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(Рекомендовано членом редакційної колегії д-ром фіз.-мат. наук, проф. Б.П. Масловим) 
Мета роботи – на теоретичних прикладах розробити методику розпізнавання випадків постійної густини або її 

зростання чи спаду з глибиною та у кожному випадку знайти емпіричні коефіцієнтні функції для виправлення впливу 
глибини до блоку на величину основної ітераційної поправки. 

Обернені задачі гравіметрії некоректні. Частково некоректність їхніх розв'язків зменшують вибором розмірів сітко-
во-блокової інтерпретаційної моделі геологічного середовища, рівних розмірам карти поля сили тяжіння і отримують 
стійкі розв'язки. Якщо глибини до всіх шарів і густина частини блоків моделі відомі, то для другої частини блоків роз-
в'язують обернену лінійну задачу гравіметрії (ОЛЗГ) у класі однозначності розв'язку. Такі задачі вирішують для струк-
турної геології, в основному, в нафтогазових районах, де є багато свердловин і вся площа карти поля покрита сейсміч-
ними дослідженнями геологічних структур. У рудних районах сейсмічні дослідження майже не виконуються, а тому фо-
рма геологічних структур невідома. Свердловин також небагато, а на кристалічних щитах вони не завжди досягають 
границі осадового комплексу з кристалічними породами або проходять по них перші метри чи перші десятки метрів. У 
таких умовах вузьким класом однозначності може бути тільки одношарова модель з блоками у формі напівнескінчених 
вертикальних призм. Результати розв'язку оберненої задачі для такої моделі далекі від реального розподілу густини в 
геологічному масиві. З переходом на більш детальну модель, яка складається із обмежених по вертикалі блоків, згрупо-
ваних у горизонтальні шари, у розв'язках обернених задач ітераційними методами на теоретичних і реальних полях ми 
спостерігаємо зменшення густини в більш глибоких блоках, хоча реально їхня густина з глибиною не змінюється. Роз-
роблено метод отримання стійкого та змістовного розв'язку ОЛЗГ по додатковому рішенню з уточнюючими ітерацій-
ними поправкам. Але він придатний тільки у випадках постійної густини високоаномальних тіл у вертикальному напря-
мку. Для випадків зростання чи спаду густини з глибиною в цій роботі в основну ітераційну поправку введені коефіцієн-
тні функції для коригування впливу на неї глибини розміщення блоку. Вид функцій залежить від напряму зміни густини 
порід. Остаточний розподіл густини, як правило, досягається використанням методів оптимізації з уточнюючими 
поправками більш високих порядків.  

Ключові слова: гравіметрія, обернена задача, ітераційний метод, ітераційна поправка, критерій оптимізації, 
вплив глибини на поправку. 

 
Постановка проблеми в загальному вигляді та її 

зв'язок з важливими науковими або практичними 
задачами. Обернені задачі (ОЗ) гравіметрії некоректні. 
Частково некоректність їхніх розв'язків зменшують вибо-
ром розмірів сітково-блокової інтерпретаційної моделі 
(СБІМ) геологічного середовища, що дорівнюють 
розмірам карти поля сили тяжіння (ПСТ) і отримують 
стійкі розв'язки ОЗ [1, 2, 8-10]. Якщо глибини до всіх 
шарів і густина частини блоків моделі відомі, то для 
другої частини блоків розв'язують обернену лінійну зада-
чу (ОЛЗ) гравіметрії у класі однозначності розв'язку [3, 
11]. Якщо ж приблизно відома густина усіх блоків або 
скачки густини на відомих границях шарів моделі, то ве-
дуть пошуки зон розущільнення гірських порід (ГП) ряду 
блоків у вузькому класі однозначності розв'язку ОЛЗ [1, 
6]. Іноді при тих же умовах вирішують обернену нелінійну 
задачу (ОНЗ) гравіметрії для пошуку локальної зміни 
форми однієї границі, також у вузькому класі 
однозначності розв'язку ОНЗ [6, 7, 12]. Такі задачі 
вирішують для структурної геології, в основному, в наф-
тогазових районах, де є багато свердловин, і вся площа 
карти ПСТ покрита сейсмічними дослідженнями 
геологічних структур. У рудних районах сейсмічні 
дослідження майже не виконуються, а тому форма 
геологічних структур невідома. Свердловин також неба-
гато, а на кристалічних щитах вони використовуються 
тільки для пошуків води, не досягаючи границі осадового 
комплексу з кристалічними ГП, або проходять по них 
перші метри чи перші десятки метрів. У таких умовах 
вузьким класом однозначності може бути тільки одноша-
рова СБІМ з блоками у формі напівнескінченних верти-
кальних призм з прямокутним чи трикутним горизонталь-

