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ABOUT ADVANCED ALGORITHM OF STATISTICAL SIMULATION
OF SEISMIC NOISE IN THE FLAT OBSERVATION AREA FOR DETERMINATION
THE FREQUENCY CHARACTERISTICS OF GEOLOGICAL ENVIRONMENT

(PexomeHAo8aHO 4YrieHOM pedakyiliHoi konezii 0-pom ¢hiz-mam. Hayk, npogp. b.11. Macroeum)

The article is devoted to the theory and methods of random process and field statistical simulation on the basis of their spectral
decomposition and modified Kotelnikov-Shennon interpolation sums, as well as using these methods in environmental geophysical
monitoring. The problem of statistical simulation of the 3D random fields (homogeneous in time and homogeneous isotropic with
respect to the 2 other variables) is considered for introducing into seismological researches for determination the frequency charac-
teristics of geological environment. Statistical model and advanced numerical algorithm of simulation realizations of such random
fields are built on the basis of modified interpolation Kotelnikov-Shennon decompositions for generating the adequate realizations of
seismic noise. Real-valued random fields §(t, x), t € R, x € R’ that are homogeneous with respect to time and homogeneous iso-
tropic with respect to spatial variables in the multidimensional space are studied. The problem of approximation of such random
fields by random fields with a bounded spectrum is considered. An analogue of the Kotelnikov—-Shannon theorem for random fields
with a bounded spectrum is presented. Improved estimates of the mean-square approximation of random fields in the space R = R?
by a model constructed with the help of the spectral decomposition and interpolation Kotelnikov—Shannon formula are obtained.
Some procedures for the statistical simulation of realizations of Gaussian randomfieldswith a bounded spectrum that are homoge-
neous with respect to time and homogeneous isotropic with respect to spatialvariables in the 2D space are developed. There has
been proved theorems on the mean-square approximation of homogeneous in time and homogeneous isotropic with respect to the
two other variables random fields by special partial sums. A simulation method was used to formulate an advanced algorithm of
numerical simulation by means of this theorem. The spectral analysis methods of generated seismic noise realizations are consid-
ered. There have been developed universal methods of statistical simulation (Monte Carlo methods) of multiparameters seismology

data for generating seismic noise on 2D grids of required detail and regularity.
Keywords: statistical simulation, algorithm, frequency characteristics, seismogram.

Introduction. This article describes the problem of im-
proved statistical simulation algorithm for 3D random field
realizations with a limited spectrum which depends on time
and was set in the two-dimensional observation area for
implementation into seismological research to determine
the frequency characteristics of geological environment
under the building sites. The model was built and based on
improved estimates of random field mean approximation
errors the improved algorithm was formulated by this model
for numerical simulation of field realizations that are ade-
quate to realizations of seismogram's noises.

It is a further theoretical generalization solved in papers
[3-9, 17, 18] for problems concerning the increase of vari-
ables space dimensionality, where random field domain
with the limited spectrum is focused. This generalization
direction development is important because of necessarily
to use the proposed method for statistical modeling of ran-
dom fields with a limited spectrum that depend on the time
and are set in the multidimensional variables area, where
was added dimensionality value of one or more influential
parameters additionally to the spatial coordinates.

Practically it is important to use the statistical simulation
realizations of such random fields for the release of seismic
noise dependent on one or more significant parameters
and external influence, and to obtain appropriate estima-
tions for the frequency characteristics of three-dimensional
geological environment observation area. These estima-
tions should be considered in the construction of different
objects to ensure the building's solidity.

As can be seen from the articles ([11-16, 19] and oth-
ers), models and algorithms for numerical simulation of
random processes and fields based on Fourier transform,
Fourier-Bessel and series of sinc function (interpolation
Kotelnikov-Shannon formula) are relatively recently apply-
ing in geological sciences.

The article describes the application prospects of con-
structed models and algorithms for statistical modeling of

3D random fields based on a decomposition into modified
Kotelnikov-Shannon interpolation series for seismic noise
research problem, which depend on one or more critical
parameters for the purpose of determining the frequency
characteristics of the geological environment under the
building sites in a two-dimensional observation area.

1. The spectral decompositions and modified inter-
polation Kotelnikov-Shennon series

It is recommended to use the approach is developed on
the basis of spectral decomposition of random fields, see
[20], and modified Kotelnikov-Shennon theorem for random
fields with a bounded spectrum which are homogeneous in
time and homogeneous isotropic with respect to the other
coordinates for the statistical simulation of observed seis-
mogram's noises which depend on one or several impor-
tant parameters.

Consider the following results that are proved on the
basis of mentioned theory.

