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СТАТИСТИЧНЕ МОДЕЛЮВАННЯ СЕЙСМІЧНОГО ШУМУ  
В БАГАТОВИМІРНІЙ ОБЛАСТІ ЗМІННИХ ДЛЯ ВИЗНАЧЕННЯ  

ЧАСТОТНИХ ХАРАКТЕРИСТИК ГЕОЛОГІЧНОГО СЕРЕДОВИЩА  
 

(Рекомендовано членом редакційної колегії д-ром геол. наук, с.н.с. М.І. Орлюком) 
Робота присвячена подальшій розробці теорії та методів статистичного моделювання випадкових процесів та полів 

на основі їх спектральних розкладів та модифікованих інтерполяційних рядів Котельникова-Шеннона, а також застосуван-
ню таких методів у задачах геофізичного моніторингу навколишнього середовища. Розглянуто задачу статистичного 
моделювання випадкових полів у багатовимірній області змінних (однорідних за часом та однорідних ізотропних за n інши-
ми змінними) при впровадженні у сейсмологічні дослідження для визначення частотних характеристик геологічного сере-
довища. Побудовано модель та сформульовано алгоритм чисельного моделювання реалізацій таких випадкових полів на 
основі модифікованих інтерполяційних розкладів Котельникова-Шеннона для генерування адекватних реалізацій шуму сей-
смограм. В статті вивчаються дійснозначні випадкові поля - однорідні за часом та однорідні ізотропні за просторовими 
змінними в багатовимірному просторі. Розглядається проблема апроксимації таких випадкових полів випадковими полями 
з обмеженим спектром. Для випадкових полів з обмеженим спектром встановлено аналог теореми Котельникова-Шеннона. 
Отримано оцінки середньоквадратичного наближення випадкових полів у просторі  моделлю, побудованою на основі спек-
трального розкладу та інтерполяційної формули Котельникова-Шеннона. Розроблено алгоритм статистичного моделю-
вання реалізацій гауссівських однорідних за часом та однорідних ізотропних за просторовими змінними в багатовимірному 
просторі випадкових полів з обмеженим спектром. Наведено теореми про оцінки середньоквадратичної апроксимації одно-
рідних за часом та однорідних ізотропних за n іншими змінними випадкових полів частковими сумами рядів спеціального 
вигляду, за допомогою яких сформульовано алгоритм чисельного моделювання реалізацій таких випадкових полів. Розгля-
нуто способи проведення спектрального аналізу згенерованих реалізацій шуму сейсмограм. Розроблено універсальні мето-
ди статистичного моделювання (методи Монте-Карло) багатопараметричних сейсмологічних даних, які дають можли-
вість вирішити проблеми генерування реалізацій шуму сейсмограм на площині та у тривимірному просторі на сітці необ-
хідної детальності та регулярності. 

Ключові слова: статистичне моделювання, спектральний аналіз, сейсмічний шум. 
 
Вступ. У статті розглянуто задачу статистичного 

моделювання реалізацій випадкових полів із обмеже-
ним спектром, які залежать від часу та задані у багато-
вимірній області змінних, для впровадження в сейсмо-
логічні дослідження з потребами визначення частотних 
характеристик геологічного середовища під будівель-
ними майданчиками. Побудовано модель та на основі 
оцінок похибок середньоквадратичного наближення 
таких випадкових полів цією моделлю сформульовано 
алгоритм для чисельного моделювання реалізацій по-
лів, адекватних реалізаціям шуму сейсмограм. 

Це є подальшим теоретичним узагальненням вирі-
шених у роботах [4], [5], [6], [7], [8], [9] задач стосовно 
збільшення розмірності простору змінних, в якому зосе-
реджена область визначення випадкових полів з обме-
женим спектром. Такий напрямок узагальнення важливо 
розвивати у зв'язку з необхідністю використовувати за-
пропоновану методику статистичного моделювання для 
випадкових полів з обмеженим спектром, які залежать 
від часу та задані у багатовимірній області змінних, у 
якій, крім просторових координат, добавляють величину 
розмірності один або кілька впливових параметрів. 

