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ABOUT ADVANCED ALGORITHM OF STATISTICAL SIMULATION  
OF SEISMIC NOISE IN THE FLAT OBSERVATION AREA FOR DETERMINATION  

THE FREQUENCY CHARACTERISTICS OF GEOLOGICAL ENVIRONMENT 
 

(Рекомендовано членом редакційної колегії д-ром фіз-мат. наук, проф. Б.П. Масловим) 
The article is devoted to the theory and methods of random process and field statistical simulation on the basis of their spectral 

decomposition and modified Kotelnikov-Shennon interpolation sums, as well as using these methods in environmental geophysical 
monitoring. The problem of statistical simulation of the 3D random fields (homogeneous in time and homogeneous isotropic with 
respect to the 2 other variables) is considered for introducing into seismological researches for determination the frequency charac-
teristics of geological environment. Statistical model and advanced numerical algorithm of simulation realizations of such random 
fields are built on the basis of modified interpolation Kotelnikov-Shennon decompositions for generating the adequate realizations of 
seismic noise. Real-valued random fields ξ(t, x), t  R, x  R2, that are homogeneous with respect to time and homogeneous iso-
tropic with respect to spatial variables in the multidimensional space are studied. The problem of approximation of such random 
fields by random fields with a bounded spectrum is considered. An analogue of the Kotelnikov–Shannon theorem for random fields 
with a bounded spectrum is presented. Improved estimates of the mean-square approximation of random fields in the space R  R2 
by a model constructed with the help of the spectral decomposition and interpolation Kotelnikov–Shannon formula are obtained. 
Some procedures for the statistical simulation of realizations of Gaussian randomfieldswith a bounded spectrum that are homoge-
neous with respect to time and homogeneous isotropic with respect to spatialvariables in the 2D space are developed. There has 
been proved  theorems on the mean-square approximation of homogeneous in time and homogeneous isotropic with respect to the 
two other variables random fields by special partial sums. A simulation method was used to formulate an advanced algorithm of 
numerical simulation by means of this theorem. The spectral analysis methods of generated seismic noise realizations are consid-
ered. There have been developed universal methods of statistical simulation (Monte Carlo methods) of multiparameters seismology 
data for generating seismic noise on 2D grids of required detail and regularity.  

Keywords: statistical simulation, algorithm, frequency characteristics, seismogram. 
 

Introduction. This article describes the problem of im-
proved statistical simulation algorithm for 3D random field 
realizations with a limited spectrum which depends on time 
and was set in the two-dimensional observation area for 
implementation into seismological research to determine 
the frequency characteristics of geological environment 
under the building sites. The model was built and based on 
improved estimates of random field mean approximation 
errors the improved algorithm was formulated by this model 
for numerical simulation of field realizations that are ade-
quate to realizations of seismogram's noises. 

It is a further theoretical generalization solved in papers 
[3-9, 17, 18] for problems concerning the increase of vari-
ables space dimensionality, where random field domain 
with the limited spectrum is focused. This generalization 
direction development is important because of necessarily 
to use the proposed method for statistical modeling of ran-
dom fields with a limited spectrum that depend on the time 
and are set in the multidimensional variables area, where 
was added dimensionality value of one or more influential 
parameters additionally to the spatial coordinates. 

Practically it is important to use the statistical simulation 
realizations of such random fields for the release of seismic 
noise dependent on one or more significant parameters 
and external influence, and to obtain appropriate estima-
tions for the frequency characteristics of three-dimensional 
geological environment observation area. These estima-
tions should be considered in the construction of different 
objects to ensure the building's solidity. 

As can be seen from the articles ([11-16, 19] and oth-
ers), models and algorithms for numerical simulation of 
random processes and fields based on Fourier transform, 
Fourier-Bessel and series of sinc function (interpolation 
Kotelnikov-Shannon formula) are relatively recently apply-
ing in geological sciences. 