ним перерізом [1]. По полю сили тяжіння при відомій гус-
тині верхнього шару кристалічних ГП можна приблизно 
знайти глибини до його нижньої границі та густина 
напівнескінченних вертикальних блоків-призм другого 
шару, а потім виділити поле 1-го шару та розв'язувати у 
вузькому класі однозначності ОЛЗ для одношарової 
СБІМ відносно густини кожного блоку чи ОНЗ з уточнен-
ням глибин до верхньої границі кристалічних ГП [3]. 
Особливе місце займають розв'язки ОЗ ітераційними 
оптимізаційними методами [2–5], оскільки вони, на 
відміну від прямих методів, не потребують спеціальних, 
багатоємних та тривалих методів розв'язку системи 
лінійних алгебраїчних рівнянь (СЛАР). Крім того, не всі 
схеми та умови оптимізації можна реалізувати прямими 
методами. Однак, ітераційні методи також мають 
недоліки. При розширенні області розв'язку ОЛЗ на 
багатошарові моделі не при всіх початкових умовах (ПУ) 
отримують реальні значення густин у блоках ГП, тобто 
виникає порушення фізичної чи геологічної змістовності 
отриманого розв'язку ОЛЗ. Експериментами, навіть на 
двохшарових моделях, установлено суттєве зменшення 
густини блоків нижнього шару. Для 6-8-шарових моделей 
з постійною густиною отримана у розв'язку ОЛЗ густина 
зменшується майже в 2 рази. При цьому можливо, що 
розв'язки сумісної оберненої лінійно-нелінійної задачі з 
одночасним визначенням густин блоків та глибин [3] до 
них не будуть відповідати дійсності. 

Аналіз останніх досягнень і публікацій, у яких 
закладене рішення даної проблеми й на які спира-
ється автор. Останніми дослідженнями [4, 5] встанов-
лено, що використанням уточнюючих ітераційних по-
правок двохетапною методикою можна вийти на зміс-
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товний та близький до реального розподілу густини 
розв'язок ОЛЗ. При цьому після розв'язку ОЛЗ методом 
простої ітерації (ПІ), отриману густина блоків викорис-
товують як ПУ на другому етапі методом з уточнюючи-
ми ітераційними поправками вищого порядку в ітера-
ційній формулі та у критерії оптимізації. Але використо-
вують тільки густина блоків одного шару, а всім блокам 
інших шарів, що знаходяться на одній вертикалі, припи-
сують одне і те саме значення густини у ПУ. Як прави-
ло, на 2-му етапі отримують змістовний розв'язок, бли-
зький до реального розподілу густини у геологічному 
масиві. Але така двохетапна методика розв'язання ОЛЗ 
придатна тільки в тому випадку, коли аномальні тіла 
(АТ) мають постійну по вертикалі густина, що в бага-
тьох випадках так і буває. Але у випадках, коли АТ з 
глибиною виклинюються, або їхня густина зростає чи 
спадає з глибиною, така методика не дає реального 
розв'язання ОЛЗ. Доведено, що, більше того, всі ці ме-
тодичні заходи й теоретичні розробки не завжди не 
тільки для реальних, а навіть і для теоретичних полів, 
забезпечують виділення у вертикальному напрямку 
блоків із підвищеною чи зниженою густиною. Все це є 
недоліками існуючих методів розв'язку ОЛЗГ. 

Виділення невирішених раніше частин загальної 
проблеми, яким присвячена дана стаття. Викорис-
танню розробленої методики заважає еквівалентність 
розв'язків ОЛЗ із спадом отриманої густини, незалежно 
від того, зростає вона реально з глибиною в АТ, спадає 
чи залишається постійною. Якщо на теоретичних при-
кладах встановити можливість розпізнавання випадків 
постійної густини або її зростання чи спаду з глибиною, 
то у кожному випадку можна знайти емпіричні коефіціє-
нтні функції для виправлення впливу глибини до блока 
на величину основної ітераційної поправки. Якщо в те-
оретичному прикладі ми отримаємо правильний розв'я-
зок ОЛЗГ, то можна сподіватися, що набором тих же 
ітераційних методів і методичних прийомів для реаль-
ного поля ми також отримаємо геологічно змістовний 
розподіл густини в АТ. 

Формулювання цілей статті. Мета цієї роботи – на 
теоретичних прикладах розробити методику розпізна-
вання випадків постійної густини або її зростання чи 
спаду з глибиною та для кожного випадку знайти емпі-
ричні коефіцієнтні функції для виправлення впливу гли-
бини до блока на величину основної ітераційної попра-
вки. Це дасть можливість за аналогією з теоретичними 
прикладами отримати правильний розв'язок ОЛЗГ на-
бором тих же ітераційних методів і методичних прийо-
мів інтерпретації реального поля. 