На практиці важливо використовувати реалізації 
статистичного моделювання таких випадкових полів 
для виділення сейсмічного шуму, залежного від одного 
або кількох суттєвих параметрів, від зовнішнього впли-
ву і для того, щоб отримати відповідні оцінки частотних 
характеристик геологічного середовища тривимірної 
області спостереження. Вказані оцінки необхідно вра-
ховувати при будівництві об'єктів різного призначення з 
метою забезпечення надійності споруд. 

Як видно із джерел інформації (наприклад, [12], [14], 
[15], [16], [18] та ін.), моделі та алгоритми чисельного 
моделювання випадкових процесів та полів на основі 
розкладів в ряди Фур'є, Фур'є-Бесселя та в ряди по 

синк-функціям (інтерполяційні формули Котельникова-
Шеннона) використовуються в геологічних науках порі-
вняно недавно. 

В статті розглянуто перспективи застосування побу-
дованих моделей та алгоритмів статистичного моделю-
вання випадкових полів на основі розкладів в модифі-
ковані інтерполяційні ряди Котельникова-Шеннона до 
задачі дослідження сейсмічного шуму, залежного від 
одного або кількох важливих параметрів, для потреб 
визначення частотних характеристик геологічного се-
редовища під будівельними майданчиками у одно-, 
дво- або тривимірній області спостереження. 

1. Модель та алгоритм 
При статистичному моделюванні спостережених 

шумів сейсмограм, які залежать від одного або кількох 
важливих параметрів, рекомендується використовувати 
метод, розроблений на основі спектрального розкладу 
випадкових полів [13] та модифікованої теореми Коте-
льникова-Шеннона для випадкових полів з обмеженим 
спектром, однорідних за часом та однорідних ізотроп-
них за багатовимірними координатами. 

Наведемо розроблену теорію, на основі якої сфор-
мульовано та доведено таку теорему. 

1.1. Однорідні за часом та однорідні ізотропні за 
просторовими змінними випадкові поля 

Розглядається  , , , nt x t R x R    – дійснозначне і непе-

рервне в середньому квадратичному однорідне за часом t 
та однорідне ізотропне за іншими змінними випадкове поле 

на .nR R  Для такого поля виконуються наступні умови: 

1)  , const, , nE t x t R x R       (припустимо, що 

 , 0E t x  ), 

2)      , , , , , , , ,nE t x s y B t s t s R x y R          
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де  ,B   – кореляційна функція, яка залежить від зсуву 

часу t s    та відстані між векторами x та y, тобто від ρ. 
Відомо з [13, с. 11], що кореляційна функція випад-

кового поля  ,t x  на nR R  має вигляд: 

   ( )

0

, ( , )i t s u
nB t s e Y du d



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       , (1) 

де  
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
   
 

 , а  ,du d  – прос-

торово-часовa спектральна міра на борелівських мно-
жинах  , (0, )    ,  n x  – функція Бесселя пер-

шого роду порядку . 
Також у [13, с. 11] наведено наступне твердження 

про спектральний розклад випадкового поля на nR R . 
Теорема 1. Неперервне в середньому квадратич-

ному однорідне за часом, однорідне ізотропне за ін-

шими змінними випадкове поле  ,t x  на nR R  можна 

подати у вигляді спектрального розкладу:  
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 
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 
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де 1 2( , , , , )n      – сферичні координати точки 

 1 2,  , , ,l
m nx S      – ортонормовані сферичні гармоніки 

степеня m, число    
 

3 !
, (2 2)

2 ! !

m n
h m n m n

n m

 
  


 – 

кількість лінійно незалежних сферичних гармонік степе-

ня n, константа 2 1 22 ,
2

n
n

n

n
c      

 
 а   l

mZ   – послідов-

ності дійснозначних ортогональних випадкових мір на 
підмножинах Бореля з множини  , [0, )     таких, 

що для будь-яких борелівських множин 1B  і 2B  з R R , 

 , 0,1, ;  , 1,2, , ,m p l q h m n     виконуються умови: 

       1 1 2 1 20,  l l q p q
m m p m lEZ B EZ B Z B B B     . (3) 

При цьому, спектральні міри ( ),  0,1,...,l
mZ B m   

1,2,... ( , ),l h m n  з ймовірністю одиниця однозначно ви-
ражаються співвідношенням: 

  
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   1 2 1 2, , , , , , , ,l
m n n nS t dm d dt              (4) 

 

де  nm   – міра Лебега на одиничній сфері nS  в nR , а 

також: 

   
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(m>0),  ,S z  – функція Ломмеля. 