The article describes the application prospects of con-
structed models and algorithms for statistical modeling of 

3D random fields based on a decomposition into modified 
Kotelnikov-Shannon interpolation series for seismic noise 
research problem, which depend on one or more critical 
parameters for the purpose of determining the frequency 
characteristics of the geological environment under the 
building sites in a two-dimensional observation area. 

1. The spectral decompositions and modified inter-
polation Kotelnikov-Shennon series 

It is recommended to use the approach is developed on 
the basis of spectral decomposition of random fields, see 
[20], and modified Kotelnikov-Shennon theorem for random 
fields with a bounded spectrum which are homogeneous in 
time and homogeneous isotropic with respect to the other 
coordinates for the statistical simulation of observed seis-
mogram's noises which depend on one or several impor-
tant parameters. 

Consider the following results that are proved on the 
basis of mentioned theory. 

1.1. Time homogeneous and homogeneous isotropic 
with respect to the spatial variables 3D random fields 

Consider a real valued mean square continuous ran-

dom field   2, ,  ,  t x t R x R   , in 2R R  which is time ho-

mogeneous and homogeneous isotropic with respect to the 
other variables. This means that 

1)  , constE t x   for all t R  and 2x R  (we assume 

that  , 0E t x  ), 

2)      , , ,E t x s y B t s      for all ,t s R  and for all 

2,x y R  where  ,B    is a correlation function that de-

pends on the shift of the time t s    and distance be-
tween the vectors  and y , that is on  : 

 2 2
1 2 1 2 1 22 cosr r r r      . 
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The correlation function of a real valued random field 

 ,t x  in 2R R  which is homogeneous with respect to 

time  and homogeneous isotropic with respect to the 
spatial variables admits the following integral representa-
tion, see [20], as 

       0
0

, ,i t s uB t s e J du d
 





       , (1) 

where  ,du d   is a spatial-temporal spectral measure on 

Borel sets    , 0, ,      0J x  is the Bessel function 

of the first kind of order 0. 
The next statement for the spectral decomposition of 

such random field in 2R R  is mentioned in [20]. 
Theorem 1. A mean square continuous random field 

 ,t x  in 2R R  which is time homogeneous and homo-

geneous isotropic with respect to the other variables admits 
the following spectral decomposition 

     0 0
, , , cositu l

m m mmt r v e J r Z du d m
 

 
          

   
0

, sin ,itu l
m me J r Z du d m

 


      (2) 

where  ,   are polar coordinates of point ,x   mJ x  is 

the Bessel function of the first kind of order m  and   l
mZ   

are sequences of real valued orthogonal random measures 
on Borel subsets of the set    , 0,     such that  

 1 0,l
mEZ B        1 2 1 2

ql q p
m p m iEZ B Z B B B      (3) 

for all Borel subsets 1B  and 2B  of ,R R , 0,1,...m p   and 

, 1,2,...l q  , here  ,u   is the spectral function of the 

random field. 

Moreover, the spectral measures  ,l
mZ B  0,1,...,m   

1,2,...l   are uniquely determined with probability one by 
the following relations 

      
2 1

2 11 2 1 2 , ,0
, , . . .

n

i t i t
Tl

m m mT S

e e
Z l i m r r

it

   
 

                    2, , ,l
mS t r dm drdt    (4) 

where  2m   is the Lebesgue measure in a unit sphere 2S  

of 2,R   l
mS   are orthonormal spherical harmonics of order 

m , and    0, 1
1

,
n

r J r
c     

 

       

m,

0, 1 1 1,
2

2
1 2

2 ,

2

m m r m m
r

r

m

mr J r S r rJ r S r
mc



  

 

               
      

 

for 0,m    ,S z   is the Lommel function. 

The correlation function of a mean square continuous 

random field  ,t x  in 2R R  which is homogeneous with 

respect to time  and homogeneous isotropic with respect 
to the other variables admits the expansion, see [8]. 

If one considers the "restriction" of the random field 

 ,t x  to the circle of a fixed radius r    then the correla-

tion function of such random process can be written as 

     1 2 1 2, , , s, ,B t s E t r r           

   1 2
00

2 sin , ,
2

i t s ue J r du d
  


       
 

   (5) 

where  1 1, ,x r    2 2,x r  . 