Виклад основного матеріалу дослідження з по-
вним обґрунтуванням отриманих наукових резуль-
татів. Спочатку приведемо теоретичний апарат, за до-
помогою якого будемо виконувати необхідні досліджен-
ня. Найбільш ефективним є сильно збіжний ітераційний 
метод розв'язку оберненої задачі – метод ПІ з критері-
єм оптимізації мінімуму суми квадратів ітераційних по-
правок до густини (В, В), в якому ітераційні формули 
(ІФ) густини гірських порід, нев'язки поля та поправки 
до густини для кожної наступної (n+1-ої) ітерації виво-
дяться послідовно одна з іншої і мають такий вигляд: 

1 1 ,1i,n+ i,n n+ i ,nσ = σ τ B ;  (1) 

1 1 1,j,n+ j,n n+ j, nr = r τ Z ;  (2) 

,1 1 1 ,1i ,n+ i,1,n n+ i ,nB = B τ C ;  (3) 

де 1n+τ , ,1i ,nB  і т.д. – ітераційний коефіцієнт й ітераційні 

поправки, що обчислюються після кожної попередньої 
n -ої ітерації з урахуванням наближеного значення гус-
тини 1,i,nσ (i = M)  кожного i-того блоку сіткової моделі, 

отриманого на тій же ітерації ( i,оσ  – вектор ПУ або ну-

льових значень для густини ГП на першій ітерації); 

,1 /i ,n i,1,n i, j i i j,nB = M = (a λ , f r )   (4) 

 поправка 1-го порядку до густини; 
1 2 ;  0 i i ij j j ij ij

j i

f = ;λ = a λ λ = a ; a > ;  (5) 

   2 ;     i ij j j ij ij
j i

λ = a λ λ = a ; a R(i, j);  (6) 

,1 /i ,n i,2,n i, j i j,1,nС = M = (a λ ,Z ); ,1j ,n j,1,n i, j j,nZ = M = (a ,r );
 

i,m,n j,m,nM ,M  – поправки першого й більш високих по-

рядків 1,m = p , одержані послідовно із формул, почина-

ючи з (1) при p=1; i, ja  – елементи матриці розв'язків 

прямої задачі гравіметрії для прямокутного паралелепі-
педа при одиничній аномальній густині i,nσ  гірських 

порід, що представляють собою елементи зв'язку в си-
стемі лінійних алгебраїчних рівнянь між кожною j-тою 
точкою карти вимірюваного поля 1,jg (j = N)  й аномаль-

ною густиною кожного i-того блоку сіткової моделі; 
j,n i, j i,n jr = (a ,σ ) g  (7) 

 нев'язка поля на попередній ітерації; 
Помножимо скалярно (1) на i, ja  та віднімемо із лівої 

й правої частин jg , і з урахуванням (7) одержимо ІФ 

для нев'язки поля (2) на наступній ітерації. Аналогічно, 
помножимо скалярно (2) на /i, j ia λ  і отримаємо ІФ (3) 

для поправки 1-го порядку до поправки ,1i ,nB  або 2-го 

порядку до густини i,nσ  на наступній ітерації;  

,1 1 1 1,j ,n+ j,1,n n+ j, nZ = Z τ D ;   (8) 

де 

1,j, n ij i,1,nD = (a ,C )    (9) 

Аналогічно отримаємо одна за одною ітераційні фо-
рмули для поправок більш високого порядку 

,1 1 1 ,1i ,n+ i,1,n n+ i ,nС =С τ E ;            (10) 

де 

1, /i, n ij i j,1,nE = (a λ ,D )              (11) 

1 1 1,j,n+ j,n n+ j, nD = D τ F ;        (12) 

де  

1,j, n ij i,1,nF = (a ,E )                           (13) 

,1 1 1 ,1i ,n+ i,1,n n+ i ,nE = E τ K ;  (14) 

де 

1, /i, n ij i j,1,nK = (a λ ,F )               (15) 

Набір поправок можна продовжити, утворюючи пари 
поправок ( ,1j ,nP  , ,1i ,nS ) і т.д. 