1.1. Time homogeneous and homogeneous isotropic
with respect to the spatial variables 3D random fields

Consider a real valued mean square continuous ran-

dom field &(,x), te R, xeR*, in RxR*> which is time ho-

mogeneous and homogeneous isotropic with respect to the
other variables. This means that

1) EE(t,x)=const forall re R and xeR? (we assume
that E&(1,x)=0),

2) Eg(t,x)&(s,y)=B(t—s,p) for all 1,seR and for all
x,y R’ where B(t,p) is a correlation function that de-

pends on the shift of the time t=¢-s and distance be-
tween the vectors x and y, thatison p:

p= \/”12 +75° = 217y 008 (@193 -
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The correlation function of a real valued random field
&(z,x) in RxR* which is homogeneous with respect to

time t and homogeneous isotropic with respect to the
spatial variables admits the following integral representa-
tion, see [20], as

+00 00

J I

-0 0
where (D(du,dx) is a spatial-temporal spectral measure on

tsu

t—v p (du dk) (1)

Borel sets (—0,+0)x(0,4+x), Jy(x) is the Bessel function

of the first kind of order 0.
The next statement for the spectral decomposition of

such random field in Rx R? is mentioned in [20].
Theorem 1. A mean square continuous random field

g(z,x) in RxR* which is time homogeneous and homo-

geneous isotropic with respect to the other variables admits
the following spectral decomposition

. T 0
Z,ln ([kl,Kz)x [YleZ )) = l,l,m.I_T (;r ISn ¢
where m, (-) is the Lebesgue measure in a unit sphere S,

of R?, S,l,l(~) are orthonormal spherical harmonics of order

1
m,and @, (r)zc—le(yr),
n

Pm,y (}") =
1 ™ ;r 2)
= erJm (Yr) + SO,m+1—r (’YV) - Yran—l (yr)Sl,m (Yr) +2———<=,
)
2

for m>0, Sp,v(z) is the Lommel function.

The correlation function of a mean square continuous
random field &(z,x) in RxR* which is homogeneous with
respect to time t and homogeneous isotropic with respect

to the other variables admits the expansion, see [8].
If one considers the "restriction" of the random field

&(7,x) to the circle of a fixed radius »=p then the correla-
tion function of such random process can be written as
B(t_sa(pl _(PZ) = E&(l‘,r,(Pl)&(S,F,(Pz) =

= j Jwei(tfs)”JO(2%rsinL2(P2j®(d”’d7”)’ ©®)

where xl(r,(pl), xz(r,q)z).
We have the following decomposition from (5), when
we use Addition Theorem by Bessel functions [2],

B(t=s5.01=02) = [ [ 2 (r2) @ (du ) +

23" r“’ 0 flimshu g2 (1) ® (du,d))cos m (@) — 9,). ()

Than follows that spectral coefficients are expressed in
terms of the spectral function as

+00 p+o0 l t s u ;2
)= J
m

(rk) (du,d?»). (7)

ConS|der the foIIowmg decomposition of a mean square
continuous random field &(z,x) which is homogeneous
with respect to time and homogeneous isotropic with re-
spect to the other variables, that is

&(tr9)=coy (t.r)+

\52::1[%,1 (t,r)cosm@+g,, 5 (t,r)sin m(p}, (8)

—it

P T, (W) Zh (du,d))cos mo +

£(6r90) = T | [

+jj;j.gweit”Jm (Xr)Z,ln (du,dk)sinm(p}, 2)

where (p,¢) are polar coordinates of point x, J,(x) is

the Bessel function of the first kind of order m and {Z,ln()}
are sequences of real valued orthogonal random measures
on Borel subsets of the set (—0,+)x[0,+x) such that
EZ,,(B)=0, EZ) (B)Z4(By)=0808{®(B,nBy) (3)
for all Borel subsets B, and B, of RxR,, m,p=0,1,... and
lLg=12,..,
random field.

here ®(u,A) is the spectral function of the

Moreover, the spectral measures an(B), m=0,1,...,

[=1,2,... are uniquely determined with probability one by
the following relations

: [(Pm,y2 (r)_(pmm (r)}x S,ln((p)ﬁ(t,r,(p)dmzdrdt,

where ¢, (t.r)= Ij;ojgweit”Jm (rr)
k=1,2.
Note that we use in (8) a notation similar to (2).
Since Eg(t,r,¢)=0, we have Eg, ,(1,r)=0, k=1,2.