We have the following decomposition from (5), when 
we use Addition Theorem  by Bessel functions [2],  

       2
1 2 00

, ,i t s uB t s e J r du d
  


           

       2
1 21 0

2 , cos .i t s u
mm e J r du d m

  
 

          (6) 

Than follows that spectral coefficients are expressed in 
terms of the spectral function as 

       2
0

, , .i t s u
m mb t s r e J r du d

  


       (7) 

Consider the following decomposition of a mean square 
continuous random field  ,t x  which is homogeneous 

with respect to time and homogeneous isotropic with re-
spect to the other variables, that is 

   0,1, , ,t r t r      

   ,1 ,212 , cos , sin ,m mm t r m t r m
         (8) 

where      , 0
, , ,itu k

m k m mt r e J r Z du d
 


      0,1,...;m   

1,2.k   
Note that we use in (8) a notation similar to (2). 
Since  , , 0,E t r    we have  , , 0,m kE t r   1,2.k   

Theorem 2. If  , ,t r   is a random field in 2R R  

which is homogeneous in time and homogeneous isotropic 
with respect to the spatial variables ,r  , then 

     , ,, , , ,jr
m i r j m miE t r s r b t s r       (9) 

where k
l  is the Kronecker symbol,   ,mb t s r  is a se-

quence of positive definite kernels in R R  of the form (7) 

and such that  1 0,mm b r
  and  spectral coefficients are 

following integrals: 

       2
0

, , ,i t s u
m mb t s r e J r du d

  


       

The variance of the random field  , ,t r   is expressed 

in terms of the spectral coefficients as 

       2
0 1, , , , 0, 2 0, .mmE t r D t r b r b r

         (10) 

Thus the expansion (8) can be used for statistical simu-

lation of random fields in 2R R  which are homogeneous 
with respect to time and homogeneous isotropic with re-
spect to the variables ,r   if the spectral function (or corre-
lation function) is specified. 

1.2. Time homogeneous random 3D fields with a 
bounded spectrum 

Consider a random field  , ,t r   in 2R R . We say 

that  , ,t r   is a random field with a bounded spectrum if 

all its spectral measures  l
mZ B  in (4) are concentrated in 

 , ,R     0  . 

Let  , , ,t r   ,t R  ,r R   0,2   be a random 

field in 2R R  which is time homogeneous and homogene-
ous isotropic with respect to the variables r . Assume that 
the spectrum ( , )U   of the field   is bounded with re-

spect to time t ,  , ,U      ,R   and let ( , )U   be 

concentrated in  , R    . 
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Let   be an arbitrary number such that    . Put 

 
sin

, , , , .N
N k N

k
t

k
t r r

k
t



                    

  (11) 

Then the following assertion holds, see [9]. 

Theorem 3. Let  , ,t r   be a random field in 2R R  

which is time homogeneous and homogeneous isotropic 
with respect to the variables ,r  . If the spectrum of 

 , ,t r   is bounded in time t then the mean square ap-

proximation with the help of partial sum (11) is such that 

    2
, , , ,NE t r t r       

      
2

0 12 2

1
0, 2 0, ,

1

mm

t
b r b r

N





 

   

 


 (12) 

where 

     2
0

0, , .m mt
b r J r du d




      (13) 

Corollary. Let  , ,t r   be a random field in 2R R  

whose spectrum is bounded in time t . Then  , ,t r    

admits the following Kotelnikov–Shannon decomposition: 

 
sin

, , , , ,k

k
t

k
t r r

k
t




                    

  (14) 

where the series on the right hand side of (14) converges 
in the mean square sense for    . 