Нехай  mC z  – многочлени Гегенбауера 2, c. 177, 

які визначаються генератрисою: 

   2 2

0

1 2 , | 1 |m
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m

zt t C z t t z z
 



      . 

Будемо використовувати наступне твердження з те-
орії сферичних функцій. 

Теорема додавання для сферичних гармонік: 
Нехай nS – одинична сфера в n – вимірному евклідово-

му просторі, 1 2( , , , )n     – сферичні координати то-

чки nx S . Для будь-яких двох точок 1x  та 2x  із nS  

     
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де cos  – «кутова» відстань між точками 1x  та 2x , 

а 
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Отримаємо з виразу (1) за допомогою формули до-
давання для функцій Бесселя та теореми додавання 

для сферичних гармонік (5), що кореляційна функція 
неперервного в середньому квадратичному однорідно-
го за часом, однорідного ізотропного за іншими змінни-

ми випадкового поля  ,t x  на nR R  допускає насту-

пний розклад: 
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де    ' ' ' '' '' ''
1 1 2 2 1 2, , , , , , ,n nx x           . 

Зауважимо, якщо розглянути «звуження» випадко-
вого поля  ,t x  на сферу радіуса ,r    то кореляцій-

на функція такого випадкового процесу має вигляд: 
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Звідси випливає, що спектральні коефіцієнти в цьо-
му випадку можна виразити через спектральну функцію 
таким чином:  
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 (8) 

Розглянемо розклад випадкового поля  ,t x  в ін-

шому, порівняно із (2), вигляді: 
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 0,1 , ;m    

 0,1, , .l h m n   

Із припущення, що  1 2, , , , , 0nE t r        то 

 , 0.l
mE t r   

Теорема 2: Якщо  1 -2, , , , ,nt r      – однорідне за 

часом, однорідне ізотропне за просторовими змінними 

1 2, ,..., ,nr     випадкове поле на ,nR R  то 

     , , , ,l k q k
m q m l mE t r s r b t s r       (10) 

де k
l  – символ Кронеккера.    ,mb t s r  – послідов-

ність додатньовизначених ядер на ,R R  які мають 

вигляд (8) та задовольняють умову: 
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А дисперсія випадкового поля  1 2, , , , ,nt r       ви-

значається через спектральні коефіцієнти наступ-
ним виразом: 
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Розглянемо часткові випадки, які вивчалися в робо-
тах [6], [7], [9]. При 2n   маємо    0,2 1,  ,2 2,h h m   

тоді дисперсія випадкового поля  , ,t r   визначається 

через спектральні коефіцієнти так: 
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При 3n   маємо  ,3 2 1h m m  , а дисперсія випа-

дкового поля  , , ,t r    визначається через спектральні 

коефіцієнти виразом: 
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Таким чином, наведений теоремі 2 розклад можна ви-
користати для статистичного моделювання гауссівських 
однорідних за часом, однорідних ізотропних за змінними 

1 2, ,..., ,nr     випадкових полів на nR R  із заданою спе-

ктральною функцією (або кореляційною функцією). 
1.2. Однорідні за часом випадкові поля з обме-

женим спектром 

Випадкове поле  1 2, , , , ,  nt r       на nR R  будемо 

називати полем з обмеженим спектром, якщо всі спект-
ральні міри зосереджені на деякому інтервалі 

 , , 0.       

Має місце наступне твердження, яке належить 
Ю.К.Бєляєву [3]. 