4)

ZE (du,dr), m=0,1,.;

Theorem 2. If &(z,r,¢) is a random field in RxR?

which is homogeneous in time and homogeneous isotropic
with respect to the spatial variables r,¢, then

Egy i (7). (5,7) = 8,8/ by, (1 =5.7), 9)
where &} is the Kronecker symbol, {bm(t—s,r)} is a se-
quence of positive definite kernels in Rx R, of the form (7)
and such that > b,
following integrals:

b (t=s.r) = [ 71772 (1)@ (dudh),
The variance of the random field &(z,7,¢) is expressed
in terms of the spectral coefficients as

E?;(t,r,(p)z _ Dé(t’r’(p) = bO(O’r) + ZZC;::lbm (0,}"). (1 0)
Thus the expansion (8) can be used for statistical simu-

(0,r) and spectral coefficients are

lation of random fields in R x R*> which are homogeneous
with respect to time and homogeneous isotropic with re-
spect to the variables r,¢ if the spectral function (or corre-

lation function) is specified.
1.2. Time homogeneous random 3D fields with a
bounded spectrum

Consider a random field &(z,r,¢) in RxR*. We say

that&(z,r,¢) is a random field with a bounded spectrum if

all its spectral measures Z,’n(B) in (4) are concentrated in
[-0,0]xR,, ®>0.

Let &(t,r,9), r€R,
field in R x R*> which is time homogeneous and homogene-

ous isotropic with respect to the variables r . Assume that
the spectrum ®(U,A) of the field & is bounded with re-

AcR,, and let ®U,A) be

reR,, ¢e€[0,2n] be a random

spect to time ¢, U c[-®,d],

concentrated in [-&,®] xR, .
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Let ® be an arbitrary number such that © > @® . Put

. ( kn]
sIw| t——
(0]
ol t——
O]
Then the following assertion holds, see [9].
Theorem 3. Let &(1,7,¢) be a random field in RxR?

which is time homogeneous and homogeneous isotropic
with respect to the variables r,¢. If the spectrum of

&(1,r,0) is bounded in time t then the mean square ap-
proximation with the help of partial sum (11) is such that

E‘&(t,r,(p)— E_,N(t,r,(p)‘2 <

TO_ L on2s o). (12

where

by (0,7) L\J P IE (N D (du,d)). (13)

Corollary. Let &(7,r,¢) be a random field in RxR?
Then §&(1,r,0)
admits the following Kotelnikov—Shannon decomposition:

whose spectrum is bounded in timezt.

. kn
E(rro) =27 _c (" «pjm(ft(t,m"j) (14)

where the series on the right hand side of (14) converges
in the mean square sense for o> @ .

2. The improved mean square estimate for the ap-
proximation and advanced procedure for the statistical
simulation

The Kotelnikov—Shannon decomposition (14) of ran-

dom fields in RxR? with a bounded spectrum which are
time homogeneous and homogeneous isotropic with re-
spect to the other variables it is possible to use for the sta-
tistical simulation of such random fields with their defined
statistical characteristics. By the simulating is important to
improve the estimate of the mean square approximation
(12) for using it in the advanced procedure for the numeri-
cal simulation realizations of these random fields. The vari-
ants of such estimates are obtained in the next theorems.
We use partial sum (8) and partial sum of decomposi-

tion (14) for a random field &(z,7,¢) which are time homo-
geneous and homogeneous isotropic with respect to the
variables r,¢ to construct a model for such field if its spec-
trum is bounded with respect to time t and concentrated on
aninterval [-&,0]xR, .

The following partial sum is taken as an approximation
model of such 3D random field

sinm[t——nj
EN,M(to”a(P):Z;iNkm{GOI( ]“L\/—Zm 1(€m1[k VJCOS’"(P‘*Gm 2(?»”)5111”’@)} (15)

=

where gmﬂp[k—n,rj; m=0,1,.M; k=-N,N; p=12 is a
(O]

sequence of Gaussian stochastic processes such that

km km T
Egm,p[;»}’j:oa Egm,p( jgvl(q V)—
~ k—
:575;’17,"[( q)n,r]. (16)
®

It is known that { (t-s, r)} is a sequence of positive

definite kernels in Rx R, that can be calculated by means
of the spatial-temporal spectrum @(du,dk) of the random

field g(z,7,9) by expression (13) and such that satisfies

following condition " _ 5,,(0,r) <.

For formulating the advanced procedure of numerical
simulation the realizations of Gaussian 3D random field
&,(t,r,(p) which is time homogeneous and homogeneous

isotropic with respect to the variables r,¢ whose spectrum
is bounded in ¢ it is necessary to derive more improved
mean square estimate for the approximation of such ran-
dom field by its approximation model (15). Such results are
deduced in the next theorems.