2. The improved mean square estimate for the ap-
proximation and advanced procedure for the statistical 
simulation  

The Kotelnikov–Shannon decomposition (14) of ran-

dom fields in 2R R  with a bounded spectrum which are 
time homogeneous and homogeneous isotropic with re-
spect to the other variables it is possible to use for the sta-
tistical simulation of such random fields with their defined 
statistical characteristics. By the simulating is important to 
improve the estimate of the mean square approximation 
(12) for using it in the advanced procedure for the numeri-
cal simulation realizations of these random fields. The vari-
ants of such estimates are obtained in the next theorems. 

We use partial sum (8) and partial sum of decomposi-
tion (14) for a random field  , ,t r   which are time homo-

geneous and homogeneous isotropic with respect to the 
variables ,r   to construct a model for such field if its spec-
trum is bounded with respect to time t and concentrated on 
an interval  , R    . 

The following partial sum is taken as an approximation 
model of such 3D random field  

 , 0,1 ,1 ,21

sin
, , , 2 , cos , sin ,N M

N M m mk N m

k
t

k k k
t r r r m r m

k
t

 

                                              

          (15) 

where , , ;m p
k

r
    

 0,1,... ;m M  , ;k N N   1,2p   is a 

sequence of Gaussian stochastic processes such that 

, , ,, 0,  , ,m p m p s l
k k q

E r E r r
                       

 

 
, .s m

l p m
k q

b r
   

    
 

  (16) 

It is known that   ,mb t s r  is a sequence of positive 

definite kernels in R R  that can be calculated by means 

of the spatial-temporal spectrum  ,du d   of the random 

field  , ,t r   by expression (13) and such that satisfies 

following condition  0 0,mm b r
    . 

For formulating the advanced procedure of numerical 
simulation the realizations of Gaussian 3D random field 

 , ,t r   which is time homogeneous and homogeneous 

isotropic with respect to the variables ,r   whose spectrum 
is bounded in t  it is necessary to derive more improved 
mean square estimate for the approximation of such ran-
dom field by its approximation model (15). Such results are 
deduced in the next theorems. 

Theorem 4. The mean square estimate for the ap-

proximation of random field    , , ,t r t x     in 2R R  

which is time homogeneous and homogeneous isotropic 
with respect to the variables ,r   whose spectrum is 
bounded in t  by its approximation model (15) assumes 
following expression 

    2 2
1 2

1 1 1
, , , ,

2NE t r t r r r
M

             
   

   
2

2 2

1
0, ,

1

M
t

B r
N




   




 (17) 

where 

 
4 1

,
t

t

    


 (18) 

 
0

, ,k
k du d

 


     

  1,2,k   (19) 

     0 010, 0, 2 0, .M
M mB r b r b r     

Using the results from [10] another improved mean 
square estimate for the approximation of random field 

 , ,t r   by the model (15) is obtained. Following theorems 

5 and 6 are proved. 
Theorem 5. The mean square estimate for the approxi-

mation of random field    , , ,t r t x     in 2R R , which is 

time homogeneous and homogeneous isotropic with respect 
to the variables ,r   whose spectrum is bounded in t  by its 
approximation model (15) is written as follows 

    2 2
, 1 2

1 1 1
, , , ,

2N ME t r t r r r
M

             
    

 
 

 
2 2 2

0
2 2

0, ,f
M

L L t
B r

N




 
  (20) 

where supuv u    is an arbitrary number,   is an 

interval  ,   , 
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 0
2 2

sin .
1

L t t
e

    
 (21) 

Theorem 6. The mean square estimate for the ap-

proximation of random field    , , ,t r t x     in 2,R R  

which is time homogeneous and homogeneous isotropic 
with respect to the variables ,r   whose spectrum is 
bounded in t  by its approximation model (15) admits fol-
lowing expression 

    2 2
, 1 2

1 1
, , , ,

2N ME t r t r r r
M

             
    

 
 2

4
0, .

2 1
MB r

N 
   (22) 

The improved mean square estimate for the approxima-

tion of a random field  , ,t r   in 2,R R  which is time 

homogeneous and homogeneous isotropic with respect to 
the variables ,r   whose spectrum is bounded in t  by a 
model (15) are derived.  