Лема 1. Якщо  t  – стаціонарний процес, спект-

ральна функція якого зосереджена на інтервалі 

 ,   і ,    а 
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■ 
Нехай  1 2, , , , ,  ,  ,  ,nt r t R r R          0, ,i    

1, , 2, [0,2 ]i n      – однорідне за часом, однорідне 

ізотропне за змінними 1 2, ,..., ,nr     випадкове поле на 
nR R  з обмеженим спектром, зосередженим на 

 ,   . Нехай також  – будь-яке число, що .    

Позначимо часткову суму: 
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Тоді має місце наступне твердження: 
Теорема 3. Справедлива наступна нерівність для 

середньоквадратичного наближення однорідного за ча-
сом, однорідного ізотропного за змінними 1 2, ,..., ,nr     

випадкового поля  1 2, , , , ,  ,nt r       на nR R  з обме-

женим спектром частковою сумою (15), а саме: 
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Наслідок. Для випадкового поля  1 2, , , , ,nt r       

на nR R  з обмеженим спектром має місце розклад 
Котельникова – Шеннона: 
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де ряд в правій частині (18) збігається в середньому 
квадратичному, при    . 

Розклад Котельникова – Шеннона (18) однорідних 
за часом, однорідних ізотропних за змінними 

1 2 , , , ,nr      випадкових полів на nR R  можна вико-

ристати для статистичного моделювання випадкових 
полів такого типу. При цьому важливо удосконалити 
оцінку середньоквадратичного наближення (16) до та-
кого вигляду, щоби можна було її використовувати у 
алгоритмі для чисельного моделювання реалізацій цих 
випадкових полів.У наступному пункті в теоремах 4-6 
наведено варіанти таких оцінок. 

1.3. Статистичне моделювання однорідних за 
часом, однорідних ізотропних за змінними 

1 2, , , ,nr     випадкових полів з обмеженим спект-

ром на  nR  R  
Наведений вище розклад Котельникова – Шеннона 

(18) однорідних за часом, однорідних ізотропних за 
змінними 1 2 , , , ,nr      випадкових полів з обмеженим 

спектром на nR R  можна використати для чисельного 
моделювання таких випадкових полів із заданими ста-
тистичними характеристиками.  

Для побудови моделі гауссівського однорідного за 
часом, однорідного ізотропного за змінними 

1 2 , , , ,nr      випадкового поля  1 2, , , , ,nt r       з 

обмеженим спектром, зосередженим на інтервалі 

 ,   , що розглядається, використаємо часткову суму 

розкладу (9) та часткову суму розкладу (18). 
Така модель має вигляд: 
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    
 – послідовність гауссівських випадкових 

процесів, які при , 0,1, ;  , , ; m p M k q N N     

  , 1, , ,l s h m n   задовольняють наступним умовам: 
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 (20) 

Причому,   ,mb t s r  − послідовність додатньовиз-

начених ядер на R R , які можна обчислити за прос-

торово-часовим спектром  ,du d   випадкового поля 

 1 2, , , , ,nt r       за виразом (17) та для яких викону-

ється така умова:  
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( , ) 0, .m
m

h m n b r




   

Для формулювання алгоритму чисельного моделю-
вання реалізацій гауссівського однорідного за часом, 
однорідного ізотропного за змінними 1 2, , , ,nr      ви-

падкового поля  1 2, , , , ,nt r       з обмеженим спект-

ром необхідно вказати оцінки середньоквадратичного 
наближення таких полів моделлю (19). Такі вирази на-
ведено в наступних теоремах. 

Теорема 4. Для середньоквадратичного набли-
ження однорідного за часом, однорідного ізотропного 
за змінними 1 2, , , ,nr      випадкового поля 

 1 2, , , , ,nt r       на nR R  з обмеженим спектром 

частковою сумою (19) має місце оцінка: 
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Враховуючи результати роботи [9], отримано інші оцін-
ки середньоквадратичного наближення випадкового поля 
моделлю (19) та доведено наступні теореми 5 та 6. 