Складемо критерії оптимізації 
2

1 min;r j,n+
j

F = r = 2 min;M i,m,n
i

F = M =   (16) 

На практиці зручніше користуватися позначеннями по-
правок, наведеними в (8)-(15), де літери B, C, E, K, Sі, ана-
логічно, Z, D, F, P, V відповідають номерам порядку m = 1, 
2, 3, 4, 5 у загальному позначенні i,m,n j,m,nM ,M  і т.д. На-

ведемо кілька прикладів оптимізації розв'язання оберне-
них задач, у яких для простоти частину індексів опустимо: 

Метод ПІ для ІФ (1) з повною абревіатурою (sB, BC) 
або В2, а також (ВС): 

2
1, 1 min; n+(B,B)= (B τ C) =          (17) 

1, 1 /n+ i,n i,n i,n i,nτ = (В ,С ) (С ,С );            (18) 
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Метод ПІ для ІФ (1), але з критерієм оптимізації (КО) по 
поправці вищого порядку Е та з абревіатурою (sB, EK): 

2
2, 1 min; n+(E,E)= (E τ K) =   (19) 

2, 1 /n+ i,n i,n i,n i,nτ = (E ,K ) (K ,K );   (20) 

Метод ітерацій для ІФ з уточнюючими поправками 
В, С, Е, з КО по основній поправці В та з абревіатурою 
(sBСЕ, ВСEK): 

1 1, 1 ,1 i,n+ i,n n+ i ,nσ = σ τ B 2, 1 ,1 3, 1 ,1n+ i ,n n+ i ,nτ С τ Е ;  (21) 

1, 1 n+(B,B)= (B τ C 2
2, 1 3, 1 min;n+ n+τ E τ K) =  (22) 

Метод ітерацій для ІФ з уточнюючими поправками 
С, Е, K, з КО по основній поправці C та з абревіатурою 
(sСЕK, СEKS): 

1 1, 1 ,1 i,n+ i,n n+ i ,nσ = σ τ C 2, 1 ,1 3, 1 ,1n+ i ,n n+ i ,nτ E τ K ;  (23) 

1, 1 n+(C,C)= (C τ E 2
2, 1 3, 1 minn+ n+τ K τ S) = . (24) 

Метод ітерацій для ітераційної формули (21) з уточ-
нюючими поправками В, С, Е, з КО по невязці поля (7) 
та з абревіатурою (sBСЕ, RZFG): 

1 1, 1 ,1 j,n+ j,n+1 j,n n+ j ,n(r ,r )= (r τ Z  

2
2, 1 ,1 3, 1 ,1 min; n+ j ,n n+ j ,nτ F τ G ) =  (25) 

Методи з критеріями (19)-(25), за аналогією з мето-
дом В2, мають такі скорочені абревіатури: EK, BCEК, 
CEKS, RZFG. Програмна реалізація методів (17)-(25) та 
інших виконана при різних m для гравітаційних і магніт-
них полів. Далі розглянемо приклади розв'язку ОЛЗ 
гравіметрії на теоретичних прикладах з теоретичними 
моделями геологічного середовища для вирішення по-
ставленої мети. 

 

 
Рис. 1. Карта теоретичного поля сили тяжіння над двома АТ зі спадом густини з глибинлю, в мГал 

 
Візьмемо 6-шарову сітково-блокову інтерпретіційну 

модель (СБІМ), у якої два локалізовані АТ вертикально 
витягнуті і мають змінну аномальну густину (АЩ) по 
вертикалі. У першому шарі АЩ дорівнює 0,5 г/см3, у 
другому – 0,4 г/см3, у третьому – 0,3 г/см3, а далі – 0,25; 
0,20 і, нарешті, 0,10 г/см3 у 6-му шарі. Потужність шарів 
65-80 м. Виконаємо розв'язок ОЛЗ для теоретичного 
поля сили тяжіння (ПСТ, рис. 1) над описаною моделлю 
методом ПІ з КО по мінімуму суми квадратів поправок 
(МСКП) до густини (метод В2 або з більш детальною 
абревіатурою – метод SB, BC). Як бачимо (рис. 2), в 
обох АТ у розв'язку ОЛЗ після 30 ітерацій отримано 
спад густини з глибиною, але значно менший: від 0,46 
до 0,22 г/см3. Збільшення кількості ітерацій ще на 50 не 
дало покращання розв'язку (рисунок не наведено). Тоді 
було виконано ще 50 ітерацій, але з вирівнюванням ПУ 
по АЩ 2-го шару з попереднього розв'язку ОЛЗ. На 
цьому етапі густина по глибині не вирівнялася, хоча її 
розмах трохи зменшився: з 0,42 до 0,26 г/см3 при збе-
реженні АЩ у 2-3-му шарах на рівні попереднього роз-
в'язку. Це дало право зробити висновок про реальний 
спад АЩ з глибиною. Тоді було виконано наступні 50 
ітерацій методом ПІ, але з уточненою основною попра-
вкою В за обернену глибину до кожного шару (рис. 3). У 
цьому випадку ми отримали значно більший спад гус-
тини, ніж було потрібно – від 0,74 до 0,06 г/см3. Після 
додаткових 50 ітерацій з уточненою основною поправ-
кою В за корінь квадратний із оберненої глибини до 
кожного шару спад зменшився від 0,58 до 0,12 г/см3 