Applying previous principles of expansion and thinking 
as well as to the estimates (17), (20), (22), the similar three 
mean square estimates for the approximation of a random 

field  , ,t r   in 2,R R  which is time homogeneous and 

homogeneous isotropic with respect to the variables ,r   
whose spectrum is bounded in t  by a model (15) are ob-
tained in [17] as 

    2
,, , ,N ME t r t x      

 2
20

1 22 2

2 2 1
,

2
1

t
r r

MN

               

  


        (23) 

     
 

2 2
2 0

, 0 2 2
, , , 2N M

L t
t r t x

N


      

 
   

2
1 2

2 1
,

2
r r

M
         

                        (24) 

   
 

2
, 0 2

8
, , 2

2 1
N ME t x t x

N
     

 
   

2
1 2

2 1
,

2
r r

M
        

                       (25) 

where r  is a polar radius,   is an arbitrary number such 

that supuv u   . 

Then the procedure for the statistical simulation the re-
alizations of a Gaussian 3D random field which is time ho-
mogeneous and homogeneous isotropic with respect to 
variables ,r   can be stated as follows if its spectrum is 
bounded in t . 

The procedure 
1. According to a prescribed accuracy 0  , choose 

positive integer numbers N  and M  for the model (15) by 
using one of the following inequalities (23), (24), (25). 

2. For a fixed polar radius ,r  generate values of the 

Gaussian stochastic processes , , ;m p
k

r
    

 0,1,... ;m M  

, ;k N N   1,2p  , such that satisfy conditions (16). 
3. Evaluate the expression in (15) at a given point 

    2, , , ,t r T T A     2 2A R , by substituting the number 

N   and values of Gaussian stochastic processes evalu-
ated in steps 1 and 2. 

4. Check whether the realization of the stochastic ran-
dom field  , ,t r   in the grid points in flat area of observa-

tion generated in step 3 fits the data of this random field by 
testing the corresponding statistical characteristics. 

Numerical simulation example 
The practical using of the constructed model (15) and 

procedures is considered for numerical simulation for real 

valued random field  , ,t r   in 2R R  with a bounded 

spectrum, that are time homogeneous and homogeneous 
isotropic with respect to variables ,r   on in this example. It 
admits that this 3D random field have spatial-temporal co-
variance function  ,С   . We may use approach, see [10] 

for such covariance functions that divides spatial and tem-
poral components by means of product-sum formulas:  

         1 2 3, ,x t x tС k C C k C k C          

where 1 2 3,  ,  k k k  – are coefficients: 

     
   1

0 0 0,0
,

0 0
x t z

x t

B B B
k

B B

 
  

   
 2

0,0 0
,

0
z t

x

B B
k

B


  

   
 3

0,0 0
.

0
z x

t

B B
k

B


  

We chose the spatial covariance function  xС   which 

connected to spatial variogram  x   on homogeneous 

isotropic case as:      0x x xС С     . The example of 

spatial covariance function is      0x x xС С B    where 

 0xС  spatial variance,  xB   is a spatial correlation func-

tion Cauchy with the parameters 1a   and 1 : 

 
2

2
1 ,

v

xB
a


 

    
 

 0,a   0.v   

The spatial variogram  x   simulating by model (15) 

and results of realizations random field  , ,t r   in the 

point 0t   on the grid of points on the plane  , ,i ir   

 0,0.1,...,1 ,ir   
2

0, ,...,2
10i
     

 represented on (Fig. 1а). 

The spatial-temporal variogram (Fig. 2): 

      
        

, 1 3

1 2 1

0

0 .

t x x t

t x t x

k С k

k С k k

      

        
 

Temporal covariance function  tС   which connected 

to temporal variogram  t   on homogeneous case as: 

     0t t tС С     , where  0tС  is a temporal variance. 

