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МОДЕЛЮВАННЯ ГОДОГРАФУ ВІДБИТИХ ХВИЛЬ 

ДЛЯ СИЛЬНО АНІЗОТРОПНОГО ГЕОЛОГІЧНОГО СЕРЕДОВИЩА 
З ГОРИЗОНТАЛЬНОЮ ГРАНИЦЕЮ 

 
(Рекомендовано членом редакційної колегії д-ром фіз.-мат наук, проф. Б.П. Масловим) 
У більшості систем обробки сейсмічних даних кінематичні поправки для сейсмічних відбиттів в умовах монотипних 

моделей геологічного середовища, розглядаються як гіперболічні, якщо максимальна відстань джерела від приймача (оф-
сет), не перевищує глибини до відбиваючої границі. Для анізотропних моделей приймається до уваги наявність відхилення 
від гіперболічної поправки навіть для малих розносів. Недостатнє усвідомлення важливості негіперболічної кінематичної 
поправки значно знижує якість обробки сейсмічних даних та точність їхньої інтерпретації, особливо тих даних, які одер-
жані з довго-офсетною системою спостережень. У цій статті розглядається вплив симетрії шару на форму площинного 
годографа квазіпоздовжної хвилі для товстошарової моделі з горизонтальними границями, пружні сталі якої відповідають 
реальним, що визначені за сейсмічними методами в осадових товщах порід у природному заляганні. В роботі описуються 
та апробовуються алгоритми і програма чисельних розрахунків площинних годографів відбитих квазіпоздовжних хвиль 
горизонтально-шаруватого середовища триклінної та ромбічної симетрії. Алгоритм ґрунтується на розв'язку задачі від-
биття-заломлення хвилі на плоскій границі двох анізотропних середовищ. Для визначення відбитого і заломленого проме-
нів застосовується закон Снеліуса у вигляді рівності дотичних до границі компонент векторів рефракції (падаючої, відби-
тої, заломленої хвиль). Для знаходження проекції вектора рефракції відбитої хвилі на нормаль до відбиваючої поверхні ви-
користовують рівняння рефракції. Для моделей триклінної і ромбічної симетрії карти ізохрон площинних годографів ма-
ють азимутальний характер залежності, розташування екстремальних значень підпорядковане наявним елементам си-
метрії, зокрема для моделей ромбічної симетрії – площинам симетрії і осям другого порядку. Вперше на реальних пружних 
сталих для товщі глин встановлено, що симетрія карти ізохрон площинного годографа горизонтально шаруватого се-
редовища строго відповідає пружній симетрії глинистого шару. Встановлено, що довго-розносні площинні годографи від-
битих квазіпоздовжних хвиль надають можливість оцінки пружної симетрії товщі та визначати характер азимутальної 
анізотропії сейсмічних швидкостей. Розроблений підхід відкриває широкі можливості для дослідження більш складних сей-
смічних моделей, в яких негіперболоїдність обумовлюється нахилом і кривизною відбиваючих границь, а також неоднорід-
ністю геологічного середовища. 

Ключові слова: годограф відбитих хвиль, анізотропія, симетрія, негіперболоїдність. 
 

Вступ. Застосування інваріантно-поляризаційного 
сейсмічного методу для визначення пружних сталих 
товщ осадових порід вперше забезпечило однозначну 
оцінку їх пружної симетрії [9]. Виявилось, що пружні 
сталі товщ глинистих і піщано-глинистих осадових порід 
мають планальну триклінну симетрію, а їх інтегральні 
коефіцієнти пружної анізотропії сягають величини май-
же 22%. Пружна симетрія карбонатної товщі задоволь-
няє аксіальній ромбічній симетрії, а її коефіцієнт пруж-
ної анізотропії має величину більше 13%. 

Наявність значної азимутальної анізотропії сейсміч-
них швидкостей в товщах осадових порід природного 
залягання значно ускладнює проведення таких най-
більш важливих кроків обробки та інтерпретації сейсмі-
чних даних, як корекція нормального приросту часу 
(NMO), аналіз швидкостей, міграція, AVO-аналіз [2,8].  

Постановка проблеми. В традиційних системах 
обробки сейсмічних даних кінематичні поправки для 
відбиттів монотипних моделей вважаються гіперболіч-
ними, якщо довжина розносів не перевищує глибини до 
відбиваючої границі. Для анізотропних моделей при-
ймається до уваги наявність відхилення від гіперболіч-
ної поправки навіть для малих розносів. Недостатнє 
усвідомлення важливості негіперболічної кінематичної 
поправки значно погіршує  якість обробки сейсмічних 
даних, які одержані з довго-розносними установками. 

Разом з тим, стає очевидним, що довго-розносна кі-
нематична поправка має велике значення при дослі-
дженні параметрів анізотропії сейсмічних хвиль та при 
аналізі змін амплітуд в AVO-аналізі. В цілому ряді робіт 
[16, 18] було розглянуто внесок анізотропії в довго-

розносну кінематичну поправку у випадку поперечно-
ізотропної симетрії із вертикальною орієнтацією її голо-
вної осі. 

І. Цванкін та Л. Томсен [19] побудували загальне рі-
вняння негіперболічної кінематичної поправки, яка ба-
зується на NMO (нуль-офсетній) швидкості VNMO та бі-
квадратному коефіцієнтові кінематичної поправки A4 
функції t2(x2). 

Поведінка негіперболічної поправки стає набагато 
складнішою, а вибір методу оцінки VNMO неоднозначним, 
якщо середовище має сильну азимутальну сейсмічну 
анізотропію. Складність їх застосування обумовлена 
залежністю біквадратної поправки A4 від азимуту, так як 
азимутальна залежність VNMO – еліпс [15, 19], що опису-
ється трьома параметрами, A4 визначається п'ятьма ве-
личинами, коректна оцінка азимутальної залежності 
променевої   швидкості залишається проблематичною. 