(рис. 4). Такий результат можна вважати задовільним, 
оскільки тенденція зміни густини встановлена. Зробимо 
розв'язок ОЛЗ ще на 20 ітераціях методом з уточнюю-
чими ітераційними поправками вищого порядку (RZFG), 
але результат не змінився. Продовжимо розв'язок ОЛЗ 
ще на 50 ітерацій з коефіцієнтом до оберненої глибини 
в ступені (0,25) у тій же основній поправці В. Тепер гус-
тина першого шару стала 0,52 г/см3, і майже наблизи-
лась до реального значення 0,50 г/см3, але для 6-го 
шару густина поповзла вгору до 0,16 г/см3, замість 
0,10 г/см3. Після ще 50 ітерацій методом ПІ з основною 
поправкою В густина 1-го шару досягла реального 
значення 0,50 г/см3, але для 6-го шару густина зали-
шилася на тому ж рівні, а в 2-5 шарах вона відрізняла-
ся від реальної АЩ на 0,02–0,04 г/см3 (рис. 5). Розв'яз-
ком ОЛЗ із врахуванням у моделі градієнтів густини, 
які в СБІМ не були введені, та з використанням алго-
ритму уточнюючих ітераційних поправок вищого по-
рядку отримуємо дуже близький до реального розпо-
діл густини, крім густини останнього 6-го шару 
(рис. 6а). Оскільки для розподілів густини, близьких до 
реальних, використовується основна поправка В (по-
правка першого порядку) без урахування глибини до 
блоків, то останнім уточнюючим етапом розв'язку ОЛЗ 
було використання методу ПІ (рис. 6б), яким отримано 
майже точні значення густини для 3-6-го шарів, для  
1-2-го шарів збігається тільки їхнє середнє значення, а 
фактично різниця становить -0,06 г/см3 для 1-го шару 
і +0,06; -0,02 та -0,01 г/см3 для 2-4-го шарів.  
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Таким чином, використанням різних ітераційних 
методів з різними критеріями оптимізації, ІФ, поправ-
ками та коефіцієнтами до них, підбором кількості іте-
рацій для кожного ітераційного методу на кожному 
етапі отримано майже реальний розв'язок ОЛЗ, хоча 
на деяких етапах для окремих шарів він погіршувався, 
а на інших етапах знову відновлювався при високій 
точності відновлення ПСТ з середньоквадратичною 
похибкою Re=0,021 мГал, яка майже рівномірно роз-

поділена по всій карті поля. Ще треба окремо описати 
розподіл АЩ у розв'язку ОЛЗ у геологічному просторі 
за межами двох АТ, яка у нашій СБІМ задана нульо-
вою. Між АТ вона змінюється від -0,12 до +0,08 г/см3 у 
мінімальних зонах, а справа та зліва за межами АТ – 
від -0,04 до +0,04 г/см3, тобто, в середньому, на кожній 
вертикалі блоків у розв'язку ОЛЗ отримано майже ну-
льові значення АЩ. 

 

 
Рис. 2. Результат розв'язку ОЛЗ методом ПІ з нульовими ПУ  

для моделі зі спадом густини з глибиною: розріз аномальної густини (АЩ), тут і далі в г/см3 

 

 
Рис. 3. Результат продовження розв'язку ОЛЗ методом ПІ  

і коригуванням поправки В коефіцієнтною функцією (fi=z6 /zi ): розріз АЩ 
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Рис. 4. Результат розв'язку ОЛЗ методом ПІ з нульовими ПУ  

і коригуванням поправки В коефіцієнтною функцією (fi=(C/zi)
0.5 ,C= z6): розріз АЩ 

 

 
Рис. 5. Результат продовження розв'язку ОЛЗ методом простої ітерації: розріз АЩ 

 

 
а б 

Рис. 6. Розрізи АЩ: 
а – результат продовження розв'язку ОЛЗ з урахуванням лінійної зміни АЩ у блоках;  

б – результат продовження розв'язку ОЛЗ методом простої ітерації 
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Аналогічно арсеналом вище використаних методів 
виконаємо дослідження розв'язків ОЛЗ на моделях, у 
яких густина АТ з глибиною зростає. В попередню СБІМ 
внесемо інший порядок розподілу АЩ з глибиною: у 
першому АТ беремо АЩ для 1-2-го шарів 0,3 г/см3, для 
3-4-го – 0,4 г/см3, а для 5-6-го – 0,5 г/см3; у другому АТ 
беремо відповідно у всіх шарах на 0,1 г/см3 менше. Піс-
ля 50 ітерацій методом ПІ з нульовими ПУ у розв'язку 
ОЛЗ замість росту АЩ отримано її спад у межах від 
0,46 до 0,24 г/см3 у 1-ому АТ і від 0,32 до 0,18 г/см3 у 
другому (рис. 7). Вирівнюванням ПУ по АЩ 2-го шару з 
попереднього розв'язку отримали АЩ у 2-5 шарах 
0,38 г/см3, і трохи меншу у 1-ому та 6-ому шарах, а це 
не відповідає дійсності. Аналогічно, у другому АТ отри-
мали розподіл АЩ від 1-го до 6-го шару: 0,24-0,26-0,28-
0,28-0,28-0,26 г/см3. Попередній алгоритм для спаду 
АЩ також не спрацював. Тоді було використано метод 
ПІ з основною поправкою В, в яку було введено коефі-