We choose as example of temporal covariance functions 
the next:      0t t tС С B    where  tB   is a temporal 

correlation function of Bessel type with parameter 0.055 : 

     2 1 .v v
t vB v J       

The temporal variogram is constructed for results of 
simulating realizations of random field  , ,t r   by the 

model (15) in the point of space    , 0,0r    at the change 

of time ,t  0 t T   for example 20.01T   seconds and 

1
,

T
t

N
  


 0.01,t   100   ( N  is the number of ex-

perimental observations points at the time ;nt  1,..., ;n N  

2001N  ) that represented on illustration (Fig. 1b). 
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а 

 
b 

Fig.1. Empirical (crosses) and theoretical (curve) variogram: 
а – for averaging 20 realizations of random fields  0, ,r   with Cauchy type correlation function for parameters 1,a   1v  ; b – for 

averaging 15 realizations of random field  t,0,0  with Bessel type correlation function for parameter 0.055v   

 
For graphic interpretation of the simulating realizations 

of the 3D random field  , ,t r   the plot of field realizations 

 ,0,0t  in times of experimental observations t  from 0 to 

20 seconds was constructed  and wireframe surface 

 0, ,r   was built by using Surfer Software of Surfer, on 

the grid of points on the plane that represented illustration. 
 

 
Fig. 2.The spatial-temporal variogram  , ,t x    

 

3. Practical use of 3D random field simulation with 
space-time correlation function 

Different approaches [10] can be applied for practical use 
of the advanced algorithm and model (15) for numerical simu-
lation of real and homogeneous in time t implementations, that 
are homogeneous and isotropic with respect to variables ,r   

on 2R R  of random fields  , ,t r  , which have a limited 

spectrum and space-time correlation function  ,zB   . It 

should be noted that models of space-time correlation struc-
ture are divided into two types: first takes into account the 
distribution of the spatial and time components and other with 
no such distribution. Work [10] gives an example of application 
and most commonly used models, namely metric model, lin-
ear model, model of space-time covariance product and 
model of product and sum. 

Practical use example in seismology of developed algo-
rithm and numerical simulation model for real and homo-
geneous in time t implementations, two-dimensional homo-
geneous isotropic random fields with a limited spectrum 
and space-time correlation function  ,zB    by method 

which divides the spatial and time components with prod-
uct-sum formula described in [6]. 

The realization value arrays of random process 

 , ,t r   ( ,   – fixed) were simulated as noise seismo-

grams for each observation point on each component: EW, 

NS, and Z. They give important information about soil vi-
bration properties within the territory of building and operat-
ing sites. These properties are also required for design of 
new antiseismic buildings and constructions, and providing 
earthquake resistance of existing buildings in order to avoid 
dangerous resonance effects. Random disturbances from 
random external factors were removed from the simulated 
noise seismograms by statistical averaging filters. These 
disturbances include vibrations caused by the movement of 
trains or heavy car and so on. The adequacy of value array 
results from the simulated by statistical methods noise 
seismograms were tested on real seismograms from ob-
servation points on the flat area. 

Numerical simulation of soil strata frequency character-
istics in some cases can significantly reduce the cost of 
seismic zoning of building sites by reducing the number of 
instrumental observation points for earthquakes, explo-
sions and microseism. 

4. Spectral analysis of generated noise in the flat 
observation area 

Frequency characteristic estimates for the geological 
environment with the flat observation area (under construc-
tion sites) can be obtained by calculating and constructing 
the amplitude and phase spectra of noise in seismogram 
observation points in that area, considering fixed all argu-
ments except time [5]. Calculations of the amplitude and 
phase spectra can be made by direct method [1], i.e. pe-
riodogram method. Then based on these results the spec-
tral ratio of the Earth crust was build, which is independent 
of the spectrum of incident seismic waves, but determined 
entirely by the geological environment structure under the 
observation point. 

Those spectral methods that use frequency as an inde-
pendent parameter provide information about the structure 
and filtration properties of the upper crust layers, because 
any medium is a filter that due to resonance and reverbera-
tion effects increases the oscillation amplitude for some 
frequencies and reduces for the other [1]. The ability to 
simulate the effects depends on amplitude and phase fre-
quency characteristics of the geological environment for 
observation points situated under building sites and operat-
ing platforms, allows studying the geological section fea-
tures and predicting places where significant increase in 
the seismic oscillation intensity is possible due to reso-
nance effects and oscillation field interference nodes. 