У випадку азимутальної анізотропії задача відбиття-
заломлення сейсмічних хвиль є суттєво тримірною [2, 4, 9, 
13]. Це обумовлено наявністю двох типів хвиль: фазової, 
напрямок якої співпадає із хвильовою нормаллю до фрон-
ту хвилі, та променевої, яка визначає напрямок розповсю-
дження потоку енергії хвилі. Вектор пружних зміщень фа-
зової швидкості і вектор хвильової нормалі не колінеарні, 
а вектор променевої швидкості є не колінеарним із векто-
рами хвильової нормалі і пружних зміщень.  

Площина падіння хвилі на границі двох анізотропних 
середовищ, в якій відбувається явище відбиття-
заломлення хвиль, визначається нормаллю до фронту 
хвилі, а не променем падаючої хвилі, а також нормал-
лю до відбиваючої границі в точці її перетину із проме-
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нем падаючої хвилі. Так званий "центровий" промінь, 
вздовж якого хвиля при відбитті повертається у точку 
збурення, не ортогональний до відбиваючої границі.  

Оскільки у випадку азимутальної сейсмічної анізот-
ропії всі основні принципи обробки та інтерпретації сей-
смічних даних для ізотропних моделей порушуються, то 
введення одномірних негіперболічних поправок по сво-
їй суті є не коректним. Оскільки задача відбиття-
заломлення хвиль у середовищі із азимутальною анізо-
тропією є по суті тримірною, площинний годограф від-
битої хвилі в ізотропному середовищі являє собою гі-
перболоїд обертання [8, 11]. 

Проблема оцінки нормального приросту часу і впли-
ву азимутальної анізотропії на величину довго-
розносної кінематичної поправки є надзвичайно склад-
ною. Оскільки використання розвинення в ряд Тейлора 
t2(x2) годографа [15, 16, 18, 19] вимагає апріорі визна-
чення в аналітичній формі азимутальної залежності 
променевої швидкості, яку одержати для низькосимет-
ричного анізотропного середовища практично немож-
ливо. Лише при наявності в анізотропному середовищі 
площини симетрії, для її розтину дійсно можна одержа-
ти двомірне векторне рівняння променевої швидкості. 
Його можна розглядати як параметричну форму хви-
льової поверхні [13]. 

В роботі [17] для отримання явної аналітичної зале-
жності групової швидкості квазіпоздовжної хвилі від 
напрямку запропоновано розвинення в ряд за сферич-
ними функціями. Було розглянуто анізотропне середо-
вище поперечно-ізотропної симетрії. Коефіцієнти цього 
розвинення засновуються на визначенні швидкості  
VNMO. Разом з тим, питання оцінки точності променевої 
швидкості у випадку сильно анізотропного низькосиме-
тричного азимутального середовища цим методом за-
лишається відкритим. 

Для подолання існуючих труднощів і неоднозначності 
при виборі методики співставлення параметрів годогра-
фа при визначенні VNMO і нормального приросту часу та 
при визначенні довго-розносної кінематичної поправки 
необхідні певні методичні уточнення і спеціальні дослі-
дження. Формально суть кінематичної поправки можна 
розглядати як процедуру визначення відхилення часу 
розповсюдження відбитої хвилі в реальному анізотроп-
ному геологічному середовищі від часу розповсюдження 
цієї ж хвилі в деякому найближчому до цього анізотроп-
ного середовища ізотропному середовищі, при умові 
розповсюдження хвиль по однаковим траекторіям про-
менів. Оскільки форма годографа в найближчому до 
реального анізотропного геологічного середовища є гі-
перболоїдом обертання, то логічно і цю кінематичну по-
правку називати негіперболоїдною. Умови необхідні і 
достатні для вибору найближчого ізотропного середо-
вища до реального анізотропного середовища за пруж-
ними властивостями можна знайти в роботах [1, 6, 13]. 

У цій статті розглядається вплив симетрії шару на фо-
рму площинного годографа квазіпоздовжної хвилі для 
товстошарової моделі, пружні сталі якої відповідають реа-
льним, що визначені сейсмічними методами в осадових 
товщах порід у природньому заляганні. Описуються і ап-
робовуються алгоритми і програма чисельних розрахунків 
площинних годографів відбитих квазіпоздовжних хвиль 
шаруватого середовища триклінної симетрії.  

Теоретичний аспект. Розглядається задача побу-
дови площинного годографа відбитої квазіпоздовжної 
хвилі для горизонтального товстошаруватого анізотро-
пного середовища триклінної симетрії [3, 11, 13]. 

Нехай Cijkl і ρ відповідно пружні сталі та густина ша-
ру, а h його потужність. Будемо вважати, що заданий 
одиничний вектор нормалі до відбиваючої границі 


q . 

Вводиться локальна система координат, вісь x3 ком-
планарна вектору q


. Початок локальної системи коор-

динат (точка О) співпадає із місцем розташування дже-
рела сейсмічних коливань (рис. 1). Для визначення орі-
єнтації осей локальної системи координат x1 та x2 спо-

чатку задається хвильова нормаль падаючої хвилі 0n , 
а потім визначається нормаль a


 до площини падіння 

хвилі  a m q 
  

, вздовж якої орієнтована вісь x2. Тоді 

вісь x1, яка лежить у площині відбиваючої границі і колі-

неарна вектору  b q m q   
   

 [13]. Вектор рефракції 

падаючої хвилі 0m  для заданого напрямку хвильової 

нормалі 0n  в локальній системі координат знаходять 
користуючись розв'язком рівняння Гріна-Кристофеля: 

2 0il il lv U      ,  (1) 

де Λil=Cijkl/ρ; Ul – вектор пружних зміщень, υ – фазова 
швидкість. 