цієнт для збільшення її пропорційно росту глибини до 
кожного блоку. В результаті у розв'язку ОЛЗ ми отри-
мали зростання АЩ з глибиною. Середні значення АЩ 
у 1-ому й 1-2-ому АТ для 1-2-го шарів: 0,28 і 0,20 г/см3, 
для 3-4-го – 0,44 і 0,32 г/см3, а для 5-6-го – 0,515 і 
0,37 г/см3 (рис. 8). При цьому відхилення у першому АТ 
складають -0,02; +0,03 та +0,015 г/см3, а у другому АТ: 
0; +0,02 та -0,03 г/см3, але цей розв'язок є не зовсім 
задовільним, бо реальні відхилення у деяких шарах 
майже вдвічі більші. Після ще 50 ітерацій суттєво роз-
в'язок ОЛЗ не змінили: отримано добавки АЩ у деяких 
блоках шарів не більше 0,01-0,02 г/см3. Візьмемо іншу 
модель, а саме зі зростанням АЩ з глибиною в обох АТ 
у 1-6-ому шарах: 0,1-0,2-0,3-0,4-0,45-0,5 г/см3. Викорис-
таємо метод ПІ з основною поправкою В та з урахуван-
ням градієнтів АЩ. Замість зростання АЩ з глибиною 
отримуємо її спад від 0,30 до 0,24 г/см3. 

 

 
Рис. 7. Результат розв'язку ОЛЗ методом ПІ з нульовими ПУ для моделі зі зростанням густини з глибиною: розріз АЩ 

 

 
Рис. 8. Результат продовження розв'язку ОЛЗ методом ПІ  

і коригуванням поправки В коефіцієнтною функцією (fi=zi/z6): розріз АЩ 
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Тоді використаємо метод ПІ з основною поправкою 
В, виправленою за пропорційне від глибини зростання 
АЩ, і у розв'язку ОЛЗ отримаємо зростання АЩ від 
блоку до блоку 0,12-0,22-0,34-0,40-0,42-0,44 г/см3, що 
для перших 4-ох шарів близько до дійсності, а для 5-6-
го – вимагає уточнення (рис. 9а). Далі використаємо 
метод з уточнюючими поправками вищого порядку 
(RZFG) і отримаємо збільшення АЩ для 5-6 шарів до 
0,44 та 0,46 г/см3, що значно ближче до реальних зна-
чень АЩ (рис. 9б). Після використання ще ряду методів 
з повторенням уточнення основної поправки В пропор-

ційно глибині та її квадрату (рис. 10), отримали точний 
розв'язок ОЛЗ для 1-го та майже точний для 6-го шарів 
(рис. 10), але в інших шарах маємо відхилення АЩ 
0,06–0,08 г/см3, що більше ніж у попередньо виконаних 
розв'язках. Таким чином, набором методів та методич-
них прийомів можна відновлювати ПСТ у випадку вели-
кого зростання АЩ аномальних тіл з глибиною. Але 
встановити необхідність використання алгоритмів зі 
зростанням АЩ при збільшенні глибини до блоків мож-
на тільки після декількох повторень циклу алгоритмів 
при заміні або вилученні із них деяких методів. 

 

  
а б 

Рис. 9. Розрізи АЩ: 
а – продовження розв'язку ОЛЗ з урахуванням лінійної зміни АЩ у блоках;  

б – продовження розв'язку ОЛЗ методом з уточнюючими ітераційними поправками вищого порядку (RZFG) 
 

 
Рис. 10. Результат продовження розв'язку ОЛЗ методом ПІ  

і коригуванням поправки В коефіцієнтною функцією fi =(zi/ z6)
2: розріз АЩ 

 
Тепер з урахуванням результатів розв'язку ОЛЗ для 

АТ зі змінною з глибиною густиною, порівняємо розв'яз-
ки ОЛЗ для АТ із незмінною з глибиною АЩ. Візьмемо 
6-шарову СБІМ із АЩ обох тіл у всіх шарах 0,50 г/см3. 
Методом простої ітерації з основною поправкою В 
отримаємо розв'язок ОЛЗ зі спадом АЩ в обох АТ із 
глибиною в межах від 0,50 до 0,30 г/см3 (рис. 11). При 

