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ЗАСТОСУВАННЯ МЕТОДУ SIRTДЛЯ ІНВЕРСІЇ ДАНИХ ГРАВІМЕТРІЇ 
 
(Рекомендовано членом редакційної колегії д-ром геол. наук, проф. С.А. Вижвою) 
У роботі запропоноване використання методу одночасної ітеративної реконструктивної томографії (SIRT) для ін-

версії гравіметричних даних. SIRT базується на методі Качмажа, який дозволяє ітеративним шляхом вирішувати сис-
теми лінійних алгебраїчних рівнянь виду Am = p, де вектор відомих значень p є результатом добутку матриці коефіціє-
нтів A на вектор шуканих параметрів m, значення яких оцінюється з точки зору найменших квадратів нев'язки. 

Вираз для гравітаційного впливу комірки моделі можна розділити на два множники, один з яких залежить від гус-
тини, а інший – від положення точки спостереження по відношенню до комірки (геометрії). Як наслідок – розв'язання 
прямої задачі гравірозвідки, з точки зору лінійної алгебри, може бути представлене через множення матриці на век-
тор, де вектор гравітаційних впливів є результатом множення матриці геометричних коефіцієнтів на вектор гус-
тин. Метод SIRT може бути застосований для вирішення задачіінверсії – знаходження розподілу густини за спосте-
реженим гравітаційним полем шляхом вирішення системи лінійних алгебраїчних рівнянь. 

Через затухаючу природу геометричних коефіцієнтів з глибиною в результаті розв'язання задач інверсії даних 
гравірозвідки часто отримують моделі, у яких всі аномальні маси скупчені в приповерхневій частині. Для того, щоб 
компенсувати затухання геометричних коефіцієнтів, їх значення множаться на степеневу функцію від глибини із 
певним емпіричним множником у показнику функції. Такий підхід дозволяє примусово розповсюджувати аномальні ма-
си рівномірно вздовж осі глибин. 

Проведено аналіз результатів інверсії гравітаційного поля прямокутного паралелепіпеда за допомогою методу 
найменших квадратів, методу найменших квадратів з авторегуляризацією, методом SIRT як без, так і з компенсацією 
значень матриці за глибину залягання комірок. Показано, що метод SIRT може бути успішно використаний для інверії 
гравітаційних даних, якщо матрицю геометричних коефіцієнтів помножити на спеціальну функцію від глибини, яка 
компенсує швидке затухання геометричних коефіцієнтів та протидіє скупченню аномальних мас біля поверхні. 

Подальший розвиток запропонованого підходу полягає у розв'язанні задачі комплексної інверсії даних сейсмороз-
відки та гравірозвідки у вигляді однієї системи лінійних алгебраїчних рівнянь. 
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Вступ. Інверсія гравіметричних даних полягає в 
знаходженні розподілу густини досліджуваного середо-
вища за спостереженим гравітаційним полем, що до-
зволяє оцінювати геологічну будову та речовинний 
склад в межах досліджуваної області. Інверсія гравіме-
тричних даних дозволяє вирішувати велику кількість 
наукових та прикладних задач пов'язаних з визначен-
ням розподілу мас в досліджуваній частині середови-
ща. Серед них можна виділити встановлення глибинної 
будови Землі, вирішення задач пошуків та розвідки ро-
довищ рудних корисних копалин, моніторинг розробки 
родовищ вуглеводнів тощо.  

Існує велика кількість методів інверсії гравіметричних 
даних, огляд яких можна знайти в роботі, присвяченій 
розвитку гравіметричного методу [3]. Розвиток інверсії 
гравіметричних даних пов'язаний із такими прізвищами 
та дослідницькими колективами: Bott, Danes, Oldenburg, 
Jorgensen and Kisabeth, Nagihara and Hall, Cheng et al., 
Pedersen, Moraes and Hansen, Green, Last and Kubik, 
Guillen and Menichetti, Li and Oldenburg, Li, Zhdanov et al., 
Krahenbuhl and Li, Zhang et al. [2, 3]. Автор даної статті 
спирається на роботи Li and Oldenburg [5, 6].  