Для падаючої квазіпоздовжної хвилі обчислюють 
фазову швидкість і вектори пружних зміщень. Знахо-
дять вектор променевої швидкості Vj

(l)= Aijkl ui uk ul /υ і 
променеві кути падаючої хвилі θ1 і ɸ1, а також вектор 

рефракції 0 0m n v . 
Чисельний розв'язок задачі відбиття-заломлення 

хвилі ґрунтується на законі Снеліуса для анізотропного 
середовища, згідно з яким вектори рефракції падаючої, 
відбитих та заломлених хвиль відрізняються один від 
одного лише проекціями на нормаль до відбиваючої 
поверхні, а проекції векторів рефракції на граничну 

площину b


 повинні бути векторно однаковими між со-
бою [3, 4, 6, 10, 13]. Лише у тому випадку, коли заданий 

вектор b


, з'являється можливість визначення напрям-
ків і швидкостей (векторів рефракції) відбитих та зало-
млених хвиль, при умові коли ці параметри задані для 
падаючої хвилі.  

Задача визначення проекцій векторів рефракції ξ від-
битих хвиль на вісь x3 локальної системи координат зво-
диться до розв'язку рівняння поверхні рефракції [13]: 

1 1 0m m m m
c c          , (2) 

де m
ijkl j km m   . 

Спочатку параметризують рівняння (2) шляхом під-
становки в нього загального виразу вектора рефракції: 

m b q  
 

,                                  (3) 
в якому невизначеним залишається лише оператор ξ, а 

q


 і b


 задані. В результаті одержуємо рівняння поліно-
му 6-го ступеня із дійсними коефіцієнтами [13]: 

6 5 4 3
0 1 2 31 2 2m A A A A            

2
4 5 6 0;A A A                              (4) 

де  

   0 1 2;   ;   1 4 ;q q q b q

c c
A A B A B

            
 

   3 4 ;q b q b q q
c c

cc
A B B B B               

 

     4 51 4 1 ;   1 ;b q b b

c c
A B A B                  

 

5 1bA                                    (5) 

Тут компоненти тензора другого рангу позначені Bil 
знаходять за формулою: 
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 1
;

2il ilkl j k j kB b q q b    (6) 

А тензорні взаємні матриці визначають із співвідношень: 
1

;    ;
2

q q q q
ns ils imn ijkl j kil jm il q q          

1
;    ;

2
b b b b
ns ijs imn il jm il ijkl j kb b          

1

2ns ijs imn il jmB B    . (7) 

Тензорні матриці, взаємні до суми тензорних мат-
риць, визначають наступним чином: 

     1
,

2
q b q b q b

ijs imn il jmil jm
ns

              (8) 

зокрема слід добутку тензорних матриць визначають за 
формулою 

   1 1b b
c ji

ij
B B      

,                     (9) 

а для сліду різниці тензорних матриць справедлива 
рівність 

 q q
c c

c
B B     ,                    (10) 

детермінант тензорної матриці можна представити у 
такому вигляді: 

1

6
q q q q

ijk imn il jm kn       ,  (11) 

,ijk imn  – тензори Левічі-Віта, с- слід тензорної матриці. 

 

x1 

x2 

x3 

O 

Q1

Q2 

P

ϕ1 

ϕ2 

1 
2 

   
Рис. 1. Променева схема розповсюдження для відбитої квазіпоздовжної сейсмічної хвилі  

в горизонтальному товстошаруватому анізотропному середовищі 
 

Рівняння має шість коренів (дійсних або комплекс-
них спряжених), з яких для відбитих хвиль відбирають 
три від'ємних корені, а для заломлених – три додатні.  

Складові вектора рефракції m


 відбитих хвиль по-
винні задовільняти умові випромінювання: 

   0im V 


,                           (12) 

де  iV


 – вектор променевої швидкості. 
Якщо знайдено вектор рефракції відбитої хвилі m


, 

то можна обчислити і компоненти вектора хвильової 
нормалі відбитої хвилі: 

1 1 2 2 3 3,   ,   ,n m v n m v n m v      (13) 

Оскільки 
1

m
v




. 

Компоненти вектора променевої швидкості обчис-
люємо за формулою [13]: 

   
 

1

,
1

i

m
ijkl k

jl
i m

c

c m

V

 


 


                       (14) 

а потім після його нормування знаходимо променеві 
кути θ2 і ϕ2. Час розповсюдження t1 для падаючого і t2 
для відбитого променів розраховують за формулами: 

   1 2
1 1 2 2

,   ,
cos cos

h h
t t

V V
 

   
         (15) 

де  1V   і  2V   – модулі векторів променевої швид-

кості, відповідно, падаючої і відбитої сейсмічної хвилі. 
Розглянемо траекторію променю, який розповсю-

джується від джерела (рис. 1, точка О) до точки пере-
тину з відбиваючою поверхнею (точка Р), який після 
відбиття реєструється в точці Q2 на поверхні сейсміч-
них спостережень. 

Відрізки проекцій променю на горизонтальну повер-
хню спостережень OQ1=l1 і Q1Q1=l2 визначаємо за фор-
мулами: 

1 1tgl h  , 2 2tgl h  .                   (16) 

Відповідно, оскільки відомі променеві кути падаючої 
та відбитої хвилі, знаходимо їх проекції на осі локальної 
системи координат: 

1 1 1 2 1 1cos ,   sin ,x l x l      

1 2 2 2 2 2cos ,   sin .x l x l                      (17) 

Координати точки Q2, в якій буде зареєстровано відби-
ту сейсмічну хвилю, можна обчислити за формулами: 

1 1 1 2 2 2,    x x x x x x     .                (18) 

Таким чином, знайдено час і координати точки ре-
єстрації відбитої квазіпоздовжної хвилі на поверхні спо-
стережень. 