цьому маємо дуже велику середньоквадратичну похиб-
ку відновлення поля Re=0.289 мГал. Як було встанов-
лено раніше, при постійній густині та нульових ПУ у 
розв'язку ОЛЗ з обмеженими по глибині блоками ми 
отримуємо у 1-ому шарі реальну АЩ 0,50 г/см3, а між 
АТ майже нульову АЩ 0,02 г/см3. Але з глибиною АЩ 
обох АТ падає до 0,30 г/см3, проте АЩ між АТ зростає 
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до 0,22 г/см3. Далі треба вирівнювати ПУ по першому 
шару. Але ми використаємо спочатку алгоритм виправ-
лення поправки за глибину до блоків пропорційно зрос-
танню глибини і отримаємо у розв'язку ОЛЗ зростання 

АЩ обох АТ у межах від 0,26 до 0,70 г/см3 при похибках 
(Re=0,101 мГал, рис. 12а). Такий розв'язок ОЛЗ у будь-
якому разі є незадовільним. 

 

 
Рис. 11. Результат розв'язку ОЛЗ методом ПІ з нульовими ПУ  

для моделі із постійною густиною при зміні глибини: розріз АЩ 
 

  
а б 

Рис. 12. Розрізи АЩ: 
а – результат продовження розв'язку ОЛЗ методом ПІ з коригуванням поправки В коефіцієнтною функцією (fi =zi/z6);  
б – результат продовження розв'язку ОЛЗ методом із уточнюючими ітераційними поправками вищого порядку (RZFG)  

та з вирівнюванням ПУ по АЩ 2-го шару моделі 
 

Вирівнюючи в ПУ для наступного етапу рішення 
ОЛЗ АЩ усіх шарів по АЩ 2-го шару з попереднього 
розв'язку (рис. 12а), методом з уточнюючими поправ-
ками вищого порядку (RZFG) отримаємо новий розв'я-
зок ОЛЗ (рис. 12б), у якому в 1-ому шарі маємо реаль-
ну АЩ 0,50 г/см3, у 2-5-ому – трохи більшу, а в 6-ому – 
0,54 г/см3. Далі, вирівнюючи ПУ всіх шарів по АЩ 1-го 
шару (рис. 12б), після 10 ітерацій отримаємо новий 
розв'язок ОЛЗ (рис. 13а), який є задовільним, але в 
нижній частині розрізу ще відрізняється від реального. 

Виявилося, що при новому вирівнюванні ПУ по 1-шару 
попереднього розв'язку ОЛЗ (рис. 13а) можна отрима-
ти майже реальний розв'язок ОЛЗ для всіх шарів у 
розрізі моделі (рис. 13б) з дуже високою точністю від-
новлення поля (Re=0,0023 мГал). Таким чином, при 
постійній АЩ алгоритм розв'язку ОЛЗ з вирівнюванням 
ПУ та використанням уточнюючих ітераційних попра-
вок вищого порядку приводить до повного відновлення 
модельного ПСТ. 
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Рис. 13. Вертикальні розрізи АЩ:  
а – результат продовження розв'язку ОЛЗ методом із уточнюючими ітераційними поправками вищого порядку (RZFG)  

та з вирівнюванням ПУ по АЩ 1-го шару моделі з досягненням середньої нев'язки поля Re=0,0063 мГал;  
б – результат наступного продовження при тих же параметрах, але з досягненням Re=0,0023 мГал 

 
Висновки з даного дослідження і перспективи 

подальших пошуків у даному напрямку. До відомих 
раніше методів розв'язання обернених задач із вико-
ристанням додаткових уточнюючих ітераційних попра-
вок вищого порядку долучені методи з виправленням 
основної ітераційної поправки за зміну глибини до 
блоків, що дозволило одержувати більш достовірні 
результати інтерпретації даних гравіметрії у випадках 
зростання чи спаду густини ГП з глибиною. Але за-
пропоновані алгоритми коригування основної ітера-
ційної поправки за зміну глибини до блоків не дають 
високої ефективності і забезпечують задовільний роз-
в'язок ОЛЗ тільки багаторазовим використанням декі-
лькох методів та методичних прийомів. 

Необхідно розробляти методи з іншими формулами 
коефіцієнтних функцій для коригування ітераційних по-
правок за зміну глибини для порівняння їхньої ефекти-
вності із запропонованими й більш ранніми методами. 
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PROBLEM OF SUSTAINABLE SOLUTIONS OF THE INVERSE LINEAR EQUATIONS IN GRAVIMETRY 
Purpose – on the based of theoretical examples o develop the methodology for recognition of cases of constant density and its rise or decline 

with depth. For every example, to find the empirical coefficient functions for correcting the effect of block depths on the value of the basic iterative 
correction. 