Theorem 4. The mean square estimate for the ap-

proximation of random field &(z,7,¢0)=¢&(z,x) in RxR?
which is time homogeneous and homogeneous isotropic
with respect to the variables r,¢ whose spectrum is

bounded in ¢ by its approximation model (15) assumes
following expression

2 1 1(1 . -
E‘@(r,r,(p)—?;N(t,r,(p)‘ S;ﬁ(grul+r2u2)+

v 1 g

e — By (0.7), (17)
-3
where
4(9\4“]
v()=—"—, (18)
pk_j“” 0D (du,dd), k=1,2, (19)

BM(O,r) bO(O r)+22 bO(O r).
Using the results from [10] another improved mean
square estimate for the approximation of random field

?;(t,r,(p) by the model (15) is obtained. Following theorems

5 and 6 are proved.
Theorem 5. The mean square estimate for the approxi-

mation of random field &(z,7,¢)=&(z,x) in RxR*, which is

time homogeneous and homogeneous isotropic with respect
to the variables r,¢ whose spectrum is bounded in ¢ by its

approximation model (15) is written as follows
= 2 1 1(1 . .
E‘&(t,r,(p)—ﬁN,M (I,r,(p)‘ <7ﬁ£§rul+r2“2j+

L()Z By (0,7), (20)
(0=7)°N

where ®>v=sup,.|u| is an arbitrary number, A is an

interval [-®,®],
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Lo(t)zl_%(%j‘sinwt‘. (21)

Theorem 6. The mean square estimate for the ap-
proximation of random field &(z,r,¢)=¢&(z,x) in RxR?,

which is time homogeneous and homogeneous isotropic
with respect to the variables r,¢ whose spectrum is
bounded in ¢ by its approximation model (15) admits fol-
lowing expression

- v 1 (1. )

E‘@(t,r@) —Enm (t,r,(p)‘ < Min(aml n ’"zuzj N

4 -

oy o (0r) 22

(2N -1) w(0r) (22)

The improved mean square estimate for the approxima-

tion of a random field &(z,r,¢) in RxR?, which is time

homogeneous and homogeneous isotropic with respect to
the variables r,¢ whose spectrum is bounded in ¢ by a

model (15) are derived.

Applying previous principles of expansion and thinking
as well as to the estimates (17), (20), (22), the similar three
mean square estimates for the approximation of a random

field &(z,7,¢) in RxR?, which is time homogeneous and

homogeneous isotropic with respect to the variables r,o

whose spectrum is bounded in ¢ by a model (15) are ob-
tained in [17] as

E[e(tr0) By s (13 <

2 ~
t
Sy (2)72“0 2+i(l”}11+r2ﬁ2J<8, (23)
N (1 g)j M\ 2
()

- 2 N 12 (1) ?
‘ﬁ(hﬂ‘P)—éN,M(fsx)‘ SZHOL“"'
(0—1)"N
2 (1 . .
+W(Erul +r2p2j <g, (24)
E[e(tx) =&y ay ()] <2605 ——+
’ n* (2N -1)
2 (1 . .
W[Erul+}"2“2j<8, (25)

where r is a polar radius, ® is an arbitrary number such
that o>v= supueA‘u‘ .

Then the procedure for the statistical simulation the re-
alizations of a Gaussian 3D random field which is time ho-
mogeneous and homogeneous isotropic with respect to
variables r,¢p can be stated as follows if its spectrum is
bounded in ¢ .

The procedure

1. According to a prescribed accuracy ¢>0, choose
positive integer numbers N and M for the model (15) by
using one of the following inequalities (23), (24), (25).

2. For a fixed polar radius r», generate values of the

Gaussian stochastic processes Sm,p (H’FJ; m=0,1,.M;
()

k=-N,N; p=1,2, such that satisfy conditions (16).
3.Evaluate the expression in (15) at a given point
(t,r,9)€[-T.T]x 4%, 4> < R*, by substituting the number

N and values of Gaussian stochastic processes evalu-
ated in steps 1 and 2.
4.Check whether the realization of the stochastic ran-

dom field &(z,7,¢) in the grid points in flat area of observa-

tion generated in step 3 fits the data of this random field by
testing the corresponding statistical characteristics.
Numerical simulation example
The practical using of the constructed model (15) and
procedures is considered for numerical simulation for real

valued random field &(z,r,¢) in RxR* with a bounded

spectrum, that are time homogeneous and homogeneous
isotropic with respect to variables r,¢ on in this example. It

admits that this 3D random field have spatial-temporal co-
variance function C(t,p) . We may use approach, see [10]

for such covariance functions that divides spatial and tem-
poral components by means of product-sum formulas:

C(t.p) =kC(p)C; (1) +krCy(p) + k3C; (1),
where k, k,, k3 — are coefficients:
B,(0)+ 5,(0)- 5. (0,0)

kl:

5050
o B.(0.0)-5,(0)
TR0
o B.(00)-5,(0)
TR0

We chose the spatial covariance function C,(p) which
connected to spatial variogram yx(p) on homogeneous
isotropic case as: v,(p)=C,(0)-C,(p). The example of
spatial covariance function is C,(p)=C,(0)B,(p) where
C

X

tion Cauchy with the parameters a=1 and =1:

(0) spatial variance, B, (p) is a spatial correlation func-

2

—v
Bx(p):[l+zzJ , a>0, v>0.