Алгоритм програми. Для забезпечення трудоміст-
ких чисельних розрахунків розроблений алгоритм і про-
грама, які дозволяють повністю автоматизувати весь 
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процес розрахунків і графічну візуалізацію одержаних 
результатів. Блок-схема алгоритму показана на рис. 2. 
Як видно із наведених даних, вхідні дані для чисельних 
розрахунків відбитої хвилі включають пружні сталі  і 
густину ρ горизонтально залягаючого товстошаруватого 
анізотропного середовища потужністю h. Задають на-
прямок хвильової нормалі падаючої хвилі  і формують 
базис локальної системи координат. Оскільки пружні 
сталі задані в стандартній акустичній системі коорди-
нат, необхідно здійснити їх перетворення до локальної 

системи координат. Для цього використовують матрич-
ну формулу перетворень пружних сталих [1, 5]. 

v
vC Q Q C       

 ,                           (19) 

де χ', λ', μ, ν пробігають значення від 1 до 6. Елементи 

матриці Q 
  наведені в табл. 1. 

Матриця ортогональних перетворень Ci'k: 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

i k

C C C

C C C C

C C C

  

   

  

 
   
 
 

  (21) 

 
Вхідні дані: 

ρ,  , h, ϕ,  ,   

Визначення базису локальної системи координат 

Перетворення компонент тензора пружних сталих до нової системи координат 

Визначення параметрів падаючої хвилі  

υ,  ,  ,  1, ϕ1,   

Підпрограма чисельних 

розрахунків даних швидкостей 

і векторів пружних зміщень 

методом Якобі 

Оцінка точності 

обчислення фазових 

швидкостей 

Ні Так 

Чисельні розрахунки 

,  ,   

Чисельні розрахунки коефіцієнтів рівняння 

рефракції A0, A1, A2, A3, A4, A5, A6 

Підпрограма чисельних розрахунків дійсних і комплексних 

коренів рівняння рефракції методом Лагерра 

Оцінка точності 

обчислення коренів 

Ні 

Так 
Чисельні розрахунки векторів рефракції 

відбитих і заломлених хвиль 

Чисельні розрахунки векторів хвильової нормалі відбитих і заломлених хвиль 

Чисельні розрахунки променевих швидкостей і променевих кутів відбитих і заломлених хвиль 

Чисельні розрахунки часу розповсюдження і координат точок реєстрації відбитих хвиль 

Графічна побудова площинного годографа відбитих хвиль 
 

Рис. 2. Блок-схема алгоритму програми чисельних розрахунків і графічного відображення площинного годографа  
відбитих хвиль анізотропного середовища. 

 
Таблиця  1   

Матриця перетворення пружних сталих у заданій системі координат 

Q 
  1 2 3 4 5 6 

1' C2
1'1 C2

1'2 C2
1'3 2 C1'2 C1'3 2 C1'3 C1'1 2 C1'1 C1'2 

2' C2
2'1 C2

2'2 C2
2'3 2 C2'2 C2'3 2 C2'3 C2'1 2 C2'1 C2'2 

3' C2
3'1 C2

3'2 C2
3'3 2 C3'2 C3'3 2 C3'3 C3'1 2 C3'1 C3'2 

4' C2'1 C3'1 C2'2 C3'2 C2'3 C3'3 C2'2 C3'3+ C2'3 C3'2 C2'3 C3'1+ C2'1 C3'3 C2'1 C3'2+ C2'2 C3'1 
5' C3'1 C1'1 C3'2 C1'2 C3'3 C1'3 C3'2 C1'3+ C3'3 C1'2 C3'3 C1'1+ C3'1 C1'3 C3'1 C1'2+ C3'2 C1'1 
6' C1'1 C2'1 C1'2 C2'2 C1'3 C2'3 C1'2 C2'3+ C1'3 C2'2 C1'3 C2'1+ C1'1 C2'3 C1'1 C2'2+ C1'2 C2'1 
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Зв'язує "стару" систему координат xi, яка побудова-
на на базисі 1,e


 2,e


 3e


 – це власні вектори акустичного 

тензору (стандартна акустична система координат) і 
"нову" xi', яка побудована на базисі 1 ,e 


 2 ,e 


 3e 


 – лока-

льна система координат  1 2 3|| ,   || ,   ||e b e a e q  
    

. Її на-

зивають також матрицею косинусів, оскільки кожен її 
елемент дорівнює косинусу кута між відповідними ося-
ми координат [5]: 

 1cos ,i k i k kC e e x x   
 

  (22) 

Чисельні розрахунки фазових швидкостей квазіпоз-
довжних хвиль і векторів їх поляризації для заданого 
напрямку хвильової нормалі здійснюють модифікова-
ним методом обертання Якобі [1,7]. Власні значення і 
власні вектори тензора Кристофеля  il n


 знаходять 

чисельно методом обертання, який забезпечує абсо-
лютну стійкість і швидку збіжність ітераційного процесу, 
на який не впливає зокрема виродження матриці тензо-
ра Кристофеля. Визначення векторів пружних зміщень і 
фазової швидкості забезпечує чисельні розрахунки век-
торів рефракції, променевої швидкості та променевих 
кутів хвиль в локальній системі координат.  

Для розв'язку рівняння рефракції застосовується 
метод Лагерра [20]. Алгоритм цієї підпрограми ґрунту-
ється на наступних співвідношеннях для полінома 6-го 
ступеня із дійсними коефіцієнтами: 

       6 1 2 6...P x x x x x x x    , 

        6 1 2 6ln ln ln ... lnP x x x x x x x       , 

  6 6

1 2 6 6

ln 1 1 1
... ,

d P x P
G

dx x x x x x x P


     

  
  (23) 

  
   

2
6
2 2 2

1 2

ln 1 1
...

d P x

dx x x x x
    

 
 

 

2
6 6

2
6 66

1
.