Теорема 5. Середньоквадратичне наближення од-
норідного за часом, однорідного ізотропного за змін-
ними 1 2, , , ,nr      випадкового поля  1 2, , , , ,nt r       

на nR R  з обмеженим спектром частковою сумою 
(19) можна оцінити таким виразом: 
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де sup
u

u     – будь-яке фіксоване число,   – це 

інтервал  ,   ,  0,0B  – дисперсія (21), 3 n  – мо-

менти (23), 

 sup sup itu
f u tL e   , (25) 
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2 2
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1
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. (26) 

Теорема 6. Середньоквадратичне наближення од-
норідного за часом, однорідного ізотропного за змін-
ними 1 2, , , ,nr      випадкового поля  1 2, , , , ,nt r       

на nR R  з обмеженим спектром частковою сумою 
(18) допускає наступну оцінку: 
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де  0,0B  – дисперсія (22), 3 n  – моменти (23). 

Далі сформульовано алгоритм статистичного моде-
лювання реалізацій гауссівських однорідних за часом 
та однорідних ізотропних за просторовими змінними 
випадкових полів  1 2, , , , ,nt r       з обмеженим за 

часом  спектром, а саме: 
Алгоритм 

1. Вибираємо, відповідно до необхідної точності 
ε>0, натуральні числа N та М для моделі (19) за допо-
могою однієї з наступних нерівностей: 
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   (30) 

де r – полярний радіус,   – будь-яке фіксоване число, 

яке задовольняє умові: sup ,
u

u       0,0B  – дис-

персія (22), 3 n  – моменти (23),функції  t  – (14), 

 0L t  – (26) та fL  – (25). 

2. Моделюємо послідовності гауссівських випадко-
вих процесів (r – фіксований полярний радіус) 

 , , 0,1, ;  , ; 1, , , ,l
m

k
r m M k N N l h m n

         
 які за-

довольняютьумовам (20). 
3. Обчислюємо вираз (18) у заданій точці 

 1 2, , , , , [ , ] , n n n
nt r Т Т А А R         підставляючи в 

нього обчислені за попередніми пунктами 1 та 2 вели-
чини N та М і послідовності значень гауссівських випад-
кових величин. 

4. Перевіряємо згенеровану за п. 3 реалізацію випа-
дкового поля  1 2, , , , ,nt r       у точках сітки в області 

спостереження на адекватність даним цього випадково-
го поля шляхом порівняння відповідних статистичних 
характеристик. 

2. Практичне використання моделі поля  
із просторово-часовою кореляційною функцією 
Для практичного використання розробленого алго-

ритму та моделі (18) чисельного моделювання реаліза-
цій дійснозначних однорідних за часом t, однорідних 

ізотропних за змінними 1 2, , , ,nr      на nR R  випад-

кових полів  1 2, , , , ,nt r      , що мають обмежений 

спектр, та просторово-часову кореляційну функцію 

 ,zB   , можна скористатись різними підходами [10]. 

При цьому потрібно врахувати, що моделі просторово-
часової кореляційної структури підрозділяють на два 
види: перший, що враховує розподіл на просторову та 
часову компоненти та другий – такий, що цього розпо-
ділу не передбачає. В роботі [7] наведено приклад за-
стосування та моделі, які мають на даний час найбіль-
ше поширення у застосуванні, а саме: метрична мо-
дель, лінійна модель, модель добутку просторово-
часової коваріації, модель добутку-суми. 

Також можна використовувати інший підхід до мо-
делювання просторово-часової кореляції, який дозво-
ляє отримати класи нерозділених просторово-часових 
стаціонарних коваріаційних функцій. Цей підхід базу-
ється на використанні частотного представлення кова-
ріаційної функції. 