The inverse problem of gravimetry is incorrect. Partially incorrectness of their solutions are reduced by the size of grid-block interpretation 
model of the geological environment, that are equal to the size of the gravity field maps. In such a way sustainable solutions are obtained. If the 
depth of all layers and the density of the block model are known, the inverse problem of linear gravity in the class of uniqueness of the solution 
migjht be to solved for the second part of the blocks. Such problem solvation are are used for structural geology, mainly in oil and gas areas, where 
many wellsand whole entire area of map are covered by field seismic surveys of geological structures. In the ore regions seismic investigations do 
not commonly carried out and therefore the morphology of the geological structures is unknown. Much wells are not drilled here. On crystalline 
shields wells are not always reach the boundary between the sedimentary cover and crystalline rocksor they reach a few meters or a few tens of 
meters below. In such a case a narrow class of uniqueness can only be a single-layer model with blocks in the form of semi-infinite vertical prisms. 
The results of solving the inverse problem for this model are far from the real density distribution in the geological massif. At changing for a more 
detailed model, which consists of a limited vertical blocks grouped in horizontal layers, we can observe a reduction in the density of deeper blocks 
while solving inverse problems of iterative methods for real and theoretical fields , although their actual density does not change with depth. Ro-
man Minenko developed a two-step procedure for the preparation of sustainable and meaningful solutions of inverse linear problems of gravimetry 
for additional solutions with iterative clarifies amendments. But it is useful only in cases of constant density of highly anomalous bodies in the 
vertical direction. In this paper, for the cases of rise or decline of density with depth, the basic iterative correction coefficient functions introduced 
to adjust the depth of its impact on the placement of blocks. Appearence of the functions depend on the direction of changes in rock density. The 
final distribution of density is usually achieved by using optimization techniques with higher-order corrections. 

Keywords: gravimetry, inverse problem, iterative method, iterative correction, optimization criterion, the effect of depth on the amendment. 
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ПРОБЛЕМА СОДЕРЖАТЕЛЬНОСТИ УСТОЙЧИВЫХ РЕШЕНИЙ ОБРАТНЫХ ЛИНЕЙНЫХ ЗАДАЧ ГРАВИМЕТРИИ 
Цель работы – на теоретических примерах разработать методику распознавания случаев постоянной плотности, ее роста или 

спада с глубиной, и в каждом случае найти эмпирические коэффициентные функции для исправления влияния глубины до блоков на 
величину основной итерационной поправки. 

Обратные задачи гравиметрии некорректны. Частично некорректность их решений уменьшают выбором размеров сеточной 
блоковой интерпретационной модели геологической среды, равных размерам карты поля силы тяжести, и получают устойчивые 
решения. Если глубины ко всем слоям и плотности части блоков модели известны, то для второй части блоков решают обратную 
линейную задачу гравиметрии (ОЛЗГ) в классе единственности решения. Такие задачи решают для структурной геологии, в основ-
ном, в нефтегазовых районах, где много скважин и вся площадь карты поля покрыта сейсмическими исследованиями геологических 
структур. В рудных районах сейсмические исследования почти не выполняются, а поэтому форма геологических структур неизвес-
тна. Скважин также немного, а на кристаллических щитах они не всегда достигают границы осадочного комплекса с кристалличес-
кими породами или проходят по ним первые метры или первые десятки метров. В таких условиях узким классом единственности 
может быть только однослойная модель с блоками в форме полубесконечных вертикальных призм. Результаты решения обратной 
задачи для такой модели далеки от реального распределения плотности в геологическом массиве. С переходом на более детальную 
модель, которая состоит из ограниченных по вертикали блоков, сгруппированных в горизонтальные слои, в решении обратных за-
дач итерационными методами на теоретических и реальных полях мы наблюдаем уменьшение плотности в более глубоких блоках, 
хотя реально их плотность с глубиной не меняется. Р.В. Миненко разработал двухэтапную методику получения устойчивого и соде-
ржательного решения ОЛЗГ по дополнительному решению с уточняющими итерационными поправками. Но она пригодна только в 
случаях постоянной плотности высокоаномальных тел в вертикальном направлении. Для случаев роста или спада плотности с 
глубиной в настоящей работе в основную итерационную поправку введены коэффициентные функции для корректировки влияния на 
нее глубины размещения блоков. Вид функций зависит от направления изменения плотности пород. Окончательное распределение 
плотности, как правило, достигается использованием методов оптимизации с уточняющими поправками более высоких порядков. 

Ключевые слова: гравиметрия, обратная задача, итерационный метод, итерационная поправка, критерий оптимизации, влияние 
глубины на поправку. 

 