Among the many ways to eliminate the influence of vari-
ous factors that affect the spectrum shape of seismic waves 
during earthquakes, explosions and microseism except that 
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due to the influence of the upper crust section part, the way 
should be noted based on the use of the vertical ( )ZS   

component spectra relations to the horizontal ( )NS   

component. Spectra must be calculated for the same wave. 
This ratio is called the crust spectral ratio ( )T  . 

( ) / ( ) ( )Z NS S T    . 
The ratio ( )T   is independent of the spectrum of inci-

dent seismic waves, but determined entirely by the geo-
logical environment structure under the observation point. 

Fig. 3 a and 1 b show graphs of amplitude spectra ( )S   

for the initial simulated noise realization for imaginary ob-
servation point with the oscillation components Z  and NS  
respectively, Figure 3 represents earth crust transmission 
ratio graph ( )T  , that was built on the smoothed amplitude 
spectrum ratio of simulated noise seismogram realization 
on the fluctuation Z -component to the similar spectrum of 
fluctuation component NS for an observation point. 

 

 
a 

 
b 

 
c 

( )T   

 , Гц 

 , Гц  , Гц 

( )S   ( )S   

 
Fig. 3. Graphs of amplitude spectra ( )S   for simulated array noise realization for imaginary observation point 

on the component a – Z and b – NS; c – the graph of transmission ratio ( )T   for smoothed amplitude spectra  

of simulated noise realization for imaginary observation point 
 

Interpretation of crust transmission ratio for these ob-
servations was conducted by comparing them with theo-
retical ratio calculated for well-known models of the upper 
section part. Fig. 3 shows graph ( )T   of smoothed ampli-
tude spectra transmission ratio for imaginary observation 
point that can be used to determine the increase of seis-
micity level on different parts of the building site, relative to 
the real observation point. 

Conclusions. The model and advanced algorithm of 
statistical simulation for time-homogeneous and 
homogeneous isotropic with respect to the two other 
variables 3D random fields with a limited spectrum were 
developed. These results continued research set in works 
[3-9, 17] for modeling and generation method of noise 
seismogram implementations at flat observation area [5] 
and it is an important supplement to the Monte Carlo 
method used in geology.  
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ПРО ПОКРАЩЕНИЙ АЛГОРИТМ СТАТИСТИЧНОГО МОДЕЛЮВАННЯ СЕЙСМІЧНОГО ШУМУ  
В ПЛОСКІЙ ОБЛАСТІ СПОСТЕРЕЖЕННЯ ДЛЯ ВИЗНАЧЕННЯ  

ЧАСТОТНИХ ХАРАКТЕРИСТИК ГЕОЛОГІЧНОГО СЕРЕДОВИЩА 
Робота присвячена подальшій розробці теорії та методів статистичного моделювання випадкових процесів та полів на основі їх 