Приклад практичного використання в сейсмології 
розробленого алгоритму та моделі чисельного моде-
лювання реалізацій дійснозначних однорідних за часом 
t, однорідних ізотропних за двовимірними змінними ви-
падкових полів з обмеженим спектром із просторово-
часовою кореляційною функцією  ,zB    за методом, 

який розділяє просторову та часову компоненти за пра-

вилом добутку-суми розглянуто у роботі [6]. 
Змодельовано масиви значень реалізацій випадко-

вого процесу  , ,t    ( ,   – фіксовані), що імітують 

сейсмограми шуму для кожного пункту спостереження 
на кожній із компонент: EW, NS, та Z. Вони дають мож-
ливість отримати важливі відомості про коливальні 
властивості ґрунту на території будівельних і експлуа-
таційних майданчиків. Знання цих властивостей необ-
хідні для сейсмостійкого проектування нових будинків і 
споруд, та забезпечення сейсмостійкості уже існуючих, 
з метою уникнення небезпечних резонансних ефектів. В 
модельних сейсмограмах шуму методом статистичного 
усереднення відфільтровані випадкові збурення, які 
виникли внаслідок дії випадкових зовнішніх чинників. До 
таких збурень належать, наприклад, коливання, викли-
кані рухом потяга або важкого автомобіля тощо. Ре-
зультати змодельованих масивів значень сейсмограм 
шуму статистичними методами перевірено на адекват-
ність реальним сейсмограмам із пунктів спостережень. 

Методом статистичного моделювання випадкових 
полів можна також вирішити важливу проблему моделю-
вання імітованої реалізації вихідної сейсмограми шуму 
для уявного пункту спостереження, розміщеного між ре-
альними пунктами спостереження, або на невеликій від-
стані від них. При цьому всі параметри, крім часу t, в 

 1 2, , , , ,nt r       фіксуються і проводиться спектраль-

ний аналіз реалізацій випадкового процесу. Амплітудний 
та фазовий спектри такої реалізації шуму можуть вико-
ристовуватися для отримання частотних характеристик 
геологічного середовища під будівельними майданчика-
ми, які описують його здатність, змінювати (збільшувати 
або зменшувати) амплітуди сейсмічних коливань при 
землетрусах [1, 8]. Чисельне моделювання частотних 
характеристик ґрунтової товщі, в ряді випадків, може 
суттєво зменшити вартість робіт з сейсмічного мікрора-
йонування будівельних майданчиків за рахунок скоро-
чення кількості пунктів інструментальних спостережень 
за землетрусами, вибухами і мікросейсмами. 

3. Спектральний аналіз згенерованого шуму 
Оцінки частотних характеристик геологічного сере-

довища багатовимірної області спостереження (напри-
клад, під будівельними майданчиками) можна отримати 
шляхом розрахунку та побудови амплітудного та фазо-
вого спектрів шумів в сейсмограмах пунктів спостере-
жень у такій області, вважаючи всі аргументи, крім часу, 
фіксованими [4]. Розрахунки амплітудного та фазового 
спектрів можна проводити прямим способом [1, с. 179], 
тобто методом періодограм. Далі, на основі цих резуль-
татів потрібно будувати спектральне відношення земної 
кори, яке не залежить від спектра падаючих сейсмічних 
хвиль, а визначається виключно будовою геологічного 
середовища під досліджуваним пунктом. 

Спектральні методи, які використовують частоту в 
якості незалежного параметра, дозволяють отримати 
інформацію про будову і фільтруючі властивості верх-
ньої частини земної кори, оскільки будь-яке середови-
ще є фільтром, який, завдяки резонансним ефектам та 
реверберації, сприяє збільшенню амплітуди коливань 
на одних частотах і зменшує амплітуди – на інших [1, с. 
270]. Вміння моделювати ефекти, що залежать від ам-
плітудних і фазових частотних характеристик геологіч-
ного середовища, яке знаходиться під різними пункта-
ми будівельних і експлуатаційних майданчиків, дозво-
ляє вивчати особливості геологічних розрізів і передба-
чати місця, в яких можливе значне зростання інтенсив-
ності сейсмічних струшувань, пов‘язане з резонансними 
ефектами і інтерференційними вузлами поля коливань. 
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Серед багатьох способів виключення впливу різно-
манітних факторів, від яких залежить форма спектра 
сейсмічних коливань при землетрусах, вибухах і мікро-
сейсмах, крім обумовлених впливом лише верхньої 
частини розрізу земної кори, слід відзначити спосіб, 
який базується на використанні відношень вертикальної 

компоненти спектрів  ZS   до горизонтальної  NS  . 