P P
H

P Px x

  
    

  
 

Якщо корінь x1 знаходиться на відстані ζ від поточного 
наближення, то припускають, що всі інші корені знахо-
дяться на відстані χ: 

1x x   , ix x   ,   i = 2,3,…,6,          (24) 

тоді 
1 1n

G


 
 

, 
2 2

1 1n
H


 

 
, n = 6,          (25) 

звідки 

   21

n

G n nH G
 

  
.                    (26) 

Знак у формулі (26) перед коренем вибирають та-
ким чином, щоб одержати найбільше значення знамен-
ника. Ітераційний процес побудований таким чином, 
щоб забезпечити наперед задану точність визначення 
коренів поліному, тобто, компонент векторів рефракції 
відбитих і заломлених хвиль. Алгоритм побудований 
таким чином, що чисельні розрахунки часу розповсю-
дження відбитої хвилі здійснюють із заданим кроком по 
заданому азимутальному (0°-360°) і полярному куту (0°-
70°), і результати виводяться у форматі, який забезпе-
чує побудову поля ізохрон площинного годографа від-
битої хвилі в системі графічної візуалізації Surfer.  

 
Таблиця  2  

Експериментальні значення (Cmn, ГПа) осадової товщі відкладів в робочій системі координат за даними роботи [9] 
Літологія 

Матричні індекси mn 
Карбонатна товща Глиниста товща 

11 17.79 9.16 
22 14.00 10.04 
33 13.85 7.28 
44 3.47 0.71 
55 3.41 0.86 
66 2.71 1.52 
12 5.00 1.90 
13 9.30 5.81 
23 7.00 3.95 
14 0 0.29 
15 0 0.04 
16 0 0.15 
24 0 -0.02 
25 0 -0.14 
26 0 -0.02 
34 0 0.32 
35 0 0.14 
36 0 0.20 
45 0 0.02 
46 0 0.13 
56 0 -0.05 

Пружна симетрія Аксіальна ромбічна Планальна триклінна 
Густина, г/см3 1.986 2.193 

Інтегральний коефіцієнт анізотропії 
 

i

t r

A

A A
  

13.08 
- 

21.92 
0 

Ai – інтегральний коефіцієнт анізотропії (ступінь відхилення від ізотропії); 
At(Ar) – інтегральний коефіцієнт анізотропії; 
 
Негіперболоїдність площинного годографа від-

битої квазіпоздовжної хвилі. Беручи до уваги тримір-
ність поставленої задачі, зроблена спроба оцінити сту-

пінь відхилення площинних годографів відбитої квазіпо-
здовжної хвилі від гіперболоїда для азимутально анізо-
тропного горизонтально шаруватого середовища.  



~ 40 ~ В І С Н И К  Київського національного університету імені Тараса Шевченка ISSN 1728-3817 
 

 

Рівняння годографа відбитої поздовжної хвилі для ізо-
тропного горизонтально шаруватого середовища найближ-
чого до заданого анізотропного середовища має вигляд: 

2 2
2 2 1 2

0 2 2

x x
t t

v v
                            (29) 

де 0
2n

t
v

 ; h – потужність шару; 
0

2 11C
v 


 – променева 

швидкість; 0
11C  – пружна стала ізотропного середовища 

найближчого до заданого анізотропного середовища.  
Рівняння площинного годографа є гіперболоїдом 

обертання.  
У відповідності до загальноприйнятої термінології 

швидкість NMO визначається із співвідношення: 

11
NMO

C
V v 


,                            (30) 

де    11 11 22 33 12 13 23
1

3 2
15

C C C C C C C        

 44 55 664 C C C     , mnC  – пружні сталі заданого ре-

ального азимутально анізотропного середовища. 
Формально пружні сталі ізотропного середовища, 

найближчого до заданого анізотропного середовища, 
представляють собою осереднені пружні сталі в набли-
женні Фойгта mnC  [1]. Отже, нормальна кінематична 

швидкість NMOV  площинного годографа, який має форму 

гіперболоїда обертання, визначається осередненими 
пружними сталими в наближенні Фойгта. Такий апрокси-
маційний підхід застосовується і при використанні моде-
лей слабоанізотропного середовища, в яких зазвичай 

приймають для  1mn mn mn mnC C C C      [17]. 

Було розглянуто горизонтальні товстошаруваті ані-
зотропні моделі, пружні сталі яких визначалися сейсмі-
чними методами в їх природньому заляганні і наведені 
в таблиці 2. Як видно із наведених результатів чисель-
них розрахунків (рис. 3, 4), симетрія карт ізохрон пло-
щинних годографів для горизонтально шаруватої гли-
нистої товщі строго відповідає симетрії пружних сталих 
розглянутих моделей. Для моделей триклінної і ромбіч-
ної симетрії карти ізохрон площинних годографів мають 
азимутальний характер залежності, розташування екс-
тремальних значень підпорядковане наявним елемен-

там симетрії,   зокрема для моделей ромбічної симетрії 
– площинам симетрії і осям другого порядку.  

Область найменших значень часу розповсюдження 
хвилі тяжіє, як і очікувалось, до координат місця розта-
шування джерела сейсмічних коливань, але форма 
ізохрон асиметрична відносно точки О і це є результа-
том впливу асиметризації, обумовленої триклінною си-
метрією глинистої товщі (рис. 3). Відповідно, екстрема-
льні точки ізохрони, які характеризують максимальні 
величини часу приходу квазіпоздовжної хвилі для гли-
нистої товщі триклінної симетрії, також розташовуються 
різко асиметрично. 