спектральних розкладів та модифікованих інтерполяційних рядів Котельникова-Шеннона, а також застосуванню таких методів 
у задачах геофізичного моніторингу навколишнього середовища. Розглянуто задачу статистичного моделювання випадкових полів 
у тривимірній області змінних (однорідних за часом та однорідних ізотропних за двома іншими змінними) при впровадженні у сейсмо-
логічні дослідження для визначення частотних характеристик геологічного середовища. Побудовано модель та сформульовано по-
кращений алгоритм чисельного моделювання реалізацій таких випадкових полів на основі модифікованих інтерполяційних розкладів 
Котельникова-Шеннона для генерування адекватних реалізацій шуму сейсмограм. В статті вивчаються дійснозначні випадкові поля 
ξ(t, x), t  R, x  R2 – однорідні за часом та однорідні ізотропні за просторовими змінними в двовимірному просторі. Розглядається про-
блема апроксимації таких випадкових полів випадковими полями з обмеженим спектром. Для випадкових полів з обмеженим спектром 
встановлено аналог теореми Котельникова-Шеннона. Отримано вдосконалені оцінки середньоквадратичного наближення випадкових 
полів у просторі RR2 моделлю, побудованою на основі спектрального розкладу та інтерполяційної формули Котельникова-Шеннона. 
Розроблено покращений алгоритм статистичного моделювання реалізацій гауссівських однорідних за часом та однорідних ізотроп-
них за просторовими змінними в двовимірному просторі випадкових полів з обмеженим спектром. Наведено теореми про оцінки сере-
дньоквадратичної апроксимації однорідних за часом та однорідних ізотропних за двома іншими змінними випадкових полів частковими 
сумами рядів спеціального вигляду, за допомогою яких сформульовано покращений алгоритм чисельного моделювання реалізацій 
таких випадкових полів. Розглянуто способи проведення спектрального аналізу згенерованих реалізацій шуму сейсмограм. Розробле-
но універсальні методи статистичного моделювання (методи Монте-Карло) багатопараметричних сейсмологічних даних, які дають 
можливість вирішити проблеми генерування реалізацій шуму сейсмограм на плоcкій області спостереження на сітці необхідної дета-
льності та регулярності. 

Ключові слова: статистичне моделювання, алгоритм, частотні характеристики, сейсмограма. 
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ОБ УЛУЧШЕННОМ АЛГОРИТМЕ СТАТИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ СЕЙСМИЧЕСКОГО ШУМА  
В ПЛОСКОЙ ОБЛАСТИ НАБЛЮДЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ 
ЧАСТОТНЫХ ХАРАКТЕРИСТИК ГЕОЛОГИЧЕСКОЙ СРЕДЫ 

Работа посвящена разработке теории и методологии статистического моделирования случайных процессов и полей на основе 
их спектральных разложений и модифицированных интерполяционных рядов Котельникова-Шеннона, а также применению таких 
методов в задачах геофизического мониторинга окружающей среды. Рассмотрена задача статистического моделирования случай-
ных полей в трехмерной области переменных (однородных по времени и однородных изотропных по двум другими переменным) при 
внедрении в сейсмологические исследования для определения частотных характеристик геологической среды. Построена модель и 
сформулирован улучшенный алгоритм численного моделирования реализаций таких случайных полей на основании модифицирован-
ных интерполяционных разложений Котельникова-Шеннона для генерирования адекватных реализаций шума сейсмограмм. В статье 
изучаются действительнозначные случайные поля ξ(t, x), t  R, x  R2 – однородные по времени и однородные изотропные по про-
странственным переменным в двумерном пространстве. Рассматривается проблема аппроксимации таких случайных полей случай-
ными полями с ограниченным спектром. Для случайных полей полями с ограниченным спектром установлено аналог теоремы Коте-
льникова-Шеннона. Получены усовершенствованные оценки среднеквадратического приближения случайных полей в пространстве 
RR2 моделью, которая построена на основе спектрального разложения и интерполяционной формулы Котельникова-Шеннона. Раз-
работан улучшенный алгоритм статистического моделирования реализаций гауссовских однородных по времени и однородных изо-
тропных по пространственным переменным случайных полей с ограниченным спектром. Доказано теоремы об оценке среднеквадра-
тической аппроксимации однородных по времени и однородных изотропных по двум другими переменным случайных полей частич-
ными суммами рядов специального вида, при помощи которой сформулирован улучшенный алгоритм численного моделирования реа-
лизаций таких случайных полей. Рассмотрены способы проведения спектрального анализа сгенерированных реализаций шума сейс-
мограмм. Разработаны универсальные методы статистического моделирования (методы Монте-Карло) многопараметрических 
сейсмологичеких данных, которые дают возможность решить проблемы генерирования реализаций шума сейсмограм на плоскоской 
области наблюдения на сетке необходимой детальности и регулярности. 

Ключевые слова: статистическое моделирование, алгоритм, частотные характеристики, сейсмограмма. 