Сектри необхідно обчислювати для однієї і тієї ж хвилі. 
Таке відношення називається спектральним відношен-
ням земної кори  T  . 

     Z NS S T     

Відношення  T   не залежить від спектра падаю-

чих сейсмічних хвиль, а визначається виключно будо-
вою геологічного середовища під досліджуваним пунк-
том. На рисунках 1,а та 1,б наведено графіки амплітуд-

них спектрів  S   вихідної змодельованої реалізації 

шуму для уявного пункту спостереження на компонен-
тах коливань Z та NS відповідно, а на рисунку 1,в – 
графік передавального відношення  T   земної кори, 

побудовані за відношенням амплітудного згладженого 
спектру сейсмограми змодельованої реалізації шуму на 
компоненті коливань Z- до аналогічного спектру на ком-
поненті коливань NS для такого пункту спостереження. 
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Рис. 1. Графіки амплітудних спектрів |S(ω)| масиву змодельваної реалізації шуму для уявного пункту спостереження  

на компоненті (а) Z та (б) NS; в - графік передавального відношення T(ω) амплітудних згладжених спектрів  
змодельованої реалізації шуму для уявного пункту спостереження 

 
Інтерпретація передавального відношення земної кори 

для даних спостережень проводиться шляхом їх порів-
няння із теоретичними відношеннями, які обчислюються 
для відомих моделей верхньої частини розрізу. 

Необхідно відзначити, що одним із важливих ін-
струментів для оцінки впливу верхньої частини геологі-
чного розрізу на сейсмічні рухи є широко відомий метод 
Накамури H/V або QTS (Quasi-TransferSpectra), розроб-
лений японським вченим Yutaka Nakamura. Метод ви-
користовує записи мікросейсмічного шуму, зареєстро-
вані на горизонтальних і вертикальних компонентах 
коливань з використанням свердловинних досліджень, 
для побудови квазі-передавального спектру ґрунтової 
товщі. Метод Накамури дозволяє за відношенням спек-
трів горизонтальної та вертикальної компонент природ-
них шумів визначити власні резонансні частоти ґрунто-
вої товщі. Максимальні значення відношення спектрів 
горизонтальної до вертикальної компонент мікросейсми 
пояснюються багатократним відбиттям SH хвилі. 

Наведений на рисунку 1, в графік  T   – передаваль-

ного відношення амплітудних згладжених спектрів для 
уявного пункту спостереження може використовуватися 
для визначення приросту сейсмічної бальності на різних 
ділянках будівельного майданчика, відносно еталонного. 

Висновки. Розроблено модель та алгоритм статис-
тичного моделювання однорідних за часом, однорідних 
ізотропних за багатовимірними змінними випадкових 
полів з обмеженим спектром. Такі результати є продо-
вженням  напрямку досліджень, започаткованим у ро-
ботах [4], [5], [6], [7], [8] та [9], присвячених методам 
моделювання і генеруванню реалізацій шуму сейсмо-
грам плоскої області спостереження [5] та сейсмограм 
тривимірної області спостереження [6] і є важливим 

доповненням до методів Монте-Карло, які використо-
вуються в геології, наприклад, наведених в [14]. 
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STATISTICAL SIMULATION OF SEISMIC NOISE IN A MULTIDIMENSIONAL AREA  
IN DETERMINING FREQUENCY CHARACTERISTICS OF GEOLOGICAL MEDIA 