У даній роботі автор пропонує застосування методу 
одночасної ітеративної реконструктивної томографії 
(SIRT), який широко використовується для інверсії да-
них сейсмометрії, для виконання інверсії гравітаційних 
даних. SIRT базується на методі Качмажа [4], який був 
запропонований для вирішення перевизначених систем 
лінійних алгебраїчних рівнянь. Також значний вклад у 
можливість реалізації запропонованого автором методу 
вносить ідея [6] із введення вагових коефіцієнтів для 
протидії занадто швидкому згасанню гравітаційного 
впливу комірки моделі із глибиною.  

Існуючі алгоритми інверсії гравітаційних даних оріє-
нтовані на самостійне вирішення задачі інверсії лише 
гравітаційних даних. Більшість цих алгоритмів може 
бути використана та використовується для комплексної 
інверсії гравітаційних та сейсмічних даних шляхом міні-
мізації функціоналу нев'язки окремих систем рівнянь, як 
це показано в роботі [9]. Метою даної статті є створен-
ня такого алгоритму інверсії гравітаційних даних, який 

дозволить поєднати сейсмічні та гравітаційні дані в од-
ну систему рівнянь.  

Дана робота написана в рамках дослідницької теми 
"Розробка теорії та методології побудови динамічних 
геолого-геофізичних моделей геологічних об'єктів і про-
цесів", яка виконується на кафедрі геофізики Київського 
національного університету імені Тараса Шевченка. Ви-
рішення поставленої в роботі задачі дозволить перейти 
до наступного кроку досліджень, а саме до комплексної 
томографічної інверсії даних сейсморозвідки та гравіроз-
відки, що дозволить вирішувати широке коло задач наф-
тогазової геології та глибинних досліджень Землі.  

Теоретичні основи методу. До гравітаційного поля 
можна застосувати принцип суперпозиції, який полягає у 
тому, що спостережене гравітаційне поле в заданій точці 
є сумою гравітаційних впливів всіх існуючих мас на цю 
точку. Іншими словами, якщо ми маємо декілька геологі-
чних тіл з аномальними густинами по відношенню до 
вмісних порід, то гравітаційний вплив цих тіл можна 
представити як комбінацію гравітаційних впливів кожного 
окремого тіла. Ця властивість гравітаційного поля є дуже 
корисною для вирішення прямої здачі гравірозвідки, 
оскільки геологічне середовище з тілами довільної фор-
ми з деякою похибкою можна представити у вигляді на-
бору тіл простої геометричної форми, а гравітаційний 
вплив у точці O з просторовими прямокутних координа-
тами (xo, yo, zo) записати в наступному вигляді: 

gΣ = g1 + g2 + … + gi + … + gN (1) 
де gΣ – сумарний гравітаційний ефект N тіл в точці 
O = (xo,yo,zo); gi– гравітаційний ефект і-го тіла в точці O; 
і = [1,N]. 

Більшість аналітичних виразів для гравітаційного 
ефекту тіл простої геометричної форми із постійною 
густиною в межах тіла можна розділити на дві складо-
ві: густину σ та деякий геометричний фактор F, що 
залежить від розмірів тіла та його положення відносно 
точки O,в якій розраховується гравітаційний ефект від 
даного тіла. Покажемо це на прикладі аналітичного 
виразу гравітаційного поля прямокутного паралелепі-
педа, грані якого співпадають з напрямками осей пря-
мокутних координат:   
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де μklm = (-1)k(-1)l(-1)m, ∆xk = xk – xo, ∆yl = yl – yo, 
∆zm = zm – zo, k,l,m = [1,2] – різниця координат між точ-
кою спостережень та вершинами при-

зми, klm κ l mR = ∆x + ∆y + ∆z  – відстань між точкою спо-

стереження O = (xo,yo,zo) 
Співвідношення (2) може бути переписано як  

g = Fσ, (3) 
де F –геометричний фактор впливу комірки на точку 
спостереження, σ– значення густини в цій комірці. 

Таким чином (1) з урахуванням (3) може бути пере-
писане як: 

gΣ = F1σ1 + F2σ2 + … + Fiσi + … + FnσN (4) 
З точки зору лінійної алгебри, співвідношення (4) є 

добутком вектора-рядка на вектор-стовпчик. Якщо ж 
необхідно розрахувати гравітаційний ефект в декількох 
точках простору, то таку операцію можна показати у 
вигляді векторного добутку матриці A на вектор m. 
Тобто вирішення прямої задачі гравірозвідки в матри-
чній нотації можна представити у вигляді. 

p = Am   (5) 
Якщо елементи вектора p відомі, а вектора m – ні, то 

співвідношення (5) є системою лінійних алгебраїчних 
рівнянь виду Am = p, вирішуючи яку ми вирішуємо задачу 
інверсії даних гравірозвідки, тобто знаходимо розподіл 
густини за відомим значенням гравітаційного поля. 