The spatial variogram y,(p) simulating by model (15)
and results of realizations random field &(z,r,¢) in the

point =0 on the grid of points on the plane (r,¢;),

1 €[0,0.1,...,1], ¢; e[o,f—g,...,m} represented on (Fig. 1a).

The spatial-temporal variogram (Fig. 2):
yt’x(p)=(lex(0)+k3)y,(t)+
+(kiC, (0)+ k2 )12 (P) = kv, ()7 (p).

Temporal covariance function C,(t) which connected
to temporal variogram y,(r) on homogeneous case as:
v,(1)=C,;(0)-C, (1), where C,(0) is a temporal variance.
We choose as example of temporal covariance functions
the next: C,(t)=C,(0)B,(x) where B, (1) is a temporal
correlation function of Bessel type with parameter =0.055:

B,(t)=2"T(1+v)t "/, (7).

The temporal variogram is constructed for results of
simulating realizations of random field &(z,r,¢) by the
model (15) in the point of space (r,¢)=(0,0) at the change
of time ¢, 0<¢<T for example T =20.01 seconds and

At=—=—, At=0.01, =100 (N is the number of ex-
(0]

perimental observations points at the time #,; n=L..,N;
N =2001) that represented on illustration (Fig. 1b).
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Fig.1. Empirical (crosses) and theoretical (curve) variogram:
a — for averaging 20 realizations of random fields &(0,7,¢) with Cauchy type correlation function for parameters a=1, v=1; b —for

averaging 15 realizations of random field é(t,0,0) with Bessel type correlation function for parameter v =0.055

For graphic interpretation of the simulating realizations
of the 3D random field &(z,7,¢) the plot of field realizations

£(1,0,0) in times of experimental observations: from 0 to

20 seconds was constructed and wireframe surface
£(0,7,0) was built by using Surfer Software of Surfer, on

the grid of points on the plane that represented illustration.

Spatial-temporal variogram

Variogram

Fig. 2.The spatial-temporal variogram v,  (t,p)

3. Practical use of 3D random field simulation with
space-time correlation function

Different approaches [10] can be applied for practical use
of the advanced algorithm and model (15) for numerical simu-
lation of real and homogeneous in time t implementations, that
are homogeneous and isotropic with respect to variables r,¢

on RxR? of random fields &(z,7,¢), which have a limited

spectrum and space-time correlation function BZ(‘E,p). It

should be noted that models of space-time correlation struc-
ture are divided into two types: first takes into account the
distribution of the spatial and time components and other with
no such distribution. Work [10] gives an example of application
and most commonly used models, namely metric model, lin-
ear model, model of space-time covariance product and
model of product and sum.

Practical use example in seismology of developed algo-
rithm and numerical simulation model for real and homo-
geneous in time t implementations, two-dimensional homo-
geneous isotropic random fields with a limited spectrum

and space-time correlation function Bz(r,p) by method

which divides the spatial and time components with prod-
uct-sum formula described in [6].
The realization value arrays of random process

&(r,r,9) (p,o — fixed) were simulated as noise seismo-
grams for each observation point on each component: EW,

NS, and Z. They give important information about soil vi-
bration properties within the territory of building and operat-
ing sites. These properties are also required for design of
new antiseismic buildings and constructions, and providing
earthquake resistance of existing buildings in order to avoid
dangerous resonance effects. Random disturbances from
random external factors were removed from the simulated
noise seismograms by statistical averaging filters. These
disturbances include vibrations caused by the movement of
trains or heavy car and so on. The adequacy of value array
results from the simulated by statistical methods noise
seismograms were tested on real seismograms from ob-
servation points on the flat area.

Numerical simulation of soil strata frequency character-
istics in some cases can significantly reduce the cost of
seismic zoning of building sites by reducing the number of
instrumental observation points for earthquakes, explo-
sions and microseism.