 

 
Рис. 3. Карта ізохрон поверхневого годографа  

квазіпоздовжної хвилі для горизонтально залягаючої 
глинистої товщі триклінної симетрії 

 

Вплив аксіальної ромбічної симетрії карбонатної то-
вщі спостерігається на карті ізохрон поверхневого годо-
графа квазіпоздовжної хвилі (рис. 4). Аксіальний харак-
тер азимутальної анізотропії квазіпоздовжної хвилі про-
являється у практичній відсутності екстремальних точок 
на карті ізохрон, крім очевидної, яка відповідає мінімуму 
в точці місцерозташування джерела.  
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Рис. 4. Карта ізохрон поверхневого годографа квазіпоздовжної хвилі 
для горизонтально залягаючої карбонатної товщі ромбічної симетрії 

 



ISSN 1728–2713 ГЕОЛОГІЯ. 1(72)/2016 ~ 41 ~ 

 

 

Висновки. Розроблений і апробований алгоритм і 
програма чисельних розрахунків поверхневих годогра-
фів для шаруватого середовища триклінної симетрії. 
Алгоритм ґрунтується на розв'язку задачі відбиття-
заломлення хвилі на плоскій границі двох анізотропних 
середовищ. Для визначення відбитого і заломленого 
променів застосовується закон Снеліуса у вигляді рів-
ності дотичних до границі компонент векторів рефракції 
(падаючої, відбитої, заломленої хвиль). Для знахо-
дження проекції вектора рефракції відбитої хвилі на 
нормаль до відбиваючої поверхні використовують рів-
няння рефракції. 

Вперше на реальних пружних сталих для товщі глин 
встановлено, що симетрія карти ізохрон площинного 
годографа горизонтально шаруватого середовища 
строго відповідає пружній симетрії глинистого шару. Це 
означає, що довго-розносні площинні годографи відби-
тих квазіпоздовжних хвиль надають можливість оцінки 
пружної симетрії товщі, і, відповідно, визначати харак-
тер азимутальної анізотропії сейсмічних швидкостей.  

Розроблений підхід відкриває широкі можливості для 
дослідження більш складних сейсмічних моделей, в яких 
негіперболоїдність обумовлюється нахилом і кривизною 
відбиваючих границь, а також неоднорідністю. 

 
Список використаних джерел 
1. Александров К.С. Анизотропия упругих свойств минералов и гор-

ных пород / К.С. Александров, Г.Т. Продайвода // Новосибирск. – 2000. 
– Изд. СО РАН. – 354 c. 

2.  Вижва С.А. AVO-аналіз та інверсія сейсмічних даних / С.А. Вижва, 
Г.Т. Продайвода, П.М. Кузьменко // Київ. – 2014. – ВПЦ "Київський уні-
верситет".– 263 c.  

3.  Оболенцева И.Р. Лучевой метод в анизотропной среде (алгорит-
мы, программы) / И.Р. Оболенцева, В.Ю. Гречка  // Новосибирск. – 
1989. – Под ред. С.В. Гольдина. – 225 с.  

4. Петрашень Г.И. Распространение волн в анизотропных упругих 
средах // Ленинград. – 1980. – Наука.– 280 с.  

5. Продайвода Г.Т. Теорія і задачі механіки суцільного середовища // 
Київ. -  1998. – ВЦ "Київський університет" – 183 с.  

6. Продайвода Г.Т. Основи сейсмоакустики // Київ. – 2001. – ВЦ "Ки-
ївський університет". – 296 с.  

7. Продайвода Г.Т. Автоматизированная система численного анали-
за параметров анизотропии объёмных упругих волн / Г.Т. Продайвода, 
В.И. Нейман, Ю.В. Нахшин // Вестник Киевского университета, серия 
Геология. – 1990. – №9. – с. 43–54.  

8. Продайвода Г.Т. Сейсморозвідка / Г.Т. Продайвода , О.А. Трипільсь-
кий, С.С. Чулков  // Київ. – 2008. – ВПЦ "Київський університет". – 315 с.  

9. Продайвода Г.Т. Чисельні розрахунки пружних сталих осадових 
порід у триклінному наближенні за даними вертикального сейсмічного 
профілювання / Г.Т. Продайвода, П.М. Кузьменко, А.С. Вижва  // Геофи-
зический журнал. – 2015. - т. 37. -  №3. – С. 102–123.  

10. Распространение объемных волн и методы расчета волновых 
полей в анизотропных упругих середах // Ленинград. – 1984. – Под ред. 
Г.И. Петрашеня. – Наука. – 283 С.  

11. Сейсморазведка: Справочник геофизика // Москва. – 1990. – Под 
ред. В.П. Номоконова, кн.1. – Недра. – 336 С.  

12. Тимошин Ю.В. Мнимый источник сейсмических волн в анизотро-
пной бреде / Ю.В. Тимошин, Г.Д. Лесной, Н.Т. Кискина // Вестник Киевс-
кого университета, Геология. – 1990. – №9. С. 37 – 43.  

13. Федоров Ф.И. Теория упругих волн в кристаллах // Москва. – 
1965. – Наука. – 386 С.  

14. Byun B.S. Anisotropic velocity analysis for lithology discrimination / 
B.S. Byun, D. Corrigan, J.E. Gaiser // Geophysics. – 1989. – v. 54. – №12. 
– P. 1564–1574.  

15. Grechka, V. Quartic reflection moveout in a weakly anisotropic 
dipping layer / V. Grechka, A. Pech // Geophysics. – 2006. – v. 71. – №1. – 
P. D1-D13.  

16. Hake H. Three-term Taylor series for t2 − x2 curves over layered 
transversely isotropic ground / H. Hake, K. Helbig, C. S. Mesdag // 
Geophysical Prospecting. – 1984. – v.32. – P. 828 – 850.  

17 Colin M. Sayers. Seismic traveltime analysis of azimuthally anisotropic 
media; theory and experiment / Colin M. Sayers, Daniel A. Ebrom // Geophysics. 
– 1997. – v.62. – №5. – P.1570 – 1582.  

18. Taner M.T. Velocity spectra-digital computer derivation and 
applications of velocity functions / M.T. Taner, F. Koehler // Geophysics. – 
1969. – v.34. – №6. – P. 859 – 881.  