Для того, щоб не робити жодного припущення про 
форму аномалієутворювальних тіл частину простору, що 
досліджується, можна розділити на елементарні комірки, 
наприклад, прямокутні паралелепіпеди. Оскільки розміри 
прямокутних паралелепіпедів та їх положення відносно 
точок із спостереженим гравітаційним полем задаються 
як параметри моделі – можна розрахувати матрицю гео-
метричних коефіцієнтів F та вирішувати задачу інверсії 
даних гравірозвідки, вирішуючи систему лінійних алгеб-
раїчних рівнянь. Необхідно зазначити, що для вирішення 
такої задачи робиться припущення, що спостережене 
гравітаційне поле викликане аномальними масами лише 
в межах досліджуваної області. 

Оскільки геофізичні спостереження містять випадкові 
похибки та кількість рівнянь при вирішенні оберненої 
задачі найчастіше не співпадає з кількістю невідомих для 
вирішення рівняння (5) намагаються знайти таке рішен-
ня, яке задовольнятиме всі спостереження в сенсі най-
меншої суми квадратів нев'язок між спостереженим та 
розрахованим полями. Для підвищення стабільності роз-
в'язку використовують різні види регуляризації [8] 

Серед недоліків більшості методів вирішення сис-
теми лінійних алгебраїчних рівнянь методом най-
менших квадратів можна виділити наступні: для обчис-
лень необхідна велика кількість обчислень та значний 
об'єм комп'ютерної пам'яті, неможливість вирішення 
задачі при сильно розріджених матрицях, неможливість 
задавати перше наближення тощо. 

Для вирішення задачі інверсії гравіметрії автор пропо-
нує використовувати метод SIRT, що знайшов широке 
застосування в обчислювальній комп'ютерній томографії 
та сейсмічній томографії. Перевага даного методу полягає 
в тому, що він дозволяє виконувати операції над рядками 
незалежно один від одного, що дає можливість по-перше 
вирішувати системи рівнянь дуже великих розмірів (адже 
в кожен момент часу в оперативній пам'яті комп'ютера 
необхідно зберігати лише один рядок матриці) та, по-
друге, незалежність операцій над рядками дозволяє вико-
нувати обчислення не послідовно, а паралельно, що зна-
чно збільшує швидкість обчислень.  

У випадку сейсмічної променевої томографії онов-
лення швидкісної моделі відбувається на основі методу 
SIRT (який опосередковано використовує метод Кач-
мажа) та обчислюється за формулою [7]: 
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де ∆wmn – поправка повільності в n-й комірці для w-го 
променя, Swn – довжина пробігу w-ї хвилі в межах n-ї 
комірки, ∆pw – різниця між спостереженим та обчисле-
ним часами пробігу w-го променя; W – кількість проме-
нів, N – кількість комірок в моделі. 

Автор роботи пропонує застосувати формулу (6) для 
вирішення системи лінійних алгебраїчних рівнянь (5), змі-
нивши при цьому вектор часів пробігів сейсмічних хвиль 
на вектор значень аномального гравітаційного поля, век-
тор повільностей на вектор густин та матрицю довжин 
пробігів хвиль на матрицю геометричних факторів. 

Вагові коефіцієнти. Формулу методу SIRT можна 
розуміти як розподілення нев'язки між спостереженим та 
обчисленим значенням проекції між окремими складо-
вими пропорційно до внеску кожної комірки моделі, через 
яку проходить проекція. Але на відміну від променевої 
сейсмічної томографії, де промені проходять тільки че-
рез незначну кількість комірок – у гравірозвідці всі комір-
ки моделі вносять свій вклад у розраховане гравітаційне 
поле. Це призводить до того, що нев'язка в одній точці 
спостереження буде розподілятись по всім коміркам, 
спадаючи до значень, якими можна знехтувати при знач-
ній відстані від точки, у якій розраховується поле. Інший 
важливий наслідок цієї властивості гравітаційного поля 
описаний в серії класичній робот з інверсії гравітаційного 
та магнітного полів Li Oldenburg [5, 6], яка полягає в то-
му, що при інверсії всі аномальні маси (або магнітні ма-
си) мають тенденцію скупчуватись у верхній частині роз-
різу. Для вирішення цієї проблеми було запропоновано 
ввести емпіричний ваговий коефіцієнт, який штучно зму-
шує розподіляти маси по глибині. Таким чином було до-
сягнуто цілком прийнятних результатів інверсії.  