4. Spectral analysis of generated noise in the flat
observation area

Frequency characteristic estimates for the geological
environment with the flat observation area (under construc-
tion sites) can be obtained by calculating and constructing
the amplitude and phase spectra of noise in seismogram
observation points in that area, considering fixed all argu-
ments except time [5]. Calculations of the amplitude and
phase spectra can be made by direct method [1], i.e. pe-
riodogram method. Then based on these results the spec-
tral ratio of the Earth crust was build, which is independent
of the spectrum of incident seismic waves, but determined
entirely by the geological environment structure under the
observation point.

Those spectral methods that use frequency as an inde-
pendent parameter provide information about the structure
and filtration properties of the upper crust layers, because
any medium is a filter that due to resonance and reverbera-
tion effects increases the oscillation amplitude for some
frequencies and reduces for the other [1]. The ability to
simulate the effects depends on amplitude and phase fre-
quency characteristics of the geological environment for
observation points situated under building sites and operat-
ing platforms, allows studying the geological section fea-
tures and predicting places where significant increase in
the seismic oscillation intensity is possible due to reso-
nance effects and oscillation field interference nodes.

Among the many ways to eliminate the influence of vari-
ous factors that affect the spectrum shape of seismic waves
during earthquakes, explosions and microseism except that
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due to the influence of the upper crust section part, the way
should be noted based on the use of the vertical |S,(w)|
component spectra relations to the horizontal \SN(co)\

component. Spectra must be calculated for the same wave.
This ratio is called the crust spectral ratio 7'(®) .

|Sz(@)|/[Sy ()| =T (o)
The ratio T(w) is independent of the spectrum of inci-

dent seismic waves, but determined entirely by the geo-
logical environment structure under the observation point.

Fig. 3a and 1 b show graphs of amplitude spectra |S(w)|

for the initial simulated noise realization for imaginary ob-
servation point with the oscillation components Z and NS
respectively, Figure 3 represents earth crust transmission
ratio graph T(®) , that was built on the smoothed amplitude
spectrum ratio of simulated noise seismogram realization
on the fluctuation Z -component to the similar spectrum of
fluctuation component NS for an observation point.

16 a5 - T(w)
[S() il s LIS(®) a 1z
14 40
12 - 10
10 8
8 i -
6- A &
4 - i Ty
2 -
o,y f LAA,
0 e v T T
0 1L 2 3 4 5 6 o 7T 7

Fig. 3. Graphs of amplitude spectra \S(m)\ for simulated array noise realization for imaginary observation point

on the component a — Z and b — NS; c — the graph of transmission ratio 7(») for smoothed amplitude spectra
of simulated noise realization for imaginary observation point

Interpretation of crust transmission ratio for these ob-
servations was conducted by comparing them with theo-
retical ratio calculated for well-known models of the upper
section part. Fig. 3 shows graph T(w) of smoothed ampli-

tude spectra transmission ratio for imaginary observation
point that can be used to determine the increase of seis-
micity level on different parts of the building site, relative to
the real observation point.

Conclusions. The model and advanced algorithm of
statistical  simulation  for  time-homogeneous and
homogeneous isotropic with respect to the two other
variables 3D random fields with a limited spectrum were
developed. These results continued research set in works
[3-9, 17] for modeling and generation method of noise
seismogram implementations at flat observation area [5]
and it is an important supplement to the Monte Carlo
method used in geology.
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KuviBcbkui HauioHanbHUI yHiBepcuTeT imeHi Tapaca LlleBueHka

HHI "lHcTuTyT reonorii”, Byn. BacunbkiBcbka 90, m. Kuis, 03022, YkpaiHa

NPO NMOKPALLEHUIA AITOPUTM CTATUCTUHHOIO MOAEJTIOBAHHA CEWCMIYHOIO WyMy
B MNOCKIN OBNACTI CNOCTEPEXEHHA ONA BU3HAYEHHA
YACTOTHUX XAPAKTEPUCTUK MEOJIONYHOI0 CEPEAOBULLIA