19. Tsvankin I. Nonhyperbolic reflection moveout in anisotropic media / 
I. Tsvankin, L. Thomsen // Geophysics. – 1994. – v.59. – №8. – P. 1290–1304.  

20. Press W.H. "Section 9.5.3. Laguerre's Method". Numerical Recipes: 
The Art of Scientific Computing (3rd ed.) / W.H. Press, S.A. Teukolsky,  
W.T. Vetterling, B.P. Flannery // New York: Cambridge University Press. – 
P. 466 – 469. 

 
References 
1. Alexandrov, K.S., Prodaivoda, G.T. (2000). Anisotropy of elastic 

properties of minerals and rocks [Anizotropiya uprugikh svoystv mineralov I 
gornykh porod]. Novosibirsk:. Izd. SO  RAN. 354 p. [In Russian]. 

2. Vyzhva, S.A., Prodayvoda, G.T., Kuzmenko, P.M. (2014). AVO-
analysis and seismic data inversion [AVO-analis ta inversiya seismichnykh 
danykh]. K.: VPC "Kyivskiy Universytet" – Publishing Center "University of 
Kyiv", 263 p. [In Ukrainian]. 

3. Obolentseva, I.R., Grechka, V.Yu. (1989). Ray method in anisotropic 
media (algorithms, programs) [Luchevoy metod v aniszotropnoy srede 
(algoritmy, programmy)]. Under edition of S.V. Goldin, Novosibirsk, 225 p. 
[In Russian]. 

4. Petrashen, G.I. (1980). Waves propagation in anisotropic elastic me-
dias [Rasprostranenie voln v anizotropnykh uprugikh sredakh]. L.: Nauka – 
Science, 280 p.  [In Russian]. 

5. Prodayvoda, G.T. (1998). Theory and problems of mechanics of con-
tinuous media [Teoria i zadachi mekhaniky sutsilnogo seredovyscha]. K.: 
VPC "Kyivskiy Universytet" – Publishing Center "University of Kyiv", 183 p. 
[In Ukrainian]. 

6. Prodayvoda, G.T. (2001). Basics of seismoacoustic [Osnovy seismoa-
kustyky]. K.: VPC "Kyivskiy Universytet" – Publishing Center "University of 
Kyiv", 296 p. [In Russian]. 

7. Prodayvoda, G.T., Neyman, V.I., Nakhshyn, Yu.V. (1990). 
Automated system for numerical analysis of anisotropy parameters of 
bulk elastic waves [Avtomatizirovannaya sistema chislennogo analisa 
parametrov anizotropii obemnykh uprugikh voln]. Vesnik Kievskogo uni-
versiteta, seria Geologiya – Bulletin of Kyiv  University, Series Geology, 9, 
43-54. [In Russian]. 

8. Prodayvoda, G.T., Trypilskiy, O.A., Chulkov, S.S. (2008). Exploration 
Seismic [Seismorozvidka].  K.: VPC "Kyivskiy Universytet" – Publishing 
Center "University of Kyiv", 315 p. [In Ukrainian]. 

9. Prodayvoda, G.T., Kuzmenko, P.M., Vyzhva, A.S. (2015). Numeri-
cal calculation of elastic constants for sedimentary strata in triclinic 
approximation based on vertical seismic profiling data [Chyselny roz-
rakhunky pruzhnykh stalykh za danymy vertykalnogo seismichnogo 
profiluvannya]. Geophizychniy zhurnal – Geophysical Journal, 37, 3, 
102-123. [In Ukrainian]. 

10. Bulk waves propagation and methods of wave fields calculation in 
anisotropic elastic medias [Rasprostranenie obemnykh voln I metody ra-
scheta volnovykh poley v anisotropnykh uprugikh sredakh]. (1984). Pod 
redakciey G.I. Petrashenya, L.: Nauka – Under edition of G.I. Petrashenya, 
L.: Science, 283 P. [In Russian]. 

11. Exploration seismic: Geophysics guide [Seismorazvedka: Spravoch-
nik geophyzika]. (1990). Pod redakciey V.P. Nomokonava – Under edition of 
V.P. Nomokonov, Book 1, M.: Nedra, 336 P. [In Russian]. 

12. Timoshyn, Yu.V., Lesnoy, G.D., Kiskina, N.T. (1990). The imaginary 
source of the seismic waves in anisotropic media [Mnimiy istochnik 
seismicheskikh voln v anisotropnoy srede]. Vestnik Kievskogo universiteta, 
Geologia – Bulletin of University of Kiev, Geology, 9, 37-43. [In Russian]. 

13. Fedorov, F.I. (1965). Theory of elastic waves in cristals [Teoria 
uprugikh voln v kristalakh]. M.: Nauka – M.: Science, 386 P. [In Russian]. 

14. Byun, B.S., Corrigan, D., Gaiser, J.E. (1989). Anisotropic velocity 
analysis for lithology discrimination // Geophysics, 54, 12, 1564–1574. 

15.Grechka, V., Pech, A. (2006). Quartic reflection moveout in a weakly 
anisotropic dipping layer // Geophysics, 71, 1, D1-D13. 

16. Hake, H., K. Helbig, and C. S. (1984). Mesdag Three-term Taylor 
series for t2 − x2 curves over layered transversely isotropic ground. 
Geophysical Prospecting, 32, 828-850.  

17. Colin M. Sayers, Daniel, A. (1997). Ebrom Seismic traveltime analysis 
of azimuthally anisotropic media; theory and experiment. Geophysics, 62, 5, 
1570-1582.  

18. Taner, M.T., Koehler, F. (1969). Velocity spectra-digital computer 
derivation and applications of velocity functions. Geophysics, 34, 6, 859-881.  

19. Tsvankin, I., Thomsen, L. (1994). Nonhyperbolic reflection moveout in 
anisotropic media. Geophysics, 59, 8, 1290-1304.  

20. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007). 
"Section 9.5.3. Laguerre's Method". Numerical Recipes: The Art of Scientific 
Computing (3rd ed.). New York: Cambridge University Press. 466-469. 

Н а ді й шл а  д о  р е дк о л ег і ї  27 . 0 2 . 16  

 



~ 42 ~ В І С Н И К  Київського національного університету імені Тараса Шевченка ISSN 1728-3817 
 

 

G. Prodaivoda, Dr. Sci. (Phys.-Math.), Professor 
prodgeo@ukr.net; 

P. Kuzmenko, PhD (in Geology), Associate Professor 
pavlokn@ukr.net; 

A. Vyzhva, PhD Student 
motomustanger@ukr.net; 
Institute of Geology, Taras Shevchenko National University of Kyiv 
90 Vasylkivska Str., Kyiv, 03022 Ukraine 

 

TRAVEL-TIMES MODELING OF REFLECTED WAVES FOR HORIZONTAL LAYER WITH STRONG ANISOTROPY 
In the most seismic data processing software NMO-corrections for monothipic models of subsurface are considered as hyperbolic in the case if 

maximum offset does not exceed a depth to the reflecting surface. For anisotropic models are considered the presence of deviations from hyper-
bolic form of NMO-corrections even for small offsets. Awareness lack of the importance of non-hyperbolic moveout significantly reduces the quality 
of seismic data and the interpretations accuracy, especially for data derived using long-offset acquisition scheme. This article discusses the effect 
of geological symmetry influence of layer on a form of quasi P-wave travel-times for models with thick horizontal boundaries. Elastic modulus of 
layers are similar as real and identified using seismic methods in sedimentary strata. The paper describes the results of tests the methods and 
algorithms of travel-times computation for quasi P-wave in the case of horizontally layered medium with triclinic and orthorhombic symmetry. The 
algorithm is based on the solving task of reflection and refraction waves on a plane interface with two anisotropic layers. To determine the reflected 
and refracted rays used the Snell's law as equal to the tangential component of the boundary of the refraction vectors (incident, reflected, refracted 
waves). For finding the refraction projection of the reflected wave on the normal to the reflection surface is used the equation of refraction.  

For models with triclinic and orthorhombic symmetry maps of travel-times isochrones has azimuthal dependence, the location of extreme val-
ues adheres to existing elements of symmetry, in particular for models with orthorhombic symmetry to symmetry planes and axes of the second 
order. For the first time on the real elastic modulus for shale rocks was investigated that the symmetry of the travel-times surface of horizontally 
layered medium adheres to the elastic symmetry of the shale layer. It was found that long-offset travel-times of reflected waves provide an opportu-
nity to assess the symmetry of layer and determine the nature of the azimuthal anisotropy of seismic velocities. The developed approach opens up 
wide possibilities for the investigation of complex seismic models in which non-hyperbolic dependence of NMO-corrections determined by the dip 
and curvature of reflectors, as well as heterogeneity of geological media. 

Keywords: travel-times of reflected waves, anisotropy, symmetry, nonhyperbolity 
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МОДЕЛИРОВАНИЕ ГОДОГРАФА ОТРАЖЕННЫХ ВОЛН ДЛЯ СИЛЬНО АНИЗОТРОПНОЙ  
ГЕОЛОГИЧЕСКОЙ СРЕДЫ С ГОРИЗОНТАЛЬНОЙ ГРАНИЦЕЙ 

В большинстве систем обработки сейсмических данных кинематические поправки для сейсмических отражений в условиях 
монотипных моделей геологической среды, рассматриваются как гиперболические, если максимальное расстояние источника от 
приемника (офсет), не превышает глубины до отражающей границы. Для анизотропных моделей принимается во внимание нали-
чие отклонения от гиперболической поправки даже для малых разносов. Недостаточное осознание важности негиперболической 
кинематической поправки значительно снижает качество обработки сейсмических данных и точность их интерпретации, осо-
бенно тех данных, которые получены с длинно-офсетной системой наблюдений. В этой статье рассматривается влияние сим-
метрии слоя на форму плоскостного годографа квазипродольной волны для толстослойной модели с горизонтальными граница-
ми, упругие стали которой соответствуют реальным, определенных по сейсмическим методами в осадочных толщах пород в 
естественном залегании. В работе описываются и апробируются методы и программа численных расчетов площадных годо-
графов отраженных квазипродольных волн горизонтально-слоистой среды триклинной и ромбической симметрии. Алгоритм 
основывается на решении задачи отражения-преломления волны на плоской границе двух анизотропных сред. Для определения 
отраженного и преломленного лучей применяется закон Снеллиуса в виде равенства касательных к границе компонент векторов 
рефракции (падающей, отраженной, преломленной волн). Для нахождения проекции вектора рефракции отраженной волны на нор-
маль к отражающей поверхности используют уравнение рефракции. Для моделей триклинной и ромбической симметрии карты 
изохрон площадных годографов имеют азимутальный характер зависимости, расположение экстремальных значений подчинено 
имеющимся элементам симметрии, в частности для моделей ромбической симметрии – плоскостям симметрии и осям второго 
порядка. Впервые на реальных упругих постоянных для толщи глин установлено, что симметрия карты изохрон площадного 
годографа горизонтально слоистой среды строго соответствует упругой симметрии глинистого слоя. Установлено, что дол-
го-разносные плоскостные годографы отраженных квазипродольных волн предоставляют возможность оценки упругой симмет-
рии толщи и определять характер азимутальной анизотропии сейсмических скоростей. Разработанный подход открывает ши-
рокие возможности для исследования более сложных сейсмических моделей, в которых негиперболоидность обусловливается 
наклоном и кривизной отражающих границ, а также неоднородностью геологической среды. 

Ключевые слова: годограф отраженных волн, анизотропия, симметрия, негиперболоидность. 
 

 