Таким чином, матрицю геометричних коефіцієнтів 
для розрахунку прямої задачі ми модифікуємо помно-
живши кожен елемент матриці на функцію (z+zo)

-β/2 (па-
раметрами β та zо при цьому підбираються емпірично 
окремо для кожної моделі) [6]. В результаті досліджень 
автор прийшов до висновку, що співвідношення (z/zо)

β/2 
є більш практичним, оскільки параметр zо можна просто 
задати як глибину залягання середини комірок, що зна-
ходяться в верхній частині моделі. 

Модельний приклад. Як модельний приклад обра-
но класичну задачу, описану в монографії [1] – прямо-
кутний паралелепіпед, грані якого не співпадають із 
гранями комірок, на які поділяється досліджувана час-
тина простору. Як вхідні дані використовується гравіта-
ційний ефект однорідного за аномальною густиною 
прямокутного паралелепіпеда, без додавання регіона-
льного фону (чиста аномалія) та без додавання випад-
кових завад (ідеальні спостереження). 

Для порівняння роботи алгоритму було обрано інші 
алгоритми вирішення систем лінійних алгебраїчних рів-
нянь таких як: звичайний метод найменших квадратів, 
метод найменших квадратів з авторегуляризацією Ти-
хонова та Пікарда-Джонсона. Усі ці алгоритми втілені у 
вигляді програмного коду Рондалом Джонсом та описа-
ні у його роботі [8]. На рис. 1а наведено результати 
інверсії за допомогою звичайного методу найменших 



ISSN 1728–2713 ГЕОЛОГІЯ. 3(70)/2015 ~ 57 ~ 

 

 

квадратів. Результат інверсії незадовільний, оскільки 
значення комірок мають знакоперемінний характер та 
цілком не відповідають моделі. Метод найменших ква-
дратів з авторегуляризацією за Р. Джонсоном (рис. 1б) 
дав набагато кращі результати, де контур прямокутника 
простежується, але по краях моделі присутні артефак-
ти. Метод SIRT без компенсації геометричних факторів 
за глибину комірки (рис. 1в) показав схожі результати 
до метода найменших квадратів з авторегуляризацією. 
Проте контур аномалієутворювального тіла прослідко-
вується гірше, ніж у попередньому випадку. Метод SIRT 
з компенсацією геометричних факторів за глибину ко-

мірки (рис. 1г) показав найкращі результати з точки зо-
ру візуального виділення контуру аномалієутворюваль-
ного тіла, проте густини у приповерхневій частині мо-
делі не відповідають дійсності. Слід зазначити, що це 
може бути пов'язано із тим, що в якості першого набли-
ження для всіх тестів задавалась модель з однаковою 
(нульовою чи довільно вибраною від'ємною) аномаль-
ною густиною. Кращі результати можуть бути досягнуті 
при коректнішому першому наближенні та залученні 
апріорної інформації в якості обмеження (у даних при-
кладах не накладається жодних обмежень на можливі 
значення параметрів комірки). 

 

 
Рис. 1. Результати інверсії ідентичних вхідних даних різними методами  

розв'язання систем лінійних алгебраїчних рівнянь: 
а – звичайний метод найменших квадратів, б – метод найменших квадратів з авторегуляризацією за Р. Джонсоном,  

в – метод SIRT без компенсації геометричних факторів за глибину комірки, г – метод SIRT з компенсацією геометричних  
факторів за глибину комірки. Прямокутником по середині моделі зображено місце положення прямокутного паралелепіпеда 

однорідної густини, гравітаційний ефект якого було використано як вхідні дані 
 
Висновки. З модельного прикладу видно, що метод 

SIRT цілком застосовний до інверсії гравітаційних даних. 
Результат інверсії залежить від вибраних вагових коефіці-
єнтів, першого наближення та параметрів обмеження мо-
делі, але ці фактори не є визначальними. Також виріша-
льну роль грає розмір комірок: їх кількість має забезпечу-
вати перевизначеність системи лінійних алгебраїчних рів-
нянь для можливості застосування методу SIRT. 