Po6oma npucesiyeHa nodanbuwili po3pobyi meopii ma memodie cmamucmu4Ho20 ModesIo8aHHs1 aunadkKoeux npouyecie ma nosie Ha OCHoei ix
cnekmpanbHux po3knadie ma mooducgpikoeaHux iHmepnonsyiliHux psidie KomenbHukoea-llleHHOHa, a MmakoX 3acmocyeaHHI Mmakux memodie
y 3ad0a4ax 2eoghi3au4H020 MOHIMOPUH2Yy HaeKONMUWHbLO20 cepedosuwa. Po3anssHymo 3adayy cmamucmu4Ho20 ModesitoeaHHs1 eunadKoeux rnorie
y mpueumipHiii o6nacmi 3MiHHUX (0OHOPIOHUX 3a YacoM ma 0OHOPiGHUX i3omponHuUx 3a deomMa iHWUMU 3MIHHUMU) Npu enpoesadXeHHi y celicMo-
no2iyHi docnidxeHHs1 ONsi 8U3HaYeHHs1 4acCMOMHUX Xapakmepucmuk 2eosioz2idyHozo cepedosuwja. llo6ydoeaHo mModenb ma cghopmMynbO8aHO Mo-
KpaweHuli anzopummM 4ucesibHO20 Modesiro8aHHsl peanisayili makux eunadkKoeux noslie Ha ocHoei ModugbikoeaHux iHmepnonsayiliHux po3knadie
KomenbHukoea-LLleHHOHa Onsi 2eHepyeaHHs1 adekeamHux peaini3zayili wymy celicMoepam. B cmammi eue4arombcs OilicHo3HayHi eunadkoei nons
§(tx),teR x e R - 00HOPIiOHI 3a YacoM ma 0OHOPIOHI i3omponHi 3a MpocmoposuMu 3MiHHUMU 8 A808UMipHOMY npocmopi. Po3ansdaembcsi npo-
6nema anpokcumayii makux eunadkoeux nosiie eunadkosumu nonssMu 3 obmexxeHum cnekmpom. [ns eunadkogux rnosie 3 o6MexeHUM criekKmpom
ecmaHoersieHo aHano2 meopemu KomenbHukoea-LlleHHoHa. OmpumMaHo 800CKOHaseHi OyiHKU cepedHbOK8adpamuyHo20 HabnuxeHHs1 aunadkoeux
nosiie y npocmopi RxR? modenro, nob6ydoeaHor Ha OCHOEi crnekmpasibHo20 po3knady ma iHmepnonsyiiiHoi ¢popmynu KomenbHukoea-LUleHHOHa.
Po3pobneHo nokpaweHull anzopummM cmamucmu4Ho20 ModeslroeaHHsl peasi3ayili 2aycciecbKux 0OHOPIOHUX 3a YacoM ma 0OHOPIOHUX i3omporn-
HUX 3a NPOCMopPo8UMU 3MIHHUMU 8 0808UMIPHOMY MPOCMOopi sunadkKosux rnoJsie 3 obmexeHum cnekmpomM. HasedeHo meopemu npPo oyiHKu cepe-
OHbOKeadpamuyHoi anpokcumayii 00HOpPiOHUX 3a YacoM ma oGHOPIOHUX i30mponHux 3a deoMa iHWUMU 3MiHHUMU eunadKoeuXx foJslie Yacmkoeumu
cymamu psidie cneuyianbHo2o eu2snsdy, 3a AOMOMO20I0 SIKUX CHOPMYsIbO8aHO MOKpaujeHull an2opumm HuceslbHO20 MOOesIl08aHHSsI peani3zayil
makux eunadkoeux rnosie. Po3a2nsHymo crnocobu npoeedeHHs1 criekKmpasibHO20 aHasi3y 32eHepoeaHux peasizayil wymy celicmozpam. Po3pobire-
HO yHigepcasnibHi Memodu cmamucmu4Ho20 ModesntoeaHHs1 (Memodu MoHme-Kapno) 6azamonapamempuyHux celicMosio2i4HuUx AaHux, siki 0aromb
Moxnueicmsb eupiwumu npobnemMu 2eHepyeaHHsl peasisayili wymy celicMoz2paM Ha ruIockKili o6s1acmi cnocmepexeHHs1 Ha cimyi HeobxiOHoi dema-
JNIbHOCMIi ma peaynsipHocmi.

Knro4oei cnosa: cmamucmuyHe Modesito8aHHs, an2opumm, 4acmomHi xapakmepucmuku, celicMoz2pamMa.
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KneBckui HaumoHanbHbIN yHMBepcuteT uMeHun Tapaca LLleB4yeHko

YHU "UHcTuTyT reonorun”, yn. BacunbkoBckas 90, r. Kues, 03022, YkpauHa

OB YNYYLWEHHOM ANIMOPUTME CTATUCTUYECKOIO MOAENTMPOBAHUSA CEAMCMWYECKOIO LUYMA
B MNJIOCKOU OBJIACTU HABJIOAEHUA AN ONPEQENEHUA
YACTOTHbIX XAPAKTEPUCTUK FTEONNIOMMYECKOU CPE[bI

