and the formulae of optimization criteria. We differentiate between two types of corrections: field misfit ones and those concerning the 
geological medium density models. Each correction to a field misfit generates a one order higher clarifying correction as to the density correction, and vice 
versa. Either of these corrections, though, can be used either independently in any iterative formula or together with other corrections of the same type. The 
most accurate field modeling is ensured by using an iterative formula with three corrections (of the same type) of the first, second and third order and a 
formula with three separate corrections of the other type. Each optimization criterion for such a formula has a complete set of two orders higher corrections. 

Keywords: gravity, magnetic field, inverse problem, iterative method, iterative correction, optimization criterion, high-order correction 
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ОБРАТНЫЕ ЛИНЕЙНЫЕ ЗАДАЧИ ГРАВИМЕТРИИ И МАГНИТОМЕТРИИ  
С ИТЕРАЦИОННЫМИ ПОПРАВКАМИ ВЫСШЕГО ПОРЯДКА 

Цель работы состоит в создании методов решения обратных задач гравиметрии и магнитометрии с итерационными поправка-
ми более высоких порядков для того, чтобы получать корректные и содержательные геологические результаты интерпретации 
физических полей. 

Известны итерационные методы для решения линейных обратных задач гравиметрии на основе комбинации нескольких типов по-
правок к параметрам. Обратная задача гравиметрии и магнитометрии некорректна, в частности, потому что различные критерии 
оптимизации дают различные решения, и они могут быть существенно различными в некоторых областях интерпретационной моде-
ли. Известны методы, которые созданы для того, чтобы решить линейную обратную задачу гравиметрии и магнитометрии в услови-
ях гауссовского распределения ошибок, и это связано со структурной проблемой в поиске и разведке рудных тел и залежей углеводоро-
дов. Другие методы развиты для того, чтобы решать линейные обратные задачи гравиметрии и магнитометрии, используя итераци-
онные поправки, и они содержат весь набор невязок между измеренными и расчетными данными о физических полях. Но, негауссовские 
распределения ошибок измерения поля, вместе  с недостатками существующих методов решения обратных задач, дают низкий про-
цент сходимости итерационного процесса к истинному решению обратной задачи. И, кроме того, они создают трудности для доступа 
к окончательному решению, и, таким образом, они уменьшают геологическую содержательность решения обратной задачи. В работе 
представлены методы, которые увеличивают геологическую содержательность решений обратных задач с помощью итерационных 
поправок более высоких порядков к известным итерационным формулам и к формулам критериев оптимизации.  

При этом поправки разделяются на два направления: по направлению невязок поля и по направлению поправок к плотности бло-
ков модели геологического массива. Каждая поправка по направлению невязок поля формирует дополнительную уточняющую попра-
вку на один порядок выше по направлению поправок к плотности и наоборот. Но каждая из этих поправок может использоваться как 
самостоятельно в любой итерационной формуле, так и вместе с другими поправками только одного направления. Наиболее эффек-
тивно восстанавливают поле итерационные формулы с тремя поправками вместе первого, второго и третьего порядка одного 
направления и отдельно с тремя поправками другого направления вместе в одной итерационной формуле. Каждый критерий опти-
мизации для такой формулы имеет набор всех поправок на два порядка выше. 

Ключевые слова: гравиметрия, магнитометрия, обратная задача, итерационный метод, итерационная поправка, критерий оп-
тимизации поправки, порядок  поправки. 

 