The paper deals with the theory and methods of statistical simulation of random processes and fields based on their spectral decomposition 
and Kotelnikov-Shennon modified interpolation sums, as well as applying these methods for environmental geophysical monitoring. Statistical 
simulation of multivariate random fields (those homogeneous in time and homogeneous isotropic in n other variables) are considered to be 
essential for seismological research into frequency characteristics of geological media. A statistical model and a numerical algorithm of simulating 
random fields are built on the basis of Kotelnikov-Shennon modified interpolation decomposition to generate adequate realizations of seismic 

noise. The paper examines real-valued random fields  , , , nt x t R x R   , those homogeneous in time and homogeneous isotropic ones relative 

to spatial variables in the multidimensional space. It also considers approximation of random fields by the random fields with a bounded spectrum. 
There is made an analogue of the Kotelnikov–Shannon theorem for random fields with a bounded spectrum. Besides, there are obtained estimates 

of the mean-square approximation of random fields in the space nR R by a model constructed with the help of spectral decomposition and 
Kotelnikov–Shannon interpolation formula. The paper provides a mechanism for statistical simulation of Gaussian random fields with a bounded 
spectrum; namely, those homogeneous in time and homogeneous isotropic ones relative to spatial variables in the multidimensional space. Proved 
have been the theorems of the mean-square approximation of random fields (those homogeneous in time and homogeneous isotropic ones relative 
to n- other variables) by special partial sums. A simulation method was used to formulate an algorithm of numerical simulation by means of these 
theorems. There are also considered ways to carry out spectral analysis of generated seismic noise realizations. Finally, there have been developed 
universal methods of statistical simulation (Monte Carlo methods) of multi-parameter seismology data for generating seismic noise on 2D and 3D 
grids of the required detail and regularity. 

Key words: statistical simulation, spectral  analyzes, seismic noise. 
 

З. Выжва, д-р физ.-мат. наук, доц., zoya_vyzhva@ukr.net 
К. Федоренко, асп., slims_mentol@mail.ru 
А. Выжва, асп., motomustanger@ukr.net 
Киевский национальный университет имени Тараса Шевченко 
Геологический факультет, ул. Васильковская, 90, г. Киев, 03022, Украина 

 

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЕЙСМИЧЕСКОГО ШУМА В МНОГОМЕРНОЙ ОБЛАСТИ ПЕРЕМЕННЫХ 
ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ГЕОЛОГИЧЕСКОЙ СРЕДЫ 

Работа посвящена разработке теории и методологии статистического моделирования случайных процессов и полей на основе 
их спектральных разложений и модифицированных интерполяционных рядов Котельникова-Шеннона, а также применению таких 
методов в задачах геофизического мониторинга окружающей среды. Рассмотрена задача статистического моделирования случай-
ных полей в многомерной области переменных (однородных по времени и однородных изотропных по n другими переменным) при 
внедрении в сейсмологические исследования для определения частотных характеристик геологической среды. Построена модель и 
сформулирован алгоритм численного моделирования реализаций таких случайных полей на основании модифицированных интерпо-
ляционных разложений Котельникова-Шеннона для генерирования адекватных реализаций шума сейсмограмм. В статье изучаются 
действительнозначные случайные поля - однородные по времени и однородные изотропные по пространственным переменным в 
многомерном пространстве. Рассматривается проблема аппроксимации таких случайных полей случайными полями с ограниченным 
спектром. Для случайных полей полями с ограниченным спектром установлено аналог теоремы Котельникова-Шеннона. Получены 
оценки среднеквадратического приближения случайных полей в пространстве моделью, которая построена на основе спектрального 
разложения и интерполяционной формулы Котельникова-Шеннона. Разработан алгоритм статистического моделирования реализа-
ций гауссовских однородных по времени и однородных изотропных по пространственным переменным случайных полей с ограничен-
ным спектром. Доказаны теоремы об оценке среднеквадратической аппроксимации однородных по времени и однородных изотроп-
ных по n другим переменным случайных полей частными суммами рядов специального вида, при помощи которой сформулирован 
алгоритм численного моделирования реализаций таких случайных полей. Рассмотрены способы проведения спектрального анализа 
сгенерированных реализаций шума сейсмограмм. Разработаны универсальные методы статистического моделирования (методы 
Монте-Карло) многопараметрических сейсмологичеких данных, которые дают возможность решить проблемы генерирования реали-
заций шума сейсмограм на плоскости и в трёхмерном пространстве на сетке необходимой детальности и регулярности. 

Ключевые слова: статистическое моделирование, спектральный анализ, сейсмический шум. 
 
 