Pa6oma nocesiuyeHa paspabomke meopuu u Memodosio2uu cMmamucmu4Yecko2o0 ModesiupoeaHusi ciy4aliHbiX Npoyeccos u noseli Ha 0CHoge
ux crneKkmpasnbHbIX Pa3fioXeHUl u ModuguyupoeaHHbIX UHMEPNONAYUOHHbIX psidoe KomenbHukoea-lLleHHOHa, a makxe NMPUMEHEHUID Mmakux
mMemodoe 8 3adayax 2eohu3u4yecKko20 MOHUMOpPUHa2a OKpyxarowel cpedbl. PaccMompeHa 3ada4a cmamucmu4ecko2o ModesiuposaHusi cry4au-
HbIX nonieli 8 mpexmMepHoU obracmu nepeMeHHbIX (0GHOPOOHbIX M0 8PEMEHU U OOHOPOOHLIX U30MPOMHbLIX M0 08yM Opy2UMU MepeMeHHbIM) npu
eHedpeHUU 8 celicMosioaudeckue uccredosaHusi 0s1s1 onpedesieHUs1 YaCMoMHbIX Xapakmepucmuk 2eosio2u4deckoll cpedbl. [locmpoeHa modenb u
cgopmynupoeaH yryqweHHbIlU an2opumM 4YUcCsIeHHO20 Mode/lupoeaHuUsi peanu3ayuli makux ciy4YaliHbix noseli Ha OCHoO8aHUU MOOUUUUPOBaH-
HbIX UHMEPNONSIYUOHHbIX pa3noxeHuli KomenbHukoea-LlleHHoHa Onsi 2eHepupoeaHusi aBekeamHbIx peanu3ayuli wyma celicMmoepamm. B cmambe
u3y4aromcsi delicmeumesnibHO3Ha4YHble cryyvaliHbie nons §(t, x), t € R, x € R° — 00HOPOOHbIEe NO 8peMeHU U 0OHOPOOHbLIe U30MPOMNHbLIe Mo MpPo-
cmpaHcmeeHHbIM nepeMeHHbIM 8 08yMepHOM npocmpaHcmee. Paccmampueaemcsi npo6iemMa annpokcumMayuu makux ciyyYaliHbix nonel ciayyau-
HBIMU OJIIMU C 02PaHUYeHHbIM criekmpom. 4ns crnyyalHbix nosel nosisiMu ¢ o2paHUu4eHHbIM CIMEKMPOM yCmaHoe8IeHO aHano2 meopembl Kome-
nbHuKoea-lLlleHHoHa. MonyyeHbl ycosepuieHcmeosaHHbIe OUeHKU cpedHekeadpamu4yecko2o NpubnuxeHusi criy4YaliHbix nosnell 8 npocmpaHcmee
RxR’ Modesibio, KOmopasi MOCMPOEHa Ha OCHOBE CIEKMPabHO20 Pa3sIoKEHUs! U UHMEPNONAUUOHHOL ¢hopMynbl KomenbHukosa-LlieHHoHa. Pa3-
paboman yny4uweHHbIl an2opummM cmamucmu4ecko2o0 ModeniupogaHusi peanu3ayuli 2aycco8CcKUX 0OHOPOOHbIX M0 8peMeHU U 0OHOPOOHbIX U30-
MPOMHbIX M0 NPOCMPaHCMEEHHbIM NepeMeHHbIM cryYyaliHbiX rnosiell ¢ oepaHuYyeHHbIM criekmpoM. [JokazaHo meopemMbl 06 oyeHke cpedHekeadpa-
muyeckol annpokcumayuu 0OHOPOOHbIX M0 8peMeHU U 0GHOPOOHbLIX U30OMPOMNHbLIX M0 08yM Opya2uMU NepeMeHHbIM ciyYaliHbIX nosel Yacmu4-
HbIMU cymmamu psidoe crieyuasibHo20 euda, npu NoMouw,u Komopol cghopMynuposaH ynyqWeHHbIl an2o0pumm YuceHHo20 ModesluposaHus pea-
nu3ayuli makux cry4vatiHbix rnosiel. PaccMmompeHb! crnocobbl npoeedeHusi crnekmpasibHO20 aHa/u3a caeHepupoeaHHbIX peanu3auyull wyma celc-
mozpamm. PaszpabomaHbl yHueepcanbHble Memodbl cmamucmu4yecko2o ModenupoeaHusi (Memodbi Moume-Kapso) MHoz2onapamempu4ecKux
celicMosio2u4deKkux GaHHbIX, KOmopble 0alom 803MOXHOCMb pewumsb MPobieMbl 2eHepupo8aHusi peanu3ayuli wymMa celicMoz2paM Ha M/1I0CKOCKoOU
o6nacmu Ha6nodeHus1 Ha cemke Heob6xodumoli demanbHOCMU U pe2ynisipHOCMU.

Knioyeenbie crioga: cmamucmuveckoe modeniuposaHue, an2opumm, 4acmomHble XxapaKkmepucmuku, celicMozpamma.