Основна перевага запропонованого методу полягає не 
у самостійній інверсії гравіметричних даних, але у принци-
повій можливості об'єднання гравіметричних та сейсмо-
метричних даних в одну систему лінійних алгебраїчних 
рівнянь та вирішення задачи інверсії комплексу геофізич-
них даних одним методом. В цьому автор бачить подаль-
ший розвиток та області застосування методу. 
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ON USING SIRT METHOD FOR GRAVITY INVERSION DATA 
This paper proposes to use simultaneous iterative reconstruction technique (SIRT) for the gravity data inversion. SIRT is based on Kaczmarz 

method and allows to solve systems of linear algebraic equations via iterative update of parameters vector. Method gives a solution which fits the 
observed data vector and changed its first guess in the least squares sense.  

Relationship for the gravitational attraction of a cell could be split into two multipliers. First multiplier depends on density and second multiplier 
depends on observation point location against cell (geometrical factor). As a result gravity forward modeling could be described as multiplication of 
matrix by vector. A gravitational attraction vector is a multiplication of geometrical factors matrix by a densities vector. SIRT could be used for the 
inverse of this operation, in other words estimation of the densities vector is based on the gravitational attraction vector. From the math point of 
view it is a solving of a system of a linear equations. 

Because of geometrical factors decay with depth inversion solution often gives a model where all anomalous masses lay in a shallow part of 
investigated section or volume. In order to contradict reminded decay geometrical factors should be multiplied by a special power function of 
depth. By doing this we force anomalous masses to be disposed even along depth axis. 

Synthetic data inversion proved possibility of using SIRT for gravity data inversion. Better results could be earned using depth weighting of the 
geometrical factors. Further development of method could be found for the simultaneous inversion of seismic and gravity data as one system of 
linear equations. 

Keywords: gravity method, inversion, tomography, modeling. 
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ПРИВЕНЕНИЕ МЕТОДА SIRTДЛЯ ИНВЕРСИИ ДАННЫХ ГРАВИМЕТРИИ 
В работе предлагается использование метода одновременной итеративной реконструкционной томографии (SIRT) для инверсии 

гравиметрических данных. SIRT основан на методе Качмажа, который позволяет итеративным способом решать системы линейных 
алгебраических уравнений вида Am = p, где вектор известных значений p является результатом умножения матрицы A на вектор 
искомых параметров m, значения которых и оцениваются. 

Соотношение для гравитационного эффекта ячейки модели можно разделить на два сомножителя, один из которых зависит от 
плотности, а другой от положения точки наблюдения относительно ячейки (геометрии). Вследствии этого решение прямой задачи 
гравиразведки с точки зрения линейной алгебры можно представить в виде умножения матрицы на вектор, где вектор гравитацион-
ных эффектов является результатом произведения матрицы геометрических коэффициентов на вектор плотностей. Метод SIRT 
может быть использован для решения обратной задачи – нахождения распределения плотностей по наблюдённому гравитационному 
полю путём решения системы линейных алгебраических уравнений. 

Вследствии затухающей природы геометрических факторов с глубиной решение обратной задачи гравиразведки часто дает мо-
дели, в которых все аномальные массы сконцентрированы в приповерхностной части. Для того, чтобы компенсировать затухание 
геометрических коэффициентов их значения умножаются на показательную функцию глубины с определённым эмпирический мно-
жителем в показательной части функции. Такой подход позволяет принудительно распределять аномальные массы равномерно 
вдоль оси глубин. 

Проведен анализ результатов инверсии гравитационного поля прямоугольного параллелепипеда с использованием метода наи-
меньших квадратов, метода наименьших квадратов с авто-регуляризацией, методом SIRT как без, так и с компенсацией значений 
матрицы геометрических коэффициентов за глубину положения ячеек. Показано, что метод SIRT может быть успешно использован 
для инверсии гравитационных данных, если матрицу геометрических коэффициентов умножить на специальную функцию глубины, 
которая компенсирует быстрое затухание геометрических коэффициентов и препятствует скоплению аномальных масс в припо-
верхностной части. 

Дальнейшее развитие предложенного подхода заключается в решении задачи комплексной инверсии данных сейсморазведки и гра-
виразведки в виде одной системы линейных алгебраических уравнений. 

Ключевые слова: гравиразведка, инверсия, томография, моделирование. 

 




